中考数学专题复习二十五 数据的收集与整理(含答案)

合集下载

2023年中考数学复习过关练测:数据的收集与整理

2023年中考数学复习过关练测:数据的收集与整理

2023年中考数学复习过关练测:数据的收集与整理(一)基础过关1. 以下调查中,最适合采用抽样调查的是()A. 了解全国中学生的视力和用眼卫生情况B. 了解全班50名同学每天体育锻炼的时间C. 学校招聘教师,对应聘人员进行面试D. 为保证神舟十四号载人飞船成功发射,对其零部件进行检查2.某校有4000名学生,随机抽取了400名学生进行体重调查,下列说法错误的是()A. 总体是该校4000名学生的体重B. 个体是每一个学生C. 样本是抽取的400名学生的体重D. 样本容量是4003.在一次心理健康教育活动中,张老师随机抽取了40名学生进行了心理健康测试,并将测试结果按“健康、亚健康、不健康”绘制成下列表格,其中测试结果为“健康”的频率是()类型健康亚健康不健康数据(人)3271A. 32B. 7C. 710 D.454. 某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共20个,除颜色外都相同.将球搅匀后,随机摸出5个球,发现3个是红球,估计袋中红球的个数是()A. 12B. 9C. 8D. 65.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数为()第5题图A. 5B. 6C. 7D. 86. 垃圾分类利国利民. 某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率②整理采访记录并绘制空矿泉水瓶投放频数分布表③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比正确统计步骤的顺序应该是()A. ②→③→①B. ②→①→③C. ③→①→②D. ③→②→①7. 2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,飞行任务取得圆满成功.“出差”太空半年的神舟十三号航天员乘组顺利完成既定全部任务,并解锁了多个“首次”.其中,航天员们在轨驻留期间共完成37项空间科学实验,如图是完成各领域科学实验项数的扇形统计图,下列说法错误的是()第7题图A. 完成航天医学领域实验项数最多B. 完成空间应用领域实验有5项C. 完成人因工程技术实验项数比空间应用领域实验项数多D. 完成人因工程技术实验项数占空间科学实验总项数的24.3%8. 五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中的信息,下列结论错误..的是()第8题图A. 本次抽样调查的样本容量是5000B. 扇形统计图中的m为10%C. 若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D. 样本中选择公共交通出行的有2400人9.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有________只A种候鸟.10. 百年青春百年梦,初心献党向未来.为热烈庆祝中国共产主义青年团成立100周年,继承先烈遗志,传承“五四”精神.某中学在“做新时代好少年,强国有我”的系列活动中,开展了“好书伴我成长”的读书活动.为了解5月份八年级学生的读书情况,随机调查了八年级20名学生读书数量(单位:本),并进行了以下数据的整理与分析:数据收集2535461534 3675834734数据整理本数0<x≤22<x≤44<x≤66<x≤8组别A B C D频数2m63数据分析绘制成不完整的扇形统计图:第10题图依据统计信息回答问题(1)在统计表中,m=________;(2)在扇形统计图中,C部分对应的圆心角的度数为________;(3)若该校八年级学生人数为200人,请根据上述调查结果,估计该校八年级学生读书在4本以上的人数.(二)综合提升11.小星想了解全国2019年至2021年货物进出口总额变化情况,他根据国家统计局2022年发布的相关信息,绘制了如下的统计图,请利用统计图中提供的信息回答下列问题:第11题图(1)为了更好的表现出货物进出口额的变化趋势,你认为应选择________统计图更好(填“条形”或“折线”);(2)货物进出口差额是衡量国家经济的重要指标,货物出口总额超过货物进口总额的差额称为货物进出口顺差,2021年我国货物进出口顺差是________万亿元;(3)写出一条关于我国货物进出口总额变化趋势的信息.(三)创新推荐12. 首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况 调查方式 抽样调查 调查对象××中学学生数据的收集、整理与描述第一项 您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A. 8小时及以上;B. 6~8小时;C. 4~6小时;D. 0~4小时.第二项您阅读的课外书的主要来源是(可多选)E. 自行购买;F. 从图书馆借阅;G. 免费数字阅读;H. 向他人借阅.调查结论… 请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.参考答案1. A 【解析】A .了解全国中学生的视力和用眼卫生情况,适合抽样调查,故本选项符合题意;B .了解全班50名同学每天体育锻炼的时间,适合全面调查,故本选项不符合题意;C .学校招聘教师,对应聘人员进行面试,适合全面调查,故本选项不符合题意;D .检查载人飞船零部件,适合全面调查,故本选项不符合题意.2. B 【解析】A .总体是该校4000名学生的体重,此选项正确,不符合题意;B .个体是每一个学生的体重,此选项错误,符合题意;C .样本是抽取的400名学生的体重,此选项正确,不符合题意;D .样本容量是400,此选项正确,不符合题意.3. D 【解析】∵抽取了40名学生进行了心理健康测试,测试结果为“健康”的有32人,∴测试结果为“健康”的频率是3240=45. 4. A 【解析】设袋中红球有x 个,根据题意得x 20=35,解得x =12. 5. D 【解析】∵题图为20名学生每分钟跳绳次数的频数直方图,∴总频数为20,∴组界为99.5~124.5的频数为20-3-5-4=8.6. A 【解析】正确统计步骤的顺序应该是:整理采访记录并绘制空矿泉水瓶投放频数分布表,绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比,从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率,即正确统计步骤的顺序应该是:∵→∵→∵.7. B 【解析】∵航天医学领域实验占70.3%,∴实验项数最多,故选项A 的说法正确;∵完成空间应用领域实验数为5.4%×37≈2,故选项B 的说法错误;∵完成空间应用领域实验占5.4%,人因工程技术实验占24.3%,∴完成人因工程技术实验项数比空间应用领域实验项数多,故选项C 的说法正确;完成人因工程技术实验项数占空间科学实验总项数的24.3%,故选项D 的说法正确.8. D 【解析】A .本次抽样调查的样本容量是2000÷40%=5000,此选项正确,不符合题意;B .扇形统计图中的m 为1-(50%+40%)=10%,此选项正确,不符合题意;C .若五一期间观光的游客有50万人,则选择自驾方式出行的有50×40%=20(万人),此选项正确,不符合题意;D .样本中选择公共交通出行的有5000×50%=2500(人),此选项错误,符合题意.9. 800 【解析】设该湿地中共有x 只A 种候鸟,根据题意得40x =10200,解得x =800,经检验,x =800是原方程的解且符合题意,∴估计该湿地有800只A 种候鸟.10. 解:(1)9;【解法提示】根据题意得,m =20-2-6-3=9.(2)108°;【解法提示】根据题意得,C 部分对应的圆心角的度数为(1-15%-10%-45%)×360°=108°.(3)根据题意,得200×6+320=90(人), 答:估计该校八年级学生读书在4本以上的人数约为90人.11. 解:(1)折线;(2)4.36;【解法提示】2021年我国货物出口总额为21.73万亿元,货物进口总额为17.37万亿元,∴进出口顺差为21.73-17.37=4.36万亿元.(3)顺差逐步加大(答案不唯一,合理即可).12. 解:