高中数学必修五解三角形知识点
解三角形知识点

《必修五》解三角形知识点归纳一、正弦定理 正弦定理:2sin sin sin a b cR A B C=== 文字语言:在一个三角形中,各边和它所对角的正弦的比相等. 符号语言:2sin sin sin a b cR A B C=== 特点:对称美、和谐美 (一)理解定理1、正弦定理:在△ABC 中,2sin sin sin sin sin sin a b c a b cR A B C A B C++====++【在这个式子当中,已知两边和一角或已知两角和一边,可以求出其它所有的边和角,从而知正弦定理的基本作用是进行三角形中的边角互化】2、正弦定理的基本作用:①已知三角形的任意两角及其一边可以求其他边,如角化边sin sin b Aa B=②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a BA b= 3、常用公式及其结论⑴正弦定理包含三个等式sin sin a b A B =,sin sin b c B C =,sin sin a c A C=每一个等式中都包含四个量,可以“知三求一” (2)三内角和为180︒即180A B C ︒++=,222A B C π+=- (3)两边之和大于第三边,两边之差小于第三边,,;,,.a b c a c b b c a a b c b c a a c b +>+>+>-<-<-< (4)面积公式:2111sin sin sin 2sin sin sin 2224abcS ab C bc A ac B R A B C R===== ⑸三角函数的恒等变形:sin()sin A B C +=,cos()cos A B C +=- ,()tan tan A B C +=-,sincos 22A B C +=,cos sin 22A B C+=,tan tan 22A B C +=,tan tan +tan tan tan tan A B C A B C +=⋅⋅ ⑹C B A c b a sin :sin :sin ::= ⑺角化边: C R c B R b A R a sin 2sin 2sin 2===⑻边化角:RcC Rb B Ra A 2sin 2sin 2sin ===⑼在△ABC 中,①若B b A a cos cos =,则△ABC 是等腰三角形或直角三角形; ②若B a A b cos cos =,则△ABC 是等腰三角形;③若222cos cos +cos 1A B C +=或cos cos cos a A b B c C +=,则△ABC 是直角三角形.⑽在△ABC 中,sin sin sin A B C a b c A B C >>⇔>>⇔>>(二)题型:使用正弦定理解三角形共有三种题型题型1: 利用正弦定理公式原型解三角形题型2: 利用正弦定理公式的变形(边角互化)解三角形:关于边或角的齐次式可以直接边角互化.例如:222222sin 3sin 2sin 32A B C a b c +=⇒+=题型3: 三角形解的个数的讨论 方法一:画图看方法二:通过正弦定理解三角形,利用三角形内角和与三边的不等关系检验解出的结果是否符合实际意义,从而确定解的个数.(三)三角形内角平分线定理:△ABC 中,AD 是A ∠的角平分线,则DCBDAC AB = 我们知道,当一个三角形已知任意两角和一边时,根据全等三角形的判定定理可以得知这个三角形就是唯一确定的,也就是可解的.先由三角形内角和定理求出第三个角,再由正弦定理计算另两边.另外,一个三角形的三边之间必须满足:任意两边之和大于第三步且任意两边之差小于第三边.当已知一个三角形的三边时,已知的三条边必须满足上面的条件才能够作出三角形.否则作不出三角形,当然也无法解三角形.从上面的探讨可以得知,已知三角形的三边要解三角形时,必须满足三边关系,解三角形才有意义.当已知三边时,连续利用余弦定理的推论求出较小边的对角,再用三角形内角和求出第三个角. 如果已知三角形的两边及其夹角,那么根据三角形的判定定理我们知道这个三角形是唯一确定的,也就是可解的.我们可以利用余弦定理计算第三边,用余弦定理的推论或正弦定理计算其余两个角. 如果已知任意两边及其中一边的对角如何来解三角形呢?我们先看下面的例题: 例题:已知:在△ABC 中,22,25,133,a cm b cm A ︒===解三角形. 