JBT4731-2005钢制卧式容器讲稿
卧式容器(JB4731-2005)教材

《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
σ7 ,σ8 有加强圈时,承受F/4,Mφ是由加强圈,故第一项分母为A0 (加强圈组合截面面积)。第二项分母为I0 (加强圈组合截面惯性)。
σ7 是当有外加强圈时筒体内表面处的应力, 当有内加强圈时筒体外表面处的应力。
2013年陕西省压力容器设计人员培训班
《钢制卧式容器》
----JB/T 4731-2005
淡 勇
(教授)
西北大学化工学院 College of Chemical Engineering Northwest University
一. 前言
《钢制卧式容器》 ----JB/T 4731-2005
JB/T4731是1993年开始编写。1998年完成2000年版。后因
《钢制卧式容器》JB/T 47312005
2)地震及地震影响系数 考虑地震主要是为校核鞍座的强度。(请参见JB/T4731 P44 2节)
1)σ9 增加垫板起加强作用,此时由垫板承受部分Fs力(使鞍座腹板分开的), 即分母改为 Hsbo+brδre
这里有几点说明:
-地震力不考虑垂直地震力,取水平地震力; -地震力对鞍座的作用,其作用力取筒体轴线方向,因鞍座该方向抗弯性差; -卧式容器按放位置一般不高,风载相对地震较小,计算中没考虑,但对于按放
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
7.3.4 圆筒周向应力
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发
卧式容器(JB4731-2005)讲解

τh≤1.25[σ]t-σh
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3.4 圆筒周向应力
2005
它是由切向剪应力使筒体产生周向弯矩(切向剪力的水平、垂直分量对筒体取 矩)。其弯矩图如JB/T4731图7—5或下面图22.4.5-1。无加强圈或加强圈位于鞍 座平面内时,最大弯矩发生在鞍座边角处;加强圈靠近鞍座平面内时最大弯矩发 生在筒体水平中心线靠下一点处。
内压容器 外压容器
正常操作 σ2,σ3 σ1,σ4,
水压试验 σT2,σT3 σT2,σT3
冲水不加压 σT1,σT4, σT1,σT4,
《钢制卧式容器》JB/T 47312005
《钢制卧式容器》JB/T 4731-
7.3 切向剪应力
2005
它是由支座反力在支座处筒体上引起的切向剪应力。
1)当鞍座平面处有加强圈时最大剪应力发生在筒体水平中心线处(见下a) 。 2)当鞍座平面处无加强圈时最大剪应力发生在筒体水平中心线下鞍座边角处(见
最近网上有人认为按表5-1选材要求太严,而且在计算实例中用的是Q235-A,前后 不一致,故昨早秘书长同有关编审人员协商处理意见如下:
设计温度(环境温度加上+20℃)
鞍座材料
>0~250℃(相当环境温度-20℃~250℃)
Q235-A
0~-20℃(相当环境温度-20℃~-40℃)
16MnR,
20R
对受介质温度影响的按介质温度另行选取。对 表5-1鞍座材料的选取将在 JB/T4712鞍座标准确定后作适当修改及通知。
孟传亨JB4730-2005标准简介

JB/T4730.1~.2-2005《承压设备无损检测》(通用要求及射线检测部分)简介讲课稿孟传亨JB/T4730-2005标准共有6个标准组成:JB/T 4730.1-2005是5种常规检测方法的通用要求,JB/T 4730.2-2005是对射线检测的规定,以下顺次为UT、MT、PT和ET。
JB/T 4730标准是机械行业的标准,经主管部门批准后,适用于涉及承压设备的所有行业。
JB/T 4730标准将“压力容器”改为“承压设备”扩大了范围。
承压设备应包括锅炉、压力容器和承压管道。
§1 JB/T4730.1—2005中有关射线检测的规定1.1 JB/T4730.1-2005标准的适用范围本标准第1节“范围”规定了JB/T4730标准所涉及的内容,即5种常规检测方法的一般要求和使用原则。
本节明确了JB/T4730标准的适用范围,即凡金属材料的在制和在用的承压设备的无损检测均适用。
每种检测方法都包括了两方面的内容,即检测方法和缺陷等级评定。
1.2规范性引用文件第2节中规定:“下列文件中的条款,通过JB/T4730的本部分的引用而成为本部分的条款.凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本部分。
然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本部分。
”涉及射线检测规的范性引用文件有如下几个:GB/T 12604.2无损检测术语射线检测GB 17925—1999气瓶对接焊缝X射线实时成像检测JB/T 4730.2—2005 承压设备无损检测第2部分:射线检测GB/T 19293—2003 对接焊缝X射线实时成像检测法国家质量监督检验检疫总局国质锅检字[2003]248号文特种设备无损检测人员考核与监督管理规则1.3术语和定义第3节中规定:除引用国标GB/T12604.1~12604.6的术语适用于本标准外,对下列术语重新作了明确的定义。
卧式容器

JB/T4731-2005 <<钢制卧式容器>>1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
(19)JB4731-2005钢制卧式容器(英)

JB/T 4731-2005ContentsForeword (2)1. Scope (3)2. Normative references (3)3. Terms and definitions (3)4. General rules (4)5. Material (12)6. Structure (13)7. Strength calculation (14)8. Manufacturing, inspection and acceptance (46)Appendix A (Informative Exhibit) Calibration and Calculation of Strength and Stability of Horizontal Vessels under Additional Load (49)Interpretations to JB/T 4731-200 (62)JB/T 4731-2005ForewordThis standard is stipulated based on Chapter 8: “Horizontal Vessels”of GB 150-1989---Steel Pressure Vessels through incorporation and revision of some contents in design calculation and supplement of requirements for manufacturing, inspection and acceptance of horizontal vessels. Such contents as horizontal vessels of normal pressure, manufacturing conditions as well as calculation of load as incurred by centralized mass and strength verification are supplemented simultaneously with the stipulation of this standard.This standard is compiled in reference to PD 5500-2003 Pressure Vessels of Indirect Fired Process and JIS B 8278-1993 Saddle supported horizontal pressure vessels based on practice in design, manufacturing and inspection of horizontal vessels in China in recent years.Appendix A to this standard belongs to normative exhibit.This standard will substitute JB/T 4731-2000 from the date of implementation. JB/T 4731-2000 has not been published due to references. The standard as substantially substituted is Chapter 8 of GB 150-1989---Steel Pressure Vessels.This standard is proposed by China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262)This standard is under the jurisdiction of China Standardization Committee on Boilers and Pressure Vessels (SAC/TC 262).This standard is drafted by Hualu Engineering & Technology Co., LtdMajor drafters of this standard: Pei Deyu, Liu Shaojuan and Wang XinjingPersonnel participating in compilation of this standard:Economics & Development Research Institute, SINOPEC: Shou Binan, Gu Zhenming, Li Jianguo, Wang Weiguo and Chen Chaohui.Hualu Engineering & Technology Co., Ltd: Li Zhaoliu Yang YongchengSinopec Engineering Incorporation: Li Shiyu and Yu CunyiNational Technology Center of Process Equipment: Huang Zhenglin and Qin ShujingLanzhou Petroleum Machinery Research Institute: Song BingtangSteel Horizontal Vessels1. ScopeThis standard specifies requirements for design, manufacturing, inspection and acceptance of steel horizontal vessels (hereinafter referred to as horizontal vessels).This standard is applicable to horizontal vessels with design pressure no more than 35MPa as supported by two symmetrical saddle supports under the uniformly distributed load.This standard is not applicable to the following horizontal vessels:a)Vessels subjecting to fired process and nuclear radiation;b)Horizontal vessels frequently transported;c)Vessels requiring fatigue analysis;d)Vessels