2018年秋八年级数学上册第13章13.2命题与证明第3课时三角形的内角和的证明作业(新版)沪科版
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 定理与证明

D.所有的命题都是定理
3.下列语句中不正确的是( B ) A.定理是命题,而且是真命题 B.“对顶角相等”不是命题,也不是定理 C.“同角(或等角)的余角相等”是定理 D.“同角(或等角)的补角相等”是定理
4.下面关于“证明”的说法正确的是( )
C
A.“证明”是一种命题
B.“证明”是一种定理
C.“证明”是一种推理过程
D.“证明”就是举例说明
5.【中考·宜昌】如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,
发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识
是( )
A.垂线段最短
B.经过一点有无数条直线
D
C.经过两点,有且仅有一条直线
D.两点之间,线段最短
6.【2021·合肥月考】如图所示,下列推理及括号中所注明的 推理依据有错误的是( )
证明:∵∠1=50°,∠2=130°,∴∠1+∠2=180°, ∴BD∥CE,∴∠ABD=∠C. ∵∠A=∠ABD,∴∠A=∠C.
(2)求∠C的度数.
解:∵∠2=130°,∴∠AGC=50°, ∴∠A+∠C=180°-50°=130°. 又∵∠A=∠C,∴∠C=65°.
10.【2021·淮南凤台月考改编】已知:如图,E为BC延长线上一点,AE交CD 于点F,AD∥BC,∠1=∠2,∠3=∠4,求证:AB∥CD.
8.如图,若AO⊥CO,BO⊥DO,则∠AOB=∠COD,推理的依据是( ) A.同角的补角相等 B.同角的余角相等 B C.AO⊥CO D.BO⊥DO
9.【2021·宿州砀山期末】如图,点B在AC上,AF与BD、CE分别交于H、G, 已知∠1=50°,∠2=130°,∠ABD=∠A.
(1)求证:∠C=∠A;
沪科版八年级上册数学第13章 三角形中的边角关系、命题与证明 三角形内角和定理及推论

540°
3 4
720°
(2)如图,从n边形的一个顶点可以引出________条对角(线n-,3把) n边形分成 ________个三角形. n边形的内角和为______________(用含n的代数式表示); (n-2) (n-2)·180°
(3)请根据上面你所找到的规律计算十二边形的内角和. 解:十二边形的内角和为(12-2)×180°=1800°.
沪科版八年级上
第13章 三角形中的边角关系、命题与证明
13.2 三命题与证明 第3课时三角形内角和定理及推论
核心必知 1 180° 2 互余 3 互余
提示:点击 进入习题
1B 2C 3B 4 见习题 5C
答案显示
6 见习题 7 见习题 8B 9 50°或80° 10 见习题
11 见习题 12 见习题 13 见习题
证明:∵CD⊥AB,∴∠CDB=90°, ∴∠BCD=90°-∠B=28°, ∴∠FCD=∠ECB-∠BCD=16°. ∵∠CDF=74°, ∴∠CFD=180°-∠FCD-∠CDF=90°, ∴△CFD是直角三角形.
12.如图,有一艘渔船上午9时在A处沿正东方向航行,在A处测得灯塔C在北 偏东60°方向上,渔船行驶2h到达B处,在B处测得灯塔C在北偏东15° 方向上,试求△ABC各内角的度数.
10.如图,在△ABC中,已知∠ABC=46°,∠ACB=80°,延长BC至D,使 ∠CAD=∠D,求∠BAD的度数.
解:∵∠ACB=80°, ∴∠ACD=180°-∠ACB=180°-80°=100°. 又∵∠CAD=∠D,∠ACD+∠CAD+∠D=180°, ∴∠CAD=∠D=40°. 在△ABD中,∠BAD=180°-∠ABD-∠D= 180°-46°-40°=94°.