解:22,25,133a cm b cm A ︒===∴根据正弦定理,得sin 25sin133sin 0.831122b A B a ︒==≈ 0180B ︒︒<< ∴56.21B ︒≈,或123.79B ︒≈ 180A B C ︒++= ∴9.21C ︒=-或76.79C ︒=-【师】:问题出在哪里呢?【生】:分析已知条件,我们注意到,133a b A ︒<=,是一个钝角,根据三角形的性质应该有A B <,因而B 也是一个钝角.而在一个三角形中是不可能存在两个钝角的.【师】:从上面的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.如:①已知32,2,60===O b a A ,求B (有一个解);②已知32,2,60===O a b A ,求B (有两个解)二、余弦定理(一)知识与工具:余弦定理:222222222222222222cos 22cos 2cos cos 22cos cos 2b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab ⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇒=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩(二)题型:使用余弦定理解三角形共有三种现象的题型题型1:利用余弦定理公式的原型解三角形题型2:利用余弦定理公式的变形(边角互换)解三角形:凡在同一式子中既有角又有边的题,要将所有角转化成边或所有边转化成角,在转化过程中需要构造公式形式。
高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
高中数学必修5知识点总结归纳(人教版最全)

高中数学必修五知识点汇总第一章 解三角形 一、知识点总结 正弦定理:1.正弦定理:2sin sin sin a b cR A B C=== (R 为三角形外接圆的半径).步骤1.证明:在锐角△ABC 中,设BC=a,AC=b,AB=c 。
作CH ⊥AB 垂足为点H CH=a ·sinB CH=b ·sinA ∴a ·sinB=b ·sinA得到b ba a sin sin =同理,在△ABC 中, bbc c sin sin =步骤2.证明:2sin sin sin a b cR A B C===如图,任意三角形ABC,作ABC 的外接圆O. 作直径BD 交⊙O 于D. 连接DA.因为直径所对的圆周角是直角,所以∠DAB=90°因为同弧所对的圆周角相等,所以∠D 等于∠C.所以C RcD sin 2sin ==故2sin sin sin a b c R A B C ===2.正弦定理的一些变式:()sin sin sin i a b c A B C ::=::;()sin ,sin ,sin 22a bii A B C R R==2c R =;()2sin ,2sin ,2sin iii a R A b R B b R C ===;(4)R CB A cb a 2sin sin sin =++++ 3.两类正弦定理解三角形的问题:(1)已知两角和任意一边,求其他的两边及一角.(2)已知两边和其中一边的对角,求其他边角.(可能有一解,两解,无解) 4.在ABC ∆中,已知a,b 及A 时,解得情况: 解法一:利用正弦定理计算解法二:分析三角形解的情况,可用余弦定理做,已知a,b 和角A ,则由余弦定理得 即可得出关于c 的方程:0cos 2222=-+-a b Ac b c 分析该方程的解的情况即三角形解的情况 ①△=0,则三角形有一解 ②△>0则三角形有两解 ③△<0则三角形无解 余弦定理:1.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩2.推论: 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则: ①若222a b c +=,则90C =; ②若222a b c +>,则90C <; ③若222a b c +<,则90C >.3.两类余弦定理解三角形的问题:(1)已知三边求三角.