with sleeves2. Normative referencesThe following standards contain provisions which, through reference in this text, constitute provisions of this standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to applicanes based on this standard encouraged to investigate the possibility of applying the most recent editions of the standards indicated below. GB 150: Steel Pressure VesselsGB/T 700-1988: Carbon Structural SteelsGB/T 1804-2000: General Tolerances---Tolerances for Linear Dimensions without Individual Tolerance IndicationsGB/T 1591-1994: Low-alloy High-Strength Structural SteelsGB 50017-2003: Code for Design of Steel StructuresJB/T4712: Saddle SupportsJB 4733-1996: Explosive Stainless Clad Steel Plate for Pressure VesselsJB/T 4735-1997: Steel welded atmospheric pressure vesselsTechnologic Supervision Regulations On Safety Of Pressure Vessels (issued by formal State Administration of Quality and Technological Supervision in 1999)3. Terms and DefinitionsThe following terms and definitions are applicable to this standard.3.1 PressurePressure indicates gage pressure, if not specified.3.2 Working pressureWorking pressure is defined as the maximum pressure that may occur at the top of the vessel under normal operating conditions.3.3 Design pressureDesign pressure is defined as the maximum set pressure at the top of the vessel and shall be applied as the conditions of design load with the coincident design temperature. The design pressure shall be not less than the working pressure.3.4 Calculating pressureCalculating pressure is defined as the pressure used to determine the thickness of the vessel parts with the coincident design temperature.3.5 Test pressureTest pressure is defined as the pressure on the top of the vessel during pressure test for horizontal vessel.3.6 Design temperatureDesign temperature is defined as the set metal temperature of element under normal operating conditions of the vessel (the mean metal temperature through the cross section of the element). The design temperature shall be applied as the conditions of design load with the coincident design pressure.3.7 Test temperatureTest temperature is defined as the metal temperature of the shell during test.3.8 Thickness3.9 Calculated thicknessCalculated thickness refers to the thickness as obtained by using formula in GB 150 or JB/T 4735 and this standard. If necessary, thickness as required by other load shall be incorporated.3.10 Design thicknessDesign thickness refers to the sum of calculated thickness and corrosion allowance.3.11 Nominal thicknessNominal thickness is defined as the sum of the design thickness and the minus deviation of steel material thickness, then rounded off to the nearest greater thickness specified.3.12 Effective thicknessEffective thickness is defined as the nominal thickness minus the sum of the corrosion allowance and the minus deviation of steel material thickness.4. General rules4.1 The design, fabrication, testing and inspection, and acceptance of horizontal vessels must fully comply with all the applicable requirements of this standard, and be necessary to meet the requirements of appropriate laws, decrees and regulations issued by the Government.4.2 Scope of vessels4.2.1 Horizontal vessels connected with external pipelinesa) The first ring as connected through welding should be oriented towards the bevel end;b) The first threaded joint should be oriented towards the joint end;c) The first flanged sealing face;d) The first sealing face as connected with special connectors or pipe fittings.4.2.2 Bearing end seal and flat cap on connecting tube of horizontal vessel and fasteners.4.2.3 Welded joint between non-load bearing element and horizontal vessel.Elements other than joints, such as saddle support and saddle stiffener should also in compliance with provisions as stipulated in this standard or relevant standards.4.2.4 Overpressure discharging devices as directly connected with horizontal vessel should be in compliance with relevant provisions as stipulated in GB 150. Accessories, such as instruments connected to the horizontal vessel, should be selected as per relevant standards.4.3 Qualifications and responsibilities4.3.1 Qualifications4.3.1.1 The designer and the manufacturer of horizontal vessels shall maintain a sound quality control system.4.3.1.2 The designer must hold an appropriate designer certificate of horizontal vessels. The manufacturer must hold a fabrication license of horizontal vessels.4.3.1.3 Qualifications of manufacturer and inspector of horizontal vessels should be in compliance with relevant provisions as stipulated in JB/T 4735.4.3.2 Responsibilities4.3.2.1 Responsibilities of designera) The designer shall be responsible for the correctness and completeness of all design documents.b)The design documents of horizontal vessels shall at least consists of design calculation sheets and engineering drawings.c) Design drawings of horizontal vessels should be provided with seal of design certificate for pressure vessels.4.3.2.2 Responsibilities of manufacturer4.3.2.2.1 The manufacturer shall ensure the constructed horizontal vessels in conformity with the requirements as prescribed on the design drawings.4.3.2.2.2 The Inspection Department of the manufacturer