八年级数学上第13章三角形中的边角关系命题与证明13.1三角形中的边角关系3三角形中几条重要线段教案

第3课时三角形中几条重要线段教学目标【知识与技能】1.了解并掌握三角形的高、中线和角平分线的概念,会用直尺、量角器等工具作出三角形的高、中线与角平分线.2.通过作图了解三角形的三条高、三条中线与三条角平分线分别交于一点.【过程与方法】经历探究三角形的高、角平分线、中线的过程,掌握其应用方法,发展空间观念.【情感、态度与价值观】1.经历作图的实践过程,认识三角形的高、中线与角平分线,帮助学生养成实事求是、具体问题具体分析的习惯.2.发展学生合情推理的能力,提高学生学习数学的兴趣,形成合作交流的意识.重点难点【重点】三角形的三条高、中线和角平分线的画法.【难点】钝角三角形三条高的画法.教学过程一、创设情境,导入新知师:我们在上节课把三角形按角进行了分类,我请几个同学回答一下什么是锐角三角形、什么是直角三角形、什么是钝角三角形.生甲:在三角形中,三个角都是锐角的三角形叫做锐角三角形.生乙:在三角形中,有一个角是直角的三角形叫做直角三角形.生丙:在三角形中,有一个角是钝角的三角形叫做钝角三角形.师:很好!我们上节课学习了一个重要的定理,大家还记得吗?生:记得.三角形三个内角的和等于180°.师:很好!这节课我们继续学习三角形的有关知识.二、共同探究,获取新知师:三角形中三条边、三个角是它的六个基本元素,除此之外,同学们通过预习,知道它还有什么元素吗?生:角平分线.师:什么是角平分线呢?生:三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线.师:还有什么元素?生:中线.师:什么是中线呢?生:三角形中,连接一个顶点与它对边中点的线段叫做三角形的中线. 师:还有什么元素呢?生:高.师:什么是高呢?生:从三角形的一个顶点到它对边所在直线的垂线段叫做三角形的高. 学生熟记定义.师:你能根据这些线的定义作出这些线吗?生:能.师:现在请大家画一个三角形,并作出各个角的平分线.学生操作,教师巡视.教师在黑板上演示画一个角的平分线.∠1=∠2,BD是∠ABC的平分线.师:现在请大家重新画一个三角形,并作出这个三角形的三条中线.学生操作,教师巡视.教师在黑板上演示画一条中线.BD=DC,AD是BC边上的中线.师:现在请大家重新画一个三角形,并作出这个三角形的三条高.学生操作,教师巡视.教师在黑板上演示画三种类型的三角形的一条高线.锐角三角形BC边上的高直角三角形BC边上的高钝角三角形BC边上的高师:你能用折叠的方法作出一个角的平分线吗?学生思考,交流.生:能.师:你是怎样做的?生:先作出一个三角形,把它裁剪下来,我折叠要平分的这个角使它的两边重合,这样得到的折痕与这个角的对边有一个交点,连接这个角的顶点与这个交点得到的线段就是这个三角形的角平分线.师:你太聪明了.大家现在都知道怎么作的吗?生:知道.师:那么请同学们动手做一做.学生操作.师:你能用折叠的方法作出三角形的一条中线吗?学生思考,交流.生:能.师:你是怎么做的?生:要作出三角形一边上的中线,我折叠这条边,使其两端点重合,折痕与这条边的交点,就是这条边的中点.连接这条边所对角的顶点与这个中点,所得的线段就是这条边上的中线.师:现在请大家动手作出中线.学生操作.师:你能用折叠的方法作出三角形一边上的高吗?学生讨论.生:过这边所对角的顶点折叠三角形,使这条边的两段重合,这样就得到了三角形的高.师:很好,请大家动手做一做.学生操作,教师巡视指导.三、作图练习,理解定义师:三角形的角平分线的定义给出了角平分线的作法,请同学们在纸上画出一个三角形,并根据角平分线的定义,画出三个角的平分线.学生操作,教师巡视指导.师:请同学们再画出一个三角形,然后根据中线的定义,作出中线.学生操作,教师巡视指导.师:请同学们完成教材上“操作”的第1题.学生操作,教师巡视指导,最后集体订正.师:直角三角形的高中,有两条和边重合;钝角三角形的高中,有两条在三角形的外部.请同学们观察一下,你们作出的三条角平分线、三条中线和三条高,它们有什么特点?