(2)已知两边和他们的夹角,求第三边和其他两角. 面积公式:已知三角形的三边为a,b,c,1.111sin ()222a S ah ab C r a b c ===++(其中r 为三角形内切圆半径)2.设)(21c b a p ++=,))()((c p b p a p p S ---=(海伦公式)例:已知三角形的三边为,、、c b a 设)(21c b a p ++=,求证:(1)三角形的面积))()((c p b p a p p S ---=; (2)r 为三角形的内切圆半径,则pc p b p a p r ))()((---=(3)把边BC 、CA 、AB 上的高分别记为,、、c b h h a h 则))()((2c p b p a p p ah a ---=))()((2c p b p a p p b h b ---=))()((2c p b p a p p ch c ---=证明:(1)根据余弦定理的推论:222cos 2a b c C ab+-=由同角三角函数之间的关系,sin C ==代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == 注:连接圆心和三角形三个顶点,构成三个小三角形,则大三角形的面积就是三个小三角形面积的和 故得:pr cr br ar S =++=212121(3)根据三角形面积公式12a S a h =⨯⨯所以,2a S h a =a h =同理b h c h 【三角形中的常见结论】(1)π=++C B A (2) sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-2cos 2sinC B A =+,2sin 2cos CB A =+;A A A cos sin 22sin ⋅=, (3)若⇒>>C B A c b a >>⇒C B A sin sin sin >> 若C B A sin sin sin >>⇒c b a >>⇒C B A >> (大边对大角,小边对小角)(4)三角形中两边之和大于第三边,两边之差小于第三边 (5)三角形中最大角大于等于 60,最小角小于等于 60(6) 锐角三角形⇔三内角都是锐角⇔三内角的余弦值为正值⇔任两角和都是钝角⇔任意两边的平方和大于第三边的平方.钝角三角形⇔最大角是钝角⇔最大角的余弦值为负值 (7)ABC ∆中,A,B,C 成等差数列的充要条件是 60=B .(8) ABC ∆为正三角形的充要条件是A,B,C 成等差数列,且a,b,c 成等比数列. 二、题型汇总:题型1:判定三角形形状判断三角形的类型(1)利用三角形的边角关系判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.(2)在ABC ∆中,由余弦定理可知:222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆) (3) 若B A 2sin 2sin =,则A=B 或2π=+B A .例1.在ABC ∆中,A b c cos 2=,且ab c b a c b a 3))((=-+++,试判断ABC ∆形状.题型2:解三角形及求面积一般地,把三角形的三个角A,B,C 和它们的对边a,b,c 叫做三角形的元素.已知三角形的几个元素求其他元素的过程叫做解三角形.例2.在ABC ∆中,1=a ,3=b ,030=∠A ,求的值例3.在ABC ∆中,内角C B A ,,对边的边长分别是c b a ,,,已知2=c ,3π=C .(Ⅰ)若ABC ∆的面积等于3,求a ,b(Ⅱ)若A A B C 2sin 2)(sin sin =-+,求ABC ∆的面积.题型3:证明等式成立证明等式成立的方法:(1)左⇒右,(2)右⇒左,(3)左右互相推.例4.已知ABC ∆中,角C B A ,,的对边分别为c b a ,,,求证:B c C b a cos cos +=.题型4:解三角形在实际中的应用考察:(仰角、俯角、方向角、方位角、视角)例5.如图所示,货轮在海上以40km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平转角)为140°的方向航行,为了确定船位,船在B 点观测灯塔A 的方位角为110°,航行半小时到达C 点观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是多少?