shall make all of the inspections and tests in details as specified by the provisions of this standard and in accordance with the requirements as prescribed on drawings during the whole course of manufacturing process as well as after completion of construction. After that, the Inspection Department shall provide inspection report, and be responsible for their correctness and completeness.4.3.2.2.3 For each horizontal vessel, the manufacturer shall at least provide the following technical documents for review, which shall be well retained for a period of seven years at least:a) Fabricating procedure drawings or fabricating process cards;b) Material certificates and bills;c) Data sheets of welding procedures and heat treatment process cards;d) Records of those items at the manufacturer’s option permitted by applicable Standards;e) Testing and inspection records during the course of fabricating process and after completion;f) As-built drawings.4.3.2.2.4 The manufacturer shall fill a product certificate and submit it to the user after the safety authority has verified that the vessel was constructed in accordance with the requirements of this standard and the corresponding drawings.4.4 General design requirements4.4.1 Definition of design pressure4.4.1.1 Design pressure shall not be lower than the working pressure.4.4.1.2 For horizontal vessel provided with pressure relief device, the design pressure shall be determined in accordance with Appendix B to GB 150.4.4.1.3 For horizontal vessel filling with liquefied gases and liquefied petroleum gas, design pressure should be in compliance with relevant provisions as stipulated in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.4.1.4 For horizontal vessels under vacuum conditions, the design pressure shall be considered as external pressure. When the vessel is provided with the safety device like vacuum relief valve, the design pressure may be taken as 1.25 times the maximum difference in pressure between inside and outside of a vessel, or the value of 0.1MPa, whichever is lesser. When there is no safety device, the design pressure shall be defined as 0.1MPa.4.4.2 Determination of design temperature4.4.2.1 Design temperature shall not be less than the probable maximum metal temperature of element under operating conditions. For metal temperature below 0℃, the design temperatureshall be equal to or less than the probable minimum metal temperature of the vessel. Design temperature should be indicated on the nameplate.4.4.2.2 For different metal temperatures for elements of horizontal vessels at working status, it is applicable to set design temperature for each element.4.4.2.3 Design temperature of low-temperature horizontal vessel is to be determined as per Appendix C to GB 150.4.4.2.4 The metal temperature of element may be determined by the calculation of heat transfer, or measured on the similar vessel in-service, or be determined in accordance with the inside medium temperature.4.4.3 For horizontal vessel under different operating conditions, the design of vessel shall conform to the most severe operating condition. The corresponding pressures and temperatures of different operating conditions shall be indicated on the drawings or other technical documents.4.4.4. LoadThe following loads and combined loads should be consider for design:a) Pressure;b) Static head of liquids;c) Weight of horizontal vessel (including internal parts) and the contents under the normal operating or testing conditions;d) Centralized and uniformly distributed gravity load of attached equipments, platforms, insulations and liningse) Seismic load;f) Acting force from supports;g) Friction to supports and other acting forces as incurred by thermal expansion;The following loads should be considered if necessary:h) Acting force from connected pipelines and other parts;i) Impact load incurred by violent fluctuation of pressure;j) Impact reactions such as those due to fluid shock;k) Impact from changes to pressure and temperature;l) Acting force incurred during lifting and transportation.4.4.5 Additions to the thicknessAdditions to the thickness shall be determined by Formula (4-1):Where C-thickness addition, mm;C1-minus deviation of material thickness, mm;C2-corrosion allowance, mm4.4.5.1 Minus deviation of steel C1The minus deviation of steel plate or pipe thickness shall be in compliance with the requirements as specified in corresponding steel standards. The minus deviation may be neglected, when it is not greater than 0.25mm, and not exceeds 6% of the nominal thickness.4.4.5.2 Corrosion allowance C2The corrosion allowance shall be considered to protect vessel elements subjected to thinning by corrosion, erosion or mechanical abrasion. Specific provisions are stipulated as follows:a) For elements subjected to corrosion or abrasion, the corrosion allowance shall be determined inaccordance with the specified life of the vessel and the corrosive rate of the medium relative to the material.b) It is applicable to select different corrosion allowance in view of varied degree of corrosion to elements in horizontal vessels;c) For horizontal vessels constructed of carbon steels or low-alloy steels, the corrosion allowance shall be provided not less than 1mm.4.4.6 