生甲:三条角平分线交于一点.生乙:三条中线交于一点.生丙:三条高交于一点.师:很好!之前学过的说明三角形意义的语句、本节中说明三角形角平分线意义的语句:“不在同一直线上的三条线段首尾依次相接所组成的图形叫做三角形”,“三角形中,一个角的平分线与这个角的对边相交,顶点与交点之间的线段叫做三角形的角平分线”,分别是三角形、三角形角平分线的定义.七年级时我们也学过一些定义,如“整数和分数统称为有理数”是有理数的定义.前两个定义揭示了对象的特征性质,后一个定义明确了所指对象的范围.给出定义,就是在于明确研究对象是什么.四、课堂小结师:本节课我们学习了什么内容?生:我们学习了三角形的角平分线、中线和高的定义以及画法.师:对,我们由作图过程知道了三角形的三条角平分线、三条中线和三条高是交于一点的.教学反思本节课通过让学生自己动手作图,作出三角形三个角的平分线、三条中线和三条高,让学生深刻理解它们的定义.通过画图和观察图形让学生自己去发现同一三角形的这些线是交于一点的,培养他们观察、总结的能力.通过实际动手得到的结论,他们的印象会更深刻,理解更透彻.这节课所讲授的三种线段中的两种,即三角形的角平分线和高线都是建立在以往旧知识的基础上的,学生对这两种线段已经有了一定的认识,学习起来更容易.强调三角形中的三种线是“线段”,而不是以往的“射线”.。
松滋市六中八年级数学上册 第13章 三角形中的边角关系、命题与证明13.2 命题与证明第3课时 三

第3课时三角形内角和定理及推论【知识与技能】应用几何推理、证明解决几何问题.【过程与方法】经历探索推理的论证过程,感受几何中逻辑推理的内涵,培养符号化语言.【情感与态度】培养严谨的证明意识,提高思维能力,体会几何学的实际价值.【教学重点】重点是学会应用理性推理的方法.【教学难点】难点是形成演绎推理的思路.一、回顾迁移,严谨论证自主学习:阅读课本第80~81页.【教学说明】组织学生用五分钟时间阅读、理解课本第80页证明“三角形内角和等于180°”的知识.教师让学生小组合作,回顾交流,完善证明“三角形内角和等于180°”的方法以及表达格式,总结辅助线的作法.辅助线引入:为了计算和证明的需要,在原来图形上添加(画)线,叫做辅助线,辅助线常常画成虚线.新知探究:证明“三角形的内角和等于180°”.已知:△ABC,如图.求证:∠A+∠B+∠C=180°.【分析】以前我们通过剪拼将三角形的三个内角拼成了一个平角,这不是证明,但它却给我们以启发.现在我们通过作图来实现这种转化,给出证明.【证明】如图,延长BC到点D,以点C为顶点、CD为一边作∠2=∠B.则CE∥BA.(同位角相等,两直线平行)∴∠A=∠1.(两直线平行,内错角相等)∵B,C,D在同一条直线上,(所作)∴∠1+∠2+∠ACB=180°,∴∠A+∠B+∠ACB=∠1+∠2+∠ACB=180°.【归纳结论】证明命题式证明题的基本步骤:1.分清命题的条件和结论,根据条件画出图形,在图形上标出有关字母与符号;2.结合图形,写出已知,求证;3.分析因果关系,找出证明途径;4.有条理地写出证明过程.教师提问:直角三角形中的两个锐角之间有着怎样的关系?请用几何语言证明.由基本事实、定理直接得出的真命题叫做推论.推论1:直角三角形的两个锐角互余.已知:如图所示,在△ABC中,∠C=90°.求证:∠A+∠B=90°.【证明】在△ABC中∵∠C=90°(已知)∴∠A+∠B=180°-90°=90°(三角形内角和等于180°)推论2:有两个角互余的三角形是直角三角形.二、范例学习,应用所学例1证明:对顶角相等.已知:如图所示,直线AB、CD相交于O,∠AOC与∠DOB是对顶角.求证:∠AOC=∠DOB.【证明】∵∠AOC+∠AOD=180°∠AOD+∠DOB=180°∴∠AOC=∠DOB(同角的补角相等)例2如图所示,∠1与∠2互为补角,∠3=∠B,试判断∠C与∠AED的大小关系,并证明.【解】∠C=∠AED.理由如下:∵∠1与∠2互为补角,而∠1与∠5也互为补角,∴∠5=∠2.