三、解三角形的应用 1.坡角和坡度:坡面与水平面的锐二面角叫做坡角,坡面的垂直高度h 和水平宽度l 的比叫做坡度,用i 表示,根据定义可知:坡度是坡角的正切,即tan i α=.lhα2.俯角和仰角:如图所示,在同一铅垂面内,在目标视线与水平线所成的夹角中,目标视线在水平视线的上方时叫做仰角,目标视线在水平视线的下方时叫做俯角.3. 方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为 .注:仰角、俯角、方位角的区别是:三者的参照不同。
必修五数学解三角形知识点

必修五数学解三角形知识点必修五数学解三角形知识点判断解法已知条件:一边和两角一般解法:由A+B+C=180°,求角A,由正弦定理求出b与c,在有解时,有一解。
已知条件:两边和夹角一般解法:由余弦定理求第三边c,由正弦定理求出小边所对的角,再由A+B+C=180°求出另一角,在有解时有一解。
已知条件:三边一般解法:由余弦定理求出角A、B,再利用A+B+C=180°,求出角C在有解时只有一解。
已知条件:两边和其中一边的对角一般解法:由正弦定理求出角B,由A+B+C=180°求出角C,再利用正弦定理求出C边,可有两解、一解或无解。
(或利用余弦定理求出c边,再求出其余两角B、C)①若ab,则AB有唯一解;②若ba,且babsinA有两解;③若absina则无解。
p=常用定理正弦定理a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形中是恒量,R是此三角形外接圆的半径)。
变形公式(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA:sinB:sinC=a:b:c(3)asinB=bsinA,asinC=csinA,bsinC=csinB(4)sinA=a/2R,sinB=b/2R,sinC=c/2R面积公式(5)S=1/2bcsinA=1/2acsinB=1/2absinC S=1/2底·h(原始公式)余弦定理a²=b²+c²-2bccosAb²=a²+c²-2accosBc²=a²+b²-2abcosC注:勾股定理其实是余弦定理的一种特殊情况。
变形公式cosC=(a²+b²-c²)/2abcosB=(a²+c²-b²)/2accosA=(c²+b²-a²)/2bc数学二元一次方程组知识点1.定义:含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程。
必修五第1章解三角形归纳整合

4. 解三角形应用题的基本思路 解三角形应用题的关键是将实际问题转化为解三角形问题 来解决.其基本解题思路是:首先分析此题属于哪种类型 的问题(如:测量距离、高度、角度等),然后依题意画出 示意图,把已知量和未知量标在示意图中(目的是发现已 知量与未知量之间的关系),最后确定用哪个定理转化, 哪个定理求解,并进行作答.解题时还要注意近似计算的 要求.
网络构建 专题归纳 解读高考 高考真题
解;若方程有唯一正数解,则三角形一解;若方程有两不同 正数解,则三角形有两解. 三角形形状的判定方法 3. 判定三角形形状通常有两种途径:一是通过正弦定理和余弦 定理,化边为角(如:a=2Rsin A,a2+b2-c2=2abcos C等), 利用三角变换得出三角形内角之间的关系进行判断.此时注 意一些常见的三角恒等式所体现的角之间的关系.如:
网络构建
专题归纳
解读高考
高考真题
【例2】 在△ABC中,角A,B,C的对边分别为a,b,c,且满 足(2a-b)cos C=c· cos B,△ABC的面积S=10 3 ,c=7. (1)求角C; (2)求a,b的值. 解 (1)∵(2a-b)cos C=ccos B, ∴(2sin A-sin B)cos C=sin Ccos B, 2sin Acos C-sin Bcos C=cos Bsin C, 即2sin Acos C=sin(B+C), ∴2sin Acos C=sin A.
-2ab1+cos
π , 3
2
1 -2×40×1+ . 2
∴a+b=13.② 由①②得 a=8,b=5 或 a=5,b=8.