Minimum thickness of shells after forming, exclusive of any corrosion allowance shall be:a) No less than 3mm for horizontal vessels constructed of carbon steels or low-alloy steels;b) No less than 2mm for horizontal vessels constructed of high-alloy steels.4.5 Allowable stress4.5.1 Allowable stress for load-bearing elements and bolts for horizontal pressure vessels under different temperatures should be selected as per GB 150. Basis for determination of allowable stress is stated as follows: Refer to Table 4-1 for steels other than bolts. Refer to Table 4-2 for bolts. Allowable stress for materials of common horizontal pressure vessels should be selected as per JB/T 4735., but not exceedTable 4-2 Basis for Determination of Allowable Stress (2)In the Table 4-1 and 4-2:Lower limit for typical tensile strength of steels, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under normal temperature, MPa;Yield strength or 0.2% non-proportional extension strength of steel materials under design temperature, MPa;Mean value of creep rupture strength at design temperature for rupture after 10, 000 hours, MPa;Creep limit at design temperature for 1% of the creep rate after 10, 000 hours, MPa.4.5.2 The allowable stress at 20℃shall be applied for those with the design temperature below 20℃.4.5.3 The allowable stress for stainless steel clad plate:When the bond area between the cladding and the base metal are constructed to meet the requirements of Class B2 in JB4733 or even better, and should the strength of cladding be taken into account in design, the allowable stress for the stainless steel clad plate at design temperature may be determined by Formula (4-2):In the formula:Allowable stress for the stainless steel clad plate at design temperature, MPa;Allowable stress for the base metal at design temperature, MPa;Allowable stress for the cladding at design temperature, MPa;Nominal thickness of the base metal, mmNominal thickness of the cladding, exclusive of corrosion allowance, mm.4.5.4 For antiseptic lining not connected with the shell of horizontal vessel to form an integral part, strength of antiseptic lining can be neglected during design calculation.4.5.5 For the combination of seismic or other loads as stipulated in 4.4.4, the wall stress of vessel shall not exceed 1.2 times the allowable stress.4.5.6 Steel materials other than those as stipulated in GB150 as selected for horizontal vessel should be in compliance with relevant provisions as stipulated in Appendix A to GB 150.4.5.7 Allowable axial compressive stressSmaller value of and B for allowable stress of materials under design temperature is to be selected as the allowable axial compressive stress of drum or the tube. Value B is to be calculated according to the following procedures:a) Calculation coefficient A with Formula (4-3):Where:A---Coefficient;Inner radius of drum or tube, mm;Effective thickness of drum or tube, mm.b) Refer to corresponding charts in GB 150 as per specific materials. If value B is on the right side of material line under design temperature, just cross this point to shift upward for intersection with material line under design temperature (use inset method for intermediate temperature). After that, further shift to the right side by crossing this intersection point to obtain value B. If coefficient A is on the left side of material line under design temperature, value B should be calculated with Formula (4-4):Where:Elastic modulus of materials under design temperature, MPa.4.5.8 Allowable stress for non-load bearing elements other than saddle support shall be selected as per Article 5.4. Allowable stress for critical internal parts and supporting ring as welded on the load-bearing shell shall be selected in reference to bearing elements; whereas that for other shall be determined as per provisions as stipulated in GB 50017.4.6 Coefficient of welded joint4.6.1 For horizontal vessels, coefficient of welded joints Φshould be determined as per welding procedures (single-side or double-side welding; with or without gasket) and NDE length for load-bearing elements.a) For double-welded butt joints or other butt joints of full penetration equivalent to a double welded joint:100% NDE: ;Spot NDE:b) For single-welded butt joints with backing strip fitted on the base metal along the whole length of weld root:100% NDE:Spot NDE:4.6.2 For common horizontal pressure vessels, coefficient of welded joint Φshould be determined as per relevant provisions in JB/T 4735.4.7 Pressure testHorizontal pressure vessels as fabricated should subject to pressure test Types, requirements and testing pressure for pressure test should be indicated on the drawings.4.7.1 Pressure test for horizontal pressure vesselsNormally, pressure test for horizontal pressure vessels is represented by hydraulic test. Testing liquids should be in compliance with provisions as stipulated in GB 150. It is applicable to proceed with air pressure test for horizontal vessels unavailable for hydraulic test. Horizontal pressure vessels should satisfy relevant requirements as stipulated in GB 150 during air pressure test.Horizontal vacuum vessels should subject to pressure test under internal pressure.4.7.1.1 Testing pressureMinimum value of testing pressure for horizontal