∴BD∥EF.∴∠3=∠4,而∠3=∠B,∴∠4=∠B,∴DE∥BC,∴∠C=∠AED.【教学说明】通过例题发现三角形内角的各个定理及其推论.三、合作交流,探索思路1.已知:如图,∠1=∠2,∠3=∠4,求证:AC∥DF,BC∥EF.2.根据命题的题设和结论,画出图形并写出已知、求证.(1)等角的余角相等.(2)两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.四、随堂练习,巩固深化1.课本第81~82页练习1、2.2.完成练习册中相应作业.五、师生互动,课堂小结1.提问:(1)什么是证明?(2)证明命题的步骤有哪些?(3)书写格式有什么特点?2.证明命题式证明题的基本步骤:(1)分清命题的条件和结论,根据条件画出图形,在图形上标出有关字母与符号;(2)结合图形,写出已知,求证;(3)分析因果关系,找出证明途径;(4)有条理地写出证明过程.1.课本第84~85页习题13.2的5、6、7、8.2.完成练习册中相应作业.本节采用“回顾迁移,严谨论证——范例学习,应用所学——合作交流,探索思路”几个环节使学生能应用几何推理、证明解决几何问题,经历探索推理的论证过程,感受几何中逻辑推理的内涵,培养符号化语言,培养严谨的证明意识,提高思维能力,体会几何学的实际意义.第2课时用坐标表示轴对称1.直角坐标系中关于x轴、y轴对称的点的特征.(重点)2.直角坐标系中关于某条直线对称的点的特征.(难点)一、情境导入十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确的告诉了他.你知道为什么吗?结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?二、合作探究探究点一:用坐标表示轴对称【类型一】求一个点关于坐标轴的对称点的坐标在平面直角坐标系中,与点P(2,3)关于x轴或y轴成轴对称的点是( ) A.(-3,2) B.(-2,-3)C.(-3,-2) D.(-2,3)解析:点P(2,3)关于x轴对称的点的坐标为(2,-3),关于y轴对称的点的坐标为(-2,3),故选D.方法总结:关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数.关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变.【类型二】关于坐标轴对称的点与方程的综合已知点A(2a-b,5+a),B(2b-1,-a+b).(1)若点A 、B 关于x 轴对称,求a 、b 的值;(2)若A 、B 关于y 轴对称,求(4a +b )2016的值.解析:(1)根据关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数可得2a -b =2b -1,5+a -a +b =0,解方程(组)即可;(2)根据关于y 轴对称的点的坐标特点:横坐标互为相反数,纵坐标不变可得2a -b +2b -1=0,5+a =-a +b ,解方程(组)即可.解:(1)∵点A 、B 关于x 轴对称,∴2a -b =2b -1,5+a -a +b =0,解得a =-8,b =-5;(2)∵A 、B 关于y 轴对称,∴2a -b +2b -1=0,5+a =-a +b ,解得a =-1,b =3,∴(4a +b )2016=1.方法总结:根据关于x 轴、y 轴对称的点的特征列方程(组)求解.【类型三】 关于坐标轴对称的点与不等式(组)的综合已知点P (a +1,2a -1)关于x 轴的对称点在第一象限,求a 的取值范围.解析:点P (a +1,2a -1)关于x 轴的对称点在第一象限,则点P (a +1,2a -1)在第四象限.解:依题意得P 点在第四象限,∴⎩⎪⎨⎪⎧a +1>0,2a -1<0,解得-1<a <12,即a 的取值范围是-1<a <12.方法总结:根据点的坐标关于坐标轴对称,判断出对称点所在的象限,由各象限内坐标的符号,列不等式(组)求解.