网络构建
专题归纳
解读高考
高考真题
最新人教版高中数学必修5第一章《解三角形》

数学人教B 必修5第一章解三角形知识建构综合应用专题一判断三角形的形状正弦定理、余弦定理是反映三角形中边角关系的重要定理,是处理有关三角形问题的有力工具,要注意两定理的变形运用及实际应用.判断三角形的形状,其常用方法是:将已知式子都化为角的式子或边的式子再判断.通常利用正弦定理的变形如a =2R ·sin A 将边化角,b 2+c 2-a 2a 利用余弦定理的推论如cos A =把角的余弦化边,或利用sin A =把角的正弦化2bc 2R边,然后利用三角形的有关知识,三角恒等变形方法、代数恒等变形方法进行转化、化简,从而得出结论.常见结论有:设a ,b ,c 是△ABC 的角∠A ,∠B ,∠C 的对边,①若a 2+b 2=c 2,则∠C =90°;②若a 2+b 2>c 2,则∠C <90°;③若a 2+b 2<c 2,则∠C >90°;π④若sin 2A =sin 2B ,则∠A =∠B 或∠A +∠B =.2应用1在△ABC 中,若sin A ∶sin B ∶sin C =2∶3∶4,则该三角形是__________三角形.提示:考虑到已知条件是三个角正弦的比值,可用正弦定理得出三边的关系,再利用余弦定理判断最大角的大小即可.应用2在△ABC 中,若∠B =60°,2b =a +c ,试判断△ABC 的形状.提示:已知条件中等式只有边,故结合其特点,可选择利用正弦定理化边为角,再结合三角函数关系化简求解;本题也可利用∠B =60°这一条件,用余弦定理,找出边之间的关系来判断.专题二恒等式的证明证明有关三角形中边角关系的恒等式,若出现边角混合关系式,通常情况下,有两种方法:化边为角,将已知条件统一用角表示;化角为边,将已知条件用边表示,然后利用角的关系或边的关系进行求解,从而使问题得到解决.应用1在△ABC 中,求证:a 2+b 2sin 2A +sin 2B (1)2=;c sin 2C(2)a 2+b 2+c 2=2(bc cos A +ca cos B +ab cos C ).提示:本题(1)可从左边证到右边,利用正弦定理将边的关系转化为角的关系;本题(2)可从右边证到左边,利用余弦定理将角的关系转化为边的关系.应用2已知在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,△ABC 的面积为S .a 2+b 2+c 2求证:cot A +cot B +cot C =.4S提示:解本题的关键是化切为弦,再结合余弦定理变形.专题三三角形的面积问题求三角形面积与正弦定理、余弦定理、三角函数、函数的有关知识紧密地联系在一起,是高考中的常见题型.常用三角形面积公式:111(1)S △ABC =ah a =bh b =ch c .222111(2)S △ABC =ab sin C =bc sin A =ac sin B .222a +b +c (3)S =p (p -a )(p -b )(p -c )(其中p =).2应用在△ABC 中,sin A +cos A =2,AC =2,AB =3,求tan A 的值和△ABC 的面积.2提示:由已知可把角A 算出来,再求tan A ,并求出sin A ,直接代入面积公式即可求面积.专题四正、余弦定理的综合应用以三角形为载体,以正、余弦定理为工具,以三角恒等变换为手段来考查解三角形问题是近几年高考中一类热点题型.在具体解题中,除了熟练使用正弦、余弦定理这个工具外,也要根据条件,合理选用三角函数公式,达到简化解题的目的.cos C 2a -c 应用1在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且=.cos B b(1)求cos B 的值;(2)若b =7,a +c =4,求△ABC 的面积.提示:(1)先利用正弦定理化简,再用三角变换整理即得.(2)利用余弦定理及面积公式,再注意整体求ac 的技巧.应用2在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,且3a =2c sin A .(1)确定角C 的大小;33(2)若c =7,且△ABC 的面积为,求a +b 的值.2提示:(1)利用正弦定理将边转化为角即可;(2)利用余弦定理和面积公式列出关于a ,b 的方程求解,注意整体技巧.专题五正、余弦定理在实际问题中的应用解决有关三角形的应用问题时,首先要认真分析题意,找出各量之间的关系,根据题意画出示意图,将要求的问题抽象为三角形模型,然后利用正弦定理、余弦定理求解,最后将结果还原为实际问题,这一程序可用框图表示为:实际问题――→解三角形问题――→三角形问题的解――→实际问题的解概括演算应用1如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧抽象推理还原远处一山顶D 在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°,求此山的高度CD .提示:要测出高CD ,只要测出高所在的直角三角形的另一条直角边或斜边的长即可.根据已知条件,可以计算出BC 的长.