pressure vessels should be in compliance with the following requirements. Upper limit of testing pressure should satisfy limitations on calibrated stress in Article 4.7.1.2.4.7.1.1.1 Internal horizontal pressure vesselsHydraulic test pressure should be determined as per Formula (4-5):Air pressure test pressure should be determined as per Formula (4-6):Where:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at test temperature, MPA;Allowable stress of vessel part material at design temperature, MPa;Note:1. When the maximum allowable working pressure is specified on the vessel nameplate, the design pressure p in the formula above shall be replaced by the maximum allowable working pressure.2. When the materials of pressure vessel parts are different, the minimum value of willbe selected.4.7.1.1.2 Horizontal vacuum vesselsTest pressure shall be determined with Formula (4-7):Where:Test pressure, MPa;Design pressure, MPa4.7.1.2 Stress verification before pressure testCalculate stress of drum with Formula (4-8) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-9) and (4-10):For hydraulic test:For air pressure test:Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.2 Pressure test for horizontal atmospheric pressure vesselsHorizontal atmospheric pressure vessels as fabricated should subject to hydraulic test. For specific testing requirements, please refer to relevant provisions as stipulated in JB/T 4735.4.7.2.1 Test pressureHydraulic test pressure should be determined with Formula (4-11):select the bigger value of the twoWhere:Test pressure, MPa;Design pressure, MPa;Allowable stress of vessel part material at normal temperature, MPa;Allowable stress of vessel part material at design temperature, MPa;4.7.2.2 Stress verification before pressure testCalculate stress of drum with Formula (4-12) before pressure test:Where:Stress of drum under testing pressure, MPa;Inner diameter of drum, mm;Test pressure, MPa.Effective thickness of drum, mm;should be verified as per Formula (4-13):Where:Yield strength or 0.2% non-proportional extension strength of drum material at testing temperature, MPa;Coefficient of welded joint for drum.4.7.3 For horizontal pressure vessels unavailable for pressure test as per provisions in Article 4.7.1, designer shall submit measures for safe operation of vessels to the technical official for approval and indications on drawings.4.8 Leak testIf vessels contain extremely toxic or highly toxic substances, a leak test shall be conducted on those vessels after pressure test.4.8.1 Airtight testAirtight test should be carried out as per relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.4.8.2 Other leak testExcept for airtight test, other leak tests can be carried out by using such mediums as ammonia, halogen and helium. Testing methods and items should be indicated on drawings.Note: Grading of toxicity of medium should be in compliance with relevant provisions in Technologic Supervision Regulations On Safety Of Pressure Vessels.5. Material5.1 Steel material for pressure elements of horizontal pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated in GB 150.5.2 Steel material for pressure elements of horizontal atmospheric pressure vessel, steel grade, heat treatment status and allowable stress should be in compliance with provisions as stipulated inJB/T 4735.5.3 Steels for non-load bearing elements should be those as incorporated into the material standards. Steel materials for welded pieces should have perfect welding performance. Steels for critical internal parts and stiffening rings as welded on the pressure shell should be in compliance with provisions in Article 5.1.5.4 Selected saddle materials are listed in Table 5-1.5.5 Base plate for connection of saddle with drum should be of the same material as the drum.5.6 Select Q235 anchor bolts as stipulated in GB/T 700 or Q345 anchor bolts as stipulated inGB/T 159. Allowable stress for Q235 and Q345 anchor bolts should be up to 147 andrespectively. For other carbon steels, ; for other low-alloy steels,.6. Structure6.1 SupportsSelect saddle support for horizontal vessels (See Figure 7-1). When supports are welded to the vessel, one of support should be slide one or in rolling structure.6.1.1 Arrangement of supportsMake sure that distance A between support center and end seal tangent line is below or equal to 0.5Ra. If it is impossible, value A should be over 0.2L.6.1.2 Saddle supportIf saddle support for horizontal vessel is selected as per JB/T 4712, verification of strength of saddle support can be omitted if conditions as stipulated in JB/T 4712 can be satisfied. Otherwise, it is necessary to proceed with strength verification as per Article 7.4.6.2 Perforation and connecting tubeHorizontal vessel should be provided with manhole, manual hole or access hole in addition to technical connecting tubes as required. Outlet should be arranged at the lowest point at vessel bottom. If it is impossible to arrange outlet at drum bottom, it is applicable to arrange bottom insert tube as shown in Figure 6-1. The minimum liquid discharge clearance B1 on the bottom insert tube end should be able to ensure adequate discharge space.All holes and stiffeners on the horizontal vessel should be in compliance with relevant