探究点二:作关于坐标轴对称的图形【类型一】 作关于x 轴或y 轴对称的图形在平面直角坐标系中,已知点A (-3,1),B (-1,0),C (-2,-1),请在图中画出△ABC ,并画出与△ABC 关于y 轴对称的图形.解析:作出A ,B ,C 三点关于y 轴的对称点,顺次连接各点即可.解:如图所示,△DEF 是△ABC 关于y 轴对称的图形.方法总结:在坐标系中作出关于坐标轴的对称点,然后顺次连接,此类问题一般比较简单.【类型二】 与对称点有关的综合题如图,在10×10的正方形网格中,每个小方格的边长都是1,四边形ABCD 的四个顶点在格点上.(1)若以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,画出四边形ABCD 关于y 轴对称的四边形A 1B 1C 1D 1;(2)点D 1的坐标是________; (3)求四边形ABCD 的面积.解析:(1)以点B 为原点,线段BC 所在直线为x 轴建立平面直角坐标系,然后作出各点关于y 轴对称的点,顺次连接即可;(2)根据直角坐标系的特点,写出点D 1的坐标;(3)把四边形ABCD 分解为两个直角三角形,求出面积.解:(1)如图所示;(2)点D 1的坐标为(-1,1);(3)四边形ABCD 的面积为12×1×3+12×1×2=52.方法总结:轴对称变换作图,基本作法是:(1)先确定图形的关键点;(2)利用轴对称性质作出关键点的对称点;(3)按原图形中的方式顺次连接对称点.求多边形的面积可将多边形转化为规则图形的面积的和或差求解.三、板书设计用坐标表示轴对称1.直角坐标系中关于x 轴、y 轴对称的点的特征. 2.直角坐标系中关于某条直线对称的点的特征.从本节课的授课过程来看,灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织学生活动等.调动了学生学习的积极性,充分发挥了学生的主体作用.课堂拓展了学生的学习空间,给学生充分发表意见的自由度..,,AD BC BD AC AD BD BC AC ==⊥⊥求证:如图,例12.2 三角形全等的判定(4)学习目标:1、已知斜边和直角边会作直角三角形;2、熟练掌握“斜边、直角边”,利用它判定一般三角形全等的方法判定两个直角三角形全等学习重点: 探究直角三角形全等的条件学习难点: 灵活应用五种方法来判定直角三角形全等 学习过程: 一、学前准备判定两个三角形全等的方法有哪些?二、自主探究 探究5:任意画出一个Rt △ABC ,使/C =90°,再画一个Rt △A'B'C',使B'C'=BC ,A'B'=AB ,把画好的Rt △A'B'C'剪下,放到Rt △ABC 上,看看它们是否全等.结论: 分别相等的两个直角三角形全等(简写成“斜边,直角边”或“ ”).注意两点:一是“HL ”是仅适用于Rt △的特殊方法。
《第13章三角形中的边角关系、命题与证明》学习指导

《第13章三角形中的边角关系、命题与证明》学习指导编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(《第13章三角形中的边角关系、命题与证明》学习指导)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为《第13章三角形中的边角关系、命题与证明》学习指导的全部内容。
《第13章 三角形中的边角关系、命题与证明》学习要求:1.理解三角形的角平分线、中线、高线的概念及性质。
会用刻度尺和量角器画出任意三角形的角平分线、中线和高。
2.掌握三角形的分类,理解并掌握三角形的三边关系。
3.掌握三角形内角和定理及推论,三角形的外角性质与外角和。
4.了解三角形的稳定性。
知识要点:一、三角形中的边角关系1.三角形有三条内角平分线,三条中线,三条高线,它们都相交于一点。
注意:三角形的中线平分三角形的面积。
2。
三角形三边间的不等关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