应用2如图,某巡逻艇在A 处发现北偏东45°相距9海里的C 处有一艘走私船,正沿南偏东75°的方向以10海里/时的速度向我海岸行驶,巡逻艇立即以14海里/时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才能追赶上该走私船?提示:在求解三角形中,可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.真题放送1.(2011·天津高考)如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为().A .3366B .C .D .36362.(2011·福建高考)若△ABC 的面积为3,BC =2,∠C =60°,则边AB 的长度等于__________.→→3.(2011·上海高考)在正三角形ABC 中,D 是BC 上的点.若AB =3,BD =1,则AB ·AD=______.4.(2011·湖南高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;π(2)求3sin A -cos(B +)的最大值,并求取得最大值时角A ,B 的大小.45.(2011·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b1=2,cos C =.4(1)求△ABC 的周长;(2)求cos(A -C )的值.6.(2011·辽宁高考)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .b (1)求;a(2)若c 2=b 2+3a 2,求∠B .7.(2011·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C1=p sin B (p ∈R ),且ac =b 2.45(1)当p =,b =1时,求a ,c 的值;4(2)若角B 为锐角,求p 的取值范围.答案:综合应用专题一应用1:钝角∵sin A ∶sin B ∶sin C =2∶3∶4,根据正弦定理,得a ∶b ∶c =2∶3∶4.设a =2m ,b =3m ,c =4m (m >0),∵c >b >a ,∴∠C >∠B >∠A .a 2+b 2-c 24m 2+9m 2-16m 21∴cos C ===-<0.2ab 42×2m ×3m∴∠C 是钝角.∴△ABC 是钝角三角形.应用2:解:解法一:由正弦定理,得2sin B =sin A +sin C .∵∠B =60°,∴∠A +∠C =120°.∴∠A =120°-∠C ,代入上式,得2sin 60°=sin (120°-C )+sin C ,31展开,整理得sin C +cos C =1.22∴sin(C +30°)=1.∴∠C +30°=90°.∴∠C =60°.故∠A =60°.∴△ABC 为等边三角形.解法二:由余弦定理,得b 2=a 2+c 2-2ac cos B .a +c ∵∠B =60°,b =,2a +c 2∴()=a 2+c 2-2ac cos 60°.2整理,得(a -c )2=0,∴a =c .从而a =b =c .∴△ABC 为等边三角形.专题二a b c 应用1:证明:(1)由正弦定理,设===k ,sin A sin B sin Ck 2sin 2A +k 2sin 2B sin 2A +sin 2B 显然k ≠0,所以,左边===右边,即原等式成立.k 2sin 2C sin 2Cb 2+c 2-a 2c 2+a 2-b 2a 2+b 2-c 2(2)根据余弦定理,右边=2(bc ·+ca ·+ab ·)=(b 2+c 2-a 2)2bc 2ca 2ab222222222+(c +a -b )+(a +b -c )=a +b +c =左边,即原等式成立.222b 2+c 2-a 2cos A b +c -a 应用2:证明:由余弦定理,得cos A =,所以cot A ===2bc sin A 2bc sin Ab 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2,同理可得cot B =,cot C =,所以cot A +cot B +cot C =4S 4S 4Sb 2+c 2-a 2a 2+c 2-b 2a 2+b 2-c 2a 2+b 2+c 2++=.4S 4S 4S 4S专题三2应用:解:∵sin A +cos A =2cos (A -45°)=,21∴cos (A -45°)=.2又∵0°<∠A <180°,∴∠A =105°.tan 45°+tan 60°∴tan A =tan (45°+60°)==-2-3,1-tan 45°tan 60°2+6sin A =sin (45°+60°)=sin 45°cos 60°+cos 45°sin 60°=.4又∵AC =2,AB =3,2+6311∴S △ABC =AC ·AB ·sin A =×2×3×=(2+6).2244专题四cos C 2a -c 2sin A -sin C 应用1:解:(1)由==,得cos B b sin Bcos C ·sin B =2sin A ·cos B -cos B ·sin C .