provisions in GB 150.All holes and stiffeners on the horizontal atmospheric pressure vessel should be in compliance with relevant provisions in JB/T 4735.6.3 Arrangement of stiffening ringFigure 6-1: Structure of Outlet on Horizontal Vessel6.3 Arrangement of stiffening ringStiffening ring should be complete or nearly complete. Connection structure between stiffening ring and shell should be in compliance with relevant provisions in GB 150.6.3.1 In view of the fact that horizontal vessel is under local stress, it is applicable to set internal and external stiffening rings on the saddle plane (See Figure 7-8) or at the periphery of saddle plane (See Figure 7-9).6.3.2 In view of instability of horizontal vessel under external force, setting and calculation of stiffening ring should be in compliance with provisions as stipulated in GB 150.7. Strength calculation7.1 Calculate the strength of pressure elements of horizontal vessel as per relevant provisions in GB 150 or JB/T 4735 before checking calculation of strength and stability as per Article 7.3 and 7.4.In view of centralized load as incurred by accessory equipments (4.4.4d), it is applicable to proceed with checking calculation of strength and stability as per Appendix A (Informative Exhibit).7.2 Symbol descriptionDistance between center line of saddle base plate and end seal tangent line (See Figure 7-1), mm;切线Tangent line鞍式支座边角处Saddle support cornerThe sum of combined cross sectional area of all stiffening rings and effective stiffening sections of drum on one saddle, mm2Value as determined in reference to design external pressure as stipulated in GB 15 at design temperature, MPa;Value as determined with external pressure design methods as stipulated in GB 150 atnormal temperature, MPa;Inner diameter of drum, mm;Outer diameter of drum, mm;Counterforce of each support, N;The sum of inertia moment combined cross sectional area of all stiffening rings andeffective stiffening sections of drum on one saddle to sectional spindle X-X (See Figure 7-8, 7-9), mm4Load combination coefficient,Coefficient, refer to Table 7-1 and Table 7-9;Distance of end seal tangent line (See Figure 7-1), mm;Axial bending moment at the drum center, N-mm;Axial bending moment of drum at the saddle, N-mm;Average radius of drum, , mm;Inner radius of spherical part of disk end seal, mm;Inner radius of drum, mm;Axial width of drum, mmWidth of stiffening ring (See Figure 7-8 and 709), mmEffective width of drum, , mm;Effective width of drum when calculating combined cross sectional area of drumandstiffening rings, , mm;Width of saddle base plate (See Figure 7-6), mm;Gravitational acceleration, ;Depth of end seal camber, mm;Coefficient, when the vessel is not welded to the saddle; when the vessel is welded to the saddle;Mass of vessel (including mass of vessel itself, mass of water and medium filled as well as accessories and heat-insulation layer), kg;Design pressure, MPaCalculated pressure, MPa;。
JB/T4731讲稿

主讲内容:JB/T 4731-2005《钢制卧式容器》议程约3小时概述●钢制卧式容器的适用范围●材料的选用●支座●开孔及接管●钢制卧式容器的计算●钢制卧式容器的制造及检验●JB/T4731与GB150、NB/T47003.1之间的关系●新容规对JB/T4731的主要影响词汇●卧式容器●鞍式支座●法兰接管支座人孔手孔紧固件●圆筒轴向应力切向剪应力圆筒周向应力轴向弯矩压力温度均布载荷厚度材料试验压力制造及检验一. 钢制卧式容器的适用范围1●①本标准适用于设计压力不大于35MPa 是指●---。
--------------------。
--------------------。
---------------------。
---------●-0.1 -0.02 0.1 35MPa●卧式真空容器卧式常压容器卧式压力容器●GB150 NB/T47003.1 GB150●即:适用于钢制卧式常压容器与钢制卧式压力容器;一. 钢制卧式容器的适用范围2●②均布载荷,两个位置对称的鞍式支座支承的钢制卧式容器。
●③本标准不适用带夹套的卧式容器,主要是因有夹套后,夹套筒体的受力情况、抗弯断面系数等与假设不符。
二. 材料的选用1●①卧式容器的受压元件选材按GB150中的规定;●②鞍座与圆筒相连接的垫板与圆筒材料相同;●③地脚螺栓宜选用GB/T 700规定的Q235或符合GB/T 1591规定的Q345(设计温度≤-20℃时选用);●④螺母:选用与地脚螺栓材质相匹配;●⑤鞍座材料的选用按表5-1:P9二. 材料的选用2表5-1:鞍座材料的选用设计温度,℃(环境温度加20 ℃)鞍座材料许用应力[σsa],MPa0~250(-20~250 )Q235-A147 0~-20(-20~-40 )Q245R153三.支座●1.支座:卧式容器支座采用鞍式支座(P10图7-1)。
●当支座焊在容器上时,其中的一个支座应采用滑动●支座滚动支座。
JB4731-2005钢制卧式容器宣贯讲稿

4731《钢制卧式容器》JB/T 4731-2005 钢制卧式容器》
4731《钢制卧式容器》JB/T 4731-2005 钢制卧式容器》
σ6 ,σ‘6 σ6 是发生在鞍座边角处筒体上由周向弯矩引起的弯曲应力。而σ’6是发生在鞍座 是发生在鞍座边角处筒体上由周向弯矩引起的弯曲应力。 是发生在鞍座 垫板边角处筒体上的弯曲应力(见 垫板边角处筒体上的弯曲应力 见P18)。 这个应力由两部分组成 。 这个应力由两部分组成(P17,18,19),σ6 , , σ’6公式 -16、7-17、7-19、7-20和7—21,7-22中第一项是认为鞍座对筒体 公式7- 、 - 、 - 、 - 和 公式 - 中第一项是认为鞍座对筒体 的周向压缩力见图22.5.4-1a在边角处仍需考虑,即为F/4而产生的压缩应力。第二 在边角处仍需考虑,即为 而产生的压缩应力 而产生的压缩应力。 的周向压缩力见图 在边角处仍需考虑 项为周向弯矩产生的。当垫板起加强作用时,要考虑垫板的加强作用 项为周向弯矩产生的。当垫板起加强作用时,要考虑垫板的加强作用。 关于L/Ra>8时,抗弯有效断面长L=4Ra,W=2/3Raδe 时 抗弯有效断面长 关于 , L/Ra<8时,抗弯有效断面长L=L/2 , W=Lδe/12 时 抗弯有效断面长 σ=Mφ/w 系数K6-切向剪应力分量对边角处取矩后与 有关的三角函数值。 切向剪应力分量对边角处取矩后与β有关的三角函数值 系数 切向剪应力分量对边角处取矩后与 有关的三角函数值。
对受介质温度影响的按介质温度另行选取。 对受介质温度影响的按介质温度另行选取。对 表5-1鞍座定后作适当修改及通知。 鞍座标准确定后作适当修改及通知。 鞍座标准确定后作适当修改及通知
《钢制卧式容器》JB/T 4731-2005
JBT4731-2005钢制卧式容器讲稿

(c)鞍座垫板材料应与壳体材料相同;
(d)地脚螺栓宜选用符合 GB/T700 规定的 Q235 或符合 GB/T1591 规定的 Q345。
如采用其他碳素钢,则 ns=1,6; 如采用其他低合金钢,则 ns≥2.0。
3.14 鞍式支座
卧式容器支座采用 JB/T4712 标准鞍座时,在满足 JB/T4712 所规定的条件时,可免去对 鞍座的强度校核;否则应按 JB/T4731-7.4 进行强度校核。
a)对有腐蚀或磨损的元件, 应根据预期的设计寿命和介质对金属材料的腐蚀速 率确定腐蚀裕量;
b)卧式容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕 量;c)碳素钢或低合金钢卧式容器,腐蚀裕量不小于 1mm。 3.7 卧式容器筒体加工成形后不包括腐蚀裕量的最小厚度按下列规定: a)对碳素钢或低合金钢制卧式容器,不小于 3 mm; b)对高合金钢制卧式容器,不小于 2 mm。 3.8 不锈钢复合钢板的许用应力:
3.13 材料
(a) 卧式压力容器材料应 GB150 规定;卧式常压容器材料应 JB/T4735 规定
(b) 鞍座,焊在受压壳体上的重要内件,加强圈等非受压元件用钢应符合下列表中规 定:
使用温度℃
选用材料
许用应力 [σ]sa Mpa
0~250
Q235-B
147
-20~250
Q345
170
≤-20
16MnR
3.6 厚度附加量 C C=C1+C2 C1----钢材厚度负偏差, mm; C2----腐蚀裕量, mm.