注意:判断三条线段能否构成一个三角形时,就看这三条线段是否满足任何两边之和大于第三边,其简便方法是看两条较短线段的和是否大于第三条最长的线段。
3.三角形各角之间的关系:①三角形的内角和定理:三角形的三个内角和为180°.②三角形的外角和等于360°(每个顶点处只取一个外角); ③三角形的一个外角等于与它不相邻的两个内角的和; ④三角形的一个外角大于任何一个和它不相邻的内角。
4.三角形的分类①三角形按边的关系可以如下分类:②三角形按角的关系可以如下分类:5.三角形具有稳定性.知识结构:二、命题与证明1.判断一件事情的句子是命题,疑问句、感叹句不是命题,计算不是命题,画法不是命题。
教育最新2018年秋八年级数学上册第13章13.2命题与证明第2课时三角形的内角和及三角形的外角教案新版沪科版

第2课时三角形的内角和及三角形的外角◇教学目标◇【知识与技能】1.掌握三角形内角和定理及三个推论;2.熟悉并掌握较简单命题的证明方法及其表述;3.探索并理解三角形的内角和定理,会灵活运用三角形内角和定理及几个推论解决实际问题.【过程与方法】经历探索并证明三角形内角和定理的过程,让学生在思考与探索的过程中了解三角形内角和定理的几个推论.【情感、态度与价值观】通过三角形内角和定理的证明,让学生体会到数学的严谨性和推理的用途,让学生积极参与活动,积极思考、发言使他们养成良好的学习习惯.提高学习和探索数学的兴趣.◇教学重难点◇【教学重点】三角形内角和定理的证明,三角形内角和定理及其推理.【教学难点】三角形内角和定理的证明.◇教学过程◇一、情境导入在前面我们学习了三角形的内角和定理,你还记得它的内容吗?我们用折叠、剪拼和度量的方法证明过这个命题,上节课我们还学习了简单命题的证明,现在我们来证明这个定理.二、合作探究1.证明三角形内角和定理:三角形的内角和等于180°.问题1:这个命题的条件和结论分别是什么?结论:条件是一个三角形,结论是它的内角和为180°.2.理解推论1、推论2.问题2:如果一个三角形中一个角是90°,根据三角形内角和定理,另外两个角的和会是多少?结论:90°.问题3:在三角形内角和定理的证明中,我们把△的一边延长至点,得到∠,像这样由三角形的一边与另一边的延长线组成的角,叫做三角形的外角,它与它不相邻的内角∠A,∠B有怎样的关系?结论:①∠ACD和∠ACB的和是180°,所以∠ACD=180-∠ACB.根据三角形内角和定理,∠A+∠B+∠ACB=180,∠A+∠B=180-∠ACB,由等式的性质,得到∠ACD=∠A+∠B;②∠ACD>∠A;③∠ACD>∠B.典例已知:如图,∠1,∠2,∠3是△ABC的三个外角,求证:∠1+∠2+∠3=360°.[解析]∵∠1=∠ABC+∠ACB,∠2=∠BAC+∠ACB,∠3=∠BAC+∠ABC,(三角形的一个外角等于与它不相邻的两个内角的和)∴∠1+∠2+∠3=2(∠BAC+∠ACB+∠BAC).(等式性质)∵∠ABC+∠ACB+∠BAC=180°,(三角形内角和定理)∴∠1+∠2+∠3=360°.三、板书设计三角形的内角和及三角形的外角三角形内角和定理的证明:推论1:直角三角形的两锐角互余.推论2:有两个角互余的三角形是直角三角形.推论3:三角形的外角等于与它不相邻的两个内角的和.推论4:三角形的外角大于与它不相邻的任何一个内角.◇教学反思◇本节课让学生自己思考设计证明思路,培养学生积极思考的探索精神,一方面让学生学会将实际问题用数学形式表示出来,另一方面培养他们建立相关事物之间的联系的意识,促进知识的迁移.。
沪科版八年级数学上第13章三角形中的边角关系、命题与证明13

自主学习
基础夯实
整合运用
思维拓展
第2页
八年级 数学 上册 沪科版
典例导学 如图,在△ABC 中,∠ACB=90°,∠ACD=∠B.求证:△CDB 是直角
三角形.
【思路分析】要证△CDB 是直角三角形,可证∠B+∠DCB=90°,在△ABC
中,已知∠ACB=90°,易证△CDB 是直角三角形.