∴2sin A ·cos B =sin B ·cos C +cos B ·sin C=sin (B +C )=sin (π-A )=sin A .1∵sin A ≠0,∴cos B =.2(2)∵b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =7,又a +c =4,∴(a +c )2-3ac =7.∴ac =3.11333∴S △ABC =ac sin B =×3×=.2224应用2:解:(1)由3a =2c sin A 及正弦定理,得a 2sin A sin A ==.c sin C 33∵sin A ≠0,∴sin C =.2∵△ABC 是锐角三角形,π∴∠C =.3π(2)∵c =7,∠C =.由面积公式,得31π33ab sin =,∴ab =6.①232π由余弦定理,得c 2=a 2+b 2-2ab cos =7,即a 2+b 2-ab =7.②3由①②,得(a +b )2=25,故a +b =5.专题五应用1:解:在△ABC 中,∠BAC =15°,∠ACB =25°-15°=10°.根据正弦定理,AB sin ∠BAC 5sin 15°得BC ==≈7.452 4(km),sin 10°sin ∠ACBCD =BC tan ∠DBC =BC ×tan 8°≈1.047 (km).答:山的高度约为1.047 km.应用2:解:设该巡逻艇沿AB 方向经过x 小时后在B 处追上走私船,则CB =10x ,AB =14x ,AC =9,∠ACB =75°+45°=120°,222∴(14x )=9+(10x )-2×9×10x cos 120°,2化简,得32x -30x -27=0.39解得x =或x =-(舍去).216∴BC =10x =15,AB =14x =21.BC sin 120°15353又∵sin ∠BAC ==×=,AB 21214∴∠BAC =38°13′或∠BAC =141°47′(钝角不合题意,舍去).∴38°13′+45°=83°13′.答:巡逻艇应该沿北偏东83°13′方向去追,经过1.5小时才能追赶上该走私船.真题放送31.D 设BD =a ,则BC =2a ,AB =AD =a .2在△ABD 中,由余弦定理,得33(a )2+(a )2-a 222222AB +AD -BD 1cos A ===.2AB ·AD 3332×a ·a 2222又∵∠A 为△ABC 的内角,∴sin A =.3BC AB 在△ABC 中,由正弦定理,得=.sin A sin C3a 222AB 6∴sin C =·sin A =·=.BC 2a 361132.2在△ABC 中,由面积公式得S =BC ·CA ·sin C =×2·AC ·sin60°=AC =3,∴AC 2221=2.再由余弦定理,得AB 2=BC 2+AC 2-2·AC ·BC ·cos C =22+22-2×2×2×=4.∴AB =2.23.15如图,在△ABD 中,由余弦定理得2AD 2=AB 2+BD 2-2AB ·BD ·cos 60°=9+1-2×3×cos 60°=7,∴AD =7,AB 2+AD 2-BD 29+7-15∴cos ∠BAD ===.2AB ·AD 2×3×727515于是,AB ·AD =|AB ||AD |cos ∠BAD =3×7×=.2724.解:(1)因为c sin A =a cos C ,由正弦定理,得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0.从而sin C =cos C .π又cos C ≠0,所以tan C =1,则∠C =.43π(2)由(1)知,B =-A .于是4π3sin A -cos(B +)4=3sin A -cos(π-A )=3sin A +cos Aπ=2sin(A +).63πππ11π因为0<A <,所以<A +<.46612ππππ从而当A +=,即A =时,2sin(A +)取最大值2.6236ππ5π综上所述,3sin A -cos(B +)的最大值为2,此时∠A =,∠B =.431215.解:(1)∵c 2=a 2+b 2-2ab cos C =1+4-4×=4,4∴c =2.∴△ABC 的周长为a +b +c =1+2+2=5.1(2)∵cos C =,4115∴sin C =1-cos 2C =1-()2=.44154a sin C 15∴sin A ===.c 28∵a <c ,∴∠A <∠C .故∠A 为锐角.1527)=.88∴cos(A -C )=cos A cos C +sin A sin C71151511=×+×=.8484166.解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A ,即sin B (sin 2A +cos 2A )=2sin A .b 故sin B =2sin A ,所以= 2.a(2)由余弦定理和c 2=b 2+3a 2,(1+3)a 得cos B =.2c由(1)知b 2=2a 2,故c 2=(2+3)a 2.12可得cos 2B =,又cos B >0,故cos B =,22所以∠B =45°.5a +c =,47.解:(1)由题设和正弦定理,得1ac =,4∴cos A =1-sin 2A =1-(⎧⎨⎩1a =1,⎧⎧⎪⎪a =4,解得⎨1或⎨c =,⎪⎪⎩4⎩c =1.11(2)由余弦定理,b 2=a 2+c 2-2ac cos B =(a +c )2-2ac -2ac cos B =p 2b 2-b 2-b 2cos B ,2231即p2=+cos B,223因为0<cos B<1,得p2∈(,2).2由题设知p>0,所以6<p< 2. 2。