钢板或钢管的厚度负偏差按相应钢材标准的规定。当钢材的厚度负偏差不大于 0.25mm,且不超过名义厚度的 0.6%时,在计算中负偏差可忽略不计。 3.6.1 腐蚀裕量 C2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JBT 4731-2005 钢制卧式容器讲稿1.适用范围JB/T 4731—2005《钢制卧式容器》相对于原来GB l50—1989第8章作了部分修订,如:取消圈座支承,增加鞍座轴向弯曲强度校核及附录A《有附加载荷作用时卧式容器的强度汁算》等。
JB/T 4731适用于设计压力不大于35MPa,在均布载荷作用下,由两个对称的鞍式支座支承的常压及受压卧式容器,它不适用于:——直接火焰加热及受核辐射作用的卧式容器;——经常搬运的卧式容器;——带夹套的卧式容器;一一作疲劳分析的卧式容器:卧式容器设计是先根据操作压力(内压、外压)确定壁厚,再依据自重、风、地震及其他附加载荷来校核轴向、剪切、周向应力及稳定性,卧式容器设计还包括支座位置的确定及支座本身的设计。
2.术语和定义.操作压力.设计压力.计算压力.试验压力设计温度工作温度试验温度计算厚度设计厚度名义厚度有效厚度3设计的一般规定3.1 设计压力的确定:(a)设计压力值应不低于操作压力;(b)装有超压泄放装置时,设计压力按GB150附录B确定设计压力;(c)液化气体,液化石油气的卧式容器,按《容规》规定确定设计压力;(d)真空容器的设计压力按承受外压考虑,当装用安全控制装置时,设计压力取 1.25倍的最大内外压差或0.1Mpa两者的较低值;当无安全控制装置时,设计压力取0.1Mpa。
3.2设计温度的确定:(a)设计温度不低于元件金属在工作时可能达到的最高温度。
对于0度以下的金属温度,设计温度不应高于元件金属在工作时可能达到的最低温度。
铭牌上应标志设计温度。
(b)低温卧式容器的设计温度按GB150附录C规定确定。
3.3元件金属温度确定(a)传热计算;(b)在已使用的同类容器上测定;(C)在使用过程中,金属温度接近介质温度时按内部介质温度确定。
3.4 对于有不同工况的卧式容器,应按最苛刻的工况设计,并在图样或技术文件中注明各工况的操作压力和操作温度。
3.5设计载荷(a).长期载荷设计压力——内压、外压;液体静压力;容器质量载荷——自身质量,容器所容纳的物料质量,保温层、梯子平台、接管等附件质量载荷。
(b).短期载荷风载、地震载荷(一般取地震载荷),水压试验充水重。
(c).附加载荷在JB/T 4731的附录A中增加有卧式容器上的附加载荷。
这是考虑卧式容器上设有立式设备,如换热器、精馏柱、除氧头、液下泵、搅抖器等附属设备(高度均小于10m)时,它对卧式容器圆筒体产生附加弯矩及支座反力。
实质上,附加载荷也是一种长期载荷。
3.6 厚度附加量 CC=C1+C2C1----钢材厚度负偏差,mm;C2----腐蚀裕量,mm.钢板或钢管的厚度负偏差按相应钢材标准的规定。
当钢材的厚度负偏差不大于0.25mm,且不超过名义厚度的0.6%时,在计算中负偏差可忽略不计。
3.6.1 腐蚀裕量C2为防止容器元件由于腐蚀、机械磨损而导致厚度削弱减薄,应考虑腐蚀裕量.具体规定如下:a)对有腐蚀或磨损的元件,应根据预期的设计寿命和介质对金属材料的腐蚀速率确定腐蚀裕量;b)卧式容器各元件受到的腐蚀程度不同时,可采用不同的腐蚀裕量;c)碳素钢或低合金钢卧式容器,腐蚀裕量不小于1mm。
3.7 卧式容器筒体加工成形后不包括腐蚀裕量的最小厚度按下列规定:a)对碳素钢或低合金钢制卧式容器,不小于 3 mm;b)对高合金钢制卧式容器,不小于 2 mm。
3.8不锈钢复合钢板的许用应力:(a )对于复层与基层结合率达到JB4733规定的B2级以上的复合钢板,在设计计算中,如需计入复层材料的强度时,其设计温度下的许用应力:212][1][][21t t t (b)对于未与卧式容器壳体壁连成整体的耐蚀衬里层,在设计计算中不考虑耐蚀衬里层的强度。
3.9 对于地震载荷与其他载荷组合时,壳壁的应力允许不超过1.2倍的许用应力。
3.10对于卧式容器,如需选用GB150以外的钢材,应符合GB150附录A 规定。
3.11 焊接接头系数对于卧式容器,焊接接头系数应根据受压元件的焊接接头的焊接工艺特点(单面焊或双面焊,有或无垫板)以及无损检测的长度比例确定。
3.12 压力试验与GB150-1998一致3.13 材料(a) 卧式压力容器材料应GB150规定;卧式常压容器材料应JB/T4735规定(b) 鞍座,焊在受压壳体上的重要内件,加强圈等非受压元件用钢应符合下列表中规定:使用温度℃选用材料许用应力[σ]sa Mpa 0~250 Q235-B 147-20~250 Q345 170≤-20 16MnR(c)鞍座垫板材料应与壳体材料相同;(d)地脚螺栓宜选用符合GB/T700规定的Q235或符合GB/T1591规定的Q345。
如采用其他碳素钢,则ns=1,6; 如采用其他低合金钢,则ns≥2.0。
3.14 鞍式支座卧式容器支座采用JB/T4712标准鞍座时,在满足JB/T4712所规定的条件时,可免去对鞍座的强度校核;否则应按JB/T4731-7.4进行强度校核。
4 结构4.1支座形式卧式容器的支座大多为鞍式支座,三鞍座,很少使用圈座。
JB/T 4731主要对双鞍座对称布置情况作了规定。
卧式容器支座采用鞍座时,无论双、三或多鞍座,都必须只有一个为固定支座,其余为滑动支座,以减少圆筒体因热胀、冷缩或圆筒体及物料质量引起的对支座产生的附加载荷。
对双鞍座,固定端多选在容器接管较大、较多的一侧。