自主学习
A.85° B.90° C.95° D.100°
自主学习
基础夯实
整合运用
思维拓展
第 14 页
八年级 数学 上册 沪科版
9.如图,在△ABC 中,∠C=90°,则∠B 为 A.15° B.30° C.50° D.60°
(D)
自主学习
基础夯实
整合运用
思维拓展
第 15 页
八年级 数学 上册 沪科版
10.已知三角形 ABC 的三个内角满足关系∠B+∠C=3∠A,则此三角形 (D)
八年级 数学 上册 沪科版
第 3 课时 三角形内角和定理的证明及 推论
自主学习
基础夯实
整合运用
思维拓展
第1页
八年级 数学 上册 沪科版
要点感知 1.三角形内角和定理:三角形的内角和等于 18180°0°. 2.为了证明的需要,在原来图形上添画的线叫做辅辅助线助线. 3.直角三角形的两锐角互互余 余. 4.有两个角互余的三角形是直直角角三三角形角形.
1 ∴∠EGD=3×(180°-60°)=40°, ∴∠1=40°.
自主学习
基础夯实
整合运用
思维拓展
第 23 页
八年级 数学 上册 沪科版
(2)∠AEF+∠FGC=90°. 理由:∵AB∥CD, ∴∠AEG+∠CGE=180°, 即∠AEF+∠FEG+∠EGF+∠FGC=180°, 又∵∠FEG+∠EGF=90°, ∴∠AEF+∠FGC=90°.
八年级数学上册三角形中的边角关系、命题与证明 . 命题与证明三角形的外角

12.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸 见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∠BDC等于 140°才算合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸 让小明解释(jiěshì)这是为什么,小明很轻松地说出了原因,并用如下的三种方法解出此题.请你分别说 出不合格的理由. ( 1 )如图1,连接AD并延长. ( 2 )如图2,延长CD交AB于点E. ( 3 )如图3,连接BC.
( 2 )∵∠BAC+∠B+∠C=180°,∠BAC=70°,∠B=40°,
∴∠C=70°.
第六页,共十四页。
6.如图所示,∠ACD是△ABC的一个外角,CE平分∠ACD,F为CA延长线上的一 点(yī diǎn),FG∥CE,交AB于点G,下列说法正确的是 ( C )
A.∠2+∠3>∠1 B.∠2+∠3<∠1 C.∠2+∠3=∠1 D.无法(wúfǎ)判断
你的结论.
解:( 1 )延长(yáncháng)BD交AC于点E. ∵∠BDC是△CDE的外角,∴∠BDC=∠ACD+∠CED,
∵∠CED是△ABE的外角,∴∠CED=∠A+∠ABD.
∴∠BDC=∠A+∠ABD+∠ACD. ( 2 )∠D+∠A+∠ABD+∠ACD=360°. ( 3 )令BD,AC交于点E, ∵∠AED是△ABE的外角,∴∠AED=∠A+∠ABD, ∵∠AED是△CDE的外角,∴∠AED=∠D+∠ACD,
第四页,共十四页。
知识点2 三角形外角(wài jiǎo)的性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3课时三角形的内角和的证明
知识要点基础练
知识点1三角形的内角和定理的证明与辅助线
1.如图,在证明“△ABC内角和等于180°”时,延长BC至点D,过点C作CE∥AB,得到∠ABC=∠ECD,∠BAC=∠ACE,由于∠BCD=180°,可得到∠ABC+∠ACB+∠BAC=180°,这个证明方法体现的数学思想是(D)
A.数形结合
B.特殊到一般
C.一般到特殊
D.转化
知识点2直角三角形的两锐角互余
2.在Rt△ABC中,∠B是直角,∠C=22°,那么∠A的度数是(C)
A.22°
B.58°
C.68°
D.112°
3.如图,AC⊥BD,∠1=∠2,∠D=40°,求∠BAD的度数.
解:∵AC⊥BD,∠1=∠2,
∴∠1=45°,∠ACB=90°,
∵∠D=40°,∴∠CAD=50°,
∴∠BAD=∠1+∠CAD=95°.
知识点3有两个角互余的三角形是直角三角形
4.三角形有一个角的度数是36°角的余角,另一个角是144°角的补角,那么这个三角形是
(C)
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无法确定
5.如图,点E是△ABC中AC边上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?
解:△ABC是直角三角形.理由如下:
∵ED⊥AB,∴∠ADE=90°,△ADE是直角三角形.
∴∠1+∠A=90°.
又∵∠1=∠2,∴∠2+∠A=90°,
∴△ABC是直角三角形.