高二数学必修五 第一章 解三角形

高二数学必修五 第一章解三角形一、本章知识结构:二、基础要点归纳1、三角形的性质: ①.A+B+C=π,222A B Cπ+=-⇒sin()sin A B C +=, cos()cos A B C +=-,sincos 22A B C+= ②.在ABC ∆中,a b +>c , a b -<c ; A >B ⇔sin A >sin B ,A >B ⇔cosA <cosB, a >b ⇔A >B③.假设ABC ∆为锐角∆,那么A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理: ①.正弦定理:2sin sin sin a b cR A B C === (2R 为ABC ∆外接圆的直径) 111sin sin sin 222ABCS ab C bc A ac B ∆=== ②.余弦定理:2222cos a b c bc A =+-222cos 2b c a A bc +-=2222cos b a c ac B =+-222cos 2a c b B ac+-=2222cos c a b ab C =+-222cos 2a b c C ab+-=〔必修五〕第二章、数列一、本章知识结构:二、本章要点归纳:1、数列的定义及数列的通项公式:①.()n a f n =,数列是定义域为N 的函数()f n ,当n 依次取1,2,⋅⋅⋅时的一列函数值。
②.n a 的求法:i.归纳法。
ii.11,1,2n n n S n a S S n -=⎧=⎨-≥⎩ 假设00S =,那么n a 不分段;假设00S ≠,那么n a 分段。
iii. 假设1n n a pa q +=+,那么可设1()n n a m p a m ++=+解得m,得等比数列{}n a m +。
iv. 假设()n n S f a =,那么先求1a ,再构造方程组:11()()n n n n S f a S f a ++=⎧⎨=⎩得到关于1n a +和n a 的递推关系式.2.等差数列:① 定义:1n n a a +-=d 〔常数〕,证明数列是等差数列的重要工具。
(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档

必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修五不等式
1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.
2、不等式的性质: ①a b b a >⇔<; ②,a b b c a c >>⇒>; ③a b a c b c >⇒+>+; ④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+; ⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n n a b a
b n n >>⇒>∈N >;
⑧)0,1a b n n >>⇒>∈N >.
小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。
在字母比较的选择或填空题中,常采用特值法验证。
3、一元二次不等式解法:
(1)化成标准式:2
0,(0)ax bx c a ++>>;(2)求出对应的一元二次方程的根;
(3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。
线性规划问题:
1.了解线性约束条件、目标函数、可行域、可行解、最优解
2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.
3.解线性规划实际问题的步骤:
(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。
两类主要的目标函数的几何意义:
①z ax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径;
4、均值定理: 若0a >,0b >,则a b +≥,即2a b +≥. ()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;
2a b
+称为正数a 、b a 、b 的几何平均数.
5、均值定理的应用:设x 、y 都为正数,则有
⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s
.
⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.
注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。