对三鞍座,固定端选在中间支座以减少滑动端的位移量。
滑动端支座下的基础面应埋设钢平板,对伸缩频率较高的可在鞍座底板与基础面平板间设滚动柱。
采用混凝土鞍座时,容器支座区应焊有衬板,并用定位板限制容器的转动:容器支座区的衬板或鞍座加强板与圆筒体焊接时,应采用连续焊,但在最低处,在板的两侧需留有50mm长不焊。
4.2 支座设置图4-1对于双鞍座上卧式容器的应力作精确的理论分析十分困难,目前国内外有关容器设计规范均采用Zick 在1951年在实验研究的基础上提出的近似分析和计算方法,按Zick 的假设及分析,置于鞍座上的卧式容器可简化为对称分布的承受均布载荷的双铰支点的外伸梁进行分析。
由材料力学可知,一全长为L 的双支点相同外伸的简支梁,当仅承受均布横向载荷且外伸长A=0.207L 时,其支座处及两支座中和处的弯矩绝对值相等从而使得由均布载荷引起的圆筒体的轴向弯曲应力(4321,,,)绝对值为最小,但对大直径、薄壁卧式容器,起控制的应力往往是鞍座处的,,,,,98766等这些应力。
因此应当尽可能使A ≤0.5R a ,以有效地利用封头对圆筒体的加强作用,对L/D i 很大,如比值大于15且壁厚较薄的卧式容器,为避免支座跨距过大导致圆筒体产生严重变形及应力过大,可以考虑设置三个以上支座。
但三个以上支座有可能因支座高度偏差及基础的不均匀沉降而产生支座处的附加弯矩及附加支反力,因此尽量少用。
4.3 加强圈的设置(1)加强圈应是整圈或相当于整圈结构,加强圈与壳体连接应符合GB150的规定;(2)考虑卧式容器支座处局部应力时,可在鞍座平面或靠近鞍座平面处设置加强圈,见下图:图4-2图4-3(3) 考虑卧式容器外压失稳时,加强圈的设置和计算按GB150的规定。
5载荷分析和内力分析置于对称分布的鞍座上卧式容器所受的外力包括载荷和支座反力。
载荷除了操作内压或外压(真空)外,主要是容器的重量(包括自重、附件和保温层重等)、内部物料或水压试验充水的重量。
容器受重力作用时,双鞍座卧式容器可以近似看成支承在两个铰支点上受均布载荷的外伸简支梁,梁上受到如下外力的作用,见图(5-1)。
5.1均布载荷q 和支座反力F假设容器本身的重量和容器内物料的重量为mg ,沿容器长度均匀分布。
一般情况下容器两端为凸形封头,所以确定载荷分布长度时,首先要把封头折算成和容器直径相同的当量圆筒。
对于半球形椭圆形和碟形等凸形封头可根据容积相等的原则,折算为直径等于容器直径,长度为i 32h (h i 凸形封头深度)的圆筒,故重量载荷作用的长度为L h L ,3/4i 为两端封头切线间距离。
容器总重量mg 应该与两个支座反力2F 相等,故作用在外伸梁上单位长度的均布载荷为:i i 34234h L F h L mgq (1)由静力平衡条件,对称配置的双鞍座中每个支座的反力就是F ,或写成:234i h Lq F (2)5.2 竖直剪力V 和力偶M封头本身和封头中物料的重量为q h i 32,此重力作用在封头(含物料)的重心上。
对于半球形封头,可算出重心的位置e R e ,83i 为封头重心到封头切线的距离,R i 为圆筒内半径。
这一关系也近似用于其他形式的凸形封头,即i 83h e 。
按照力线平移法则,此重力可用一个作用在梁端点的横向剪力V 和一个附加力偶m 1来代替,即:q h V i 32(3)和q h h q h m 483322i i i 1(4)此外,当封头中充满液体时,液体静压力对封头作用一水平向外推力。
因为液柱静压沿容器直径呈线性变化,所以水平推力偏离容器轴线,对梁的端部则形成一个力偶m 2。
对液体静压力进行积分运算,可得到如下的结果:q R R qR m 44)(2a ai 2(5)式中R a 为圆筒平均半径,并令a i R R 。
将式(4)的m 1式为(5)的m 2两个力偶合成一个力偶M ,即:)(42i 2a 12h R qm m M (6)因此,双鞍座卧式容器力学上简化为一受均布载荷的外伸简支梁,两梁的两个端部还分别受到横剪力V 和力偶M 的作用,如图所示,见表5-1。
5.3 弯矩和剪力和材料力学梁受弯曲分析相似,上述外伸简支梁在重量载荷作用下,梁截面上有弯矩和剪力存在,其弯矩图和剪力图如图所示。
由图5-1可知,最大弯矩发生在梁跨度中央的截面和支座截面上,而最大剪力在支座截面处,它们可按下述方法计算。
1.弯矩筒体在支座跨中截面的弯距,按图所示梁的平衡条件得到。
422232)(42i 2a 1LL q A L F Lq h h R q M i (7)以i1342h L Fq 代入则得:L A Lh L h R FL M 4341)(214i 22i 2a 1(8)M 1通常为正值,表示上半部筒体受压缩,下半部筒体受拉伸。
筒体在支座截面处弯矩为Lh ALh R L A FA AqA qA h h R qM i2i2a i 2i 2a 2341211232)(4(9)M 2一般为负值,表示筒体上半部受拉伸,下半部受压缩。
表5-1 不同封头的端部V 、M 和弯矩M 2的方向容器封头封头深度h i 端部横剪力V 端部力偶M 支座截面处弯矩M 2平封头0 0 q R 2a 41<0 )707.0(aR A标准椭圆封头2a R q R a 31q R 2a 163<0 )364.0(aR A半球形封头R a q R a 320 <02.剪力剪力最大值出现在支座处筒体上,以图4-1的左支座为例,在支座左侧的筒体截面上剪力为:A h q qA qh V i i 23232(10)而支座右侧筒体截面上剪力为:A L q h L A L F A h q F V 234232i i 1(11)V 1+V 2=F ,通常V 1>V 2。