综合能力提升练
6.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为(B)
A.65°
B.55°
C.45°
D.35°
7.如图,△ABC的角平分线CD,BE相交于点F,∠A=90°,EG∥BC,且CG⊥EG于点G.下列结论:
①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=∠CGE.其中正确的结论有(C)
A.1个
B.2个
C.3个
D.4个
8.将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数是(C)
A.25°
B.20°
C.15°
D.10°
【变式拓展】把一副常用的三角板按如图所示的方式拼在一起,点B在AE上,那么图中的∠ABC= 75°.
9.如图,在△ABC中,∠BAC=90°,AC≠AB,AD是斜边BC上的高,DE⊥AC,DF⊥AB,垂足分别为E,F,则图中与∠C(∠C除外)相等的角的个数是(A)
A.3
B.4
C.5
D.6
10.如图,在△ABC中,∠ACB=68°,若P为△ABC内一点,且∠1=∠2,则∠BPC=(D)
A.68°
B.120°
C.92°
D.112°
11.如图,已知△ABC中,∠ACB=90°,CD为AB边上的高,∠ABC的平分线BE分别交CD,CA于点F,E,则下列结论正确的是(A)
①∠1=∠2;②∠4=∠5;③∠A=∠4;④∠2与∠5互余.
A.①③④
B.②③④
C.①②④
D.①②③
12.如图,∠1+∠2+∠3+∠4=360°.
13.直角三角形两锐角的平分线相交所成的角的度数为45°或135°.
14.如图,已知∠AOD=30°,点C是射线OD上的一个动点.在点C的运动过程中,△AOC恰好是直角三角形,则此时∠A所有可能的度数为60°或90°.
15.如图,BD,CE是△ABC的高,BD和CE相交于点O.
(1)图中有哪几个直角三角形?
(2)图中有与∠2相等的角吗?请说明理由.
(3)若∠4=55°,∠ACB=65°,求∠3,∠5的度数.
解:(1)直角三角形有:△BOE,△BCE,△ACE,△BCD,△COD,△ABD.
(2)与∠2相等的角是∠1.
理由如下:∵BD,CE是△ABC的高,
∴∠1+∠A=90°,∠2+∠A=90°,∴∠1=∠2,
∴与∠2相等的角是∠1.
(3)∵∠ACB=65°,BD是高,
∴∠3=90°-∠ACB=90°-65°=25°,
在△BOC中,∠BOC=180°-∠3-∠4=180°-25°-55°=100°,
∴∠5=∠BOC=100°.
16.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,CE是△ABC的角平分线.
(1)求∠DCE的度数;
(2)若∠CEF=135°,求证:EF∥BC.
解:(1)∵∠B=30°,CD⊥AB,
∴∠DCB=90°-∠B=60°.
∵CE平分∠ACB,∠ACB=90°,
∴∠ECB=∠ACB=45°,
∴∠DCE=∠DCB-∠ECB=60°-45°=15°.
(2)∵∠CEF=135°,∠ECB=∠ACB=45°,
∴∠CEF+∠ECB=180°,
∴EF∥BC.
拓展探究突破练
17.如图,在△ABC中,O是高AD和BE的交点.
(1)观察图形,试猜想∠C和∠DOE,∠C和∠AOE之间具有怎样的数量关系?请说明理由.
(2)在这个解题过程中包含这样一个规律:如果一个角的两边分别垂直于另一个角的两边,那么这两个角的数量关系为相等或互补.
(3)如果一个角的两边分别垂直于另一个角的两边,其中一个角比另一个角的3倍少60°,求这两个角的度数.
解:(1)连接OC,∵AD⊥BC,BE⊥AC,
∴∠ACO+∠COE=90°,∠BCO+∠COD=90°,
∴∠ACO+∠COE+∠BCO+∠COD=180°,即∠ACB+∠DOE=180°.
∵∠DOE+∠AOE=180°,∴∠ACB=∠AOE.
(2)提示:两种情况分别如图所示.
(3)设较小的角为α,则另一个角为3α-60°,
∴α+3α-60°=180°或α=3α-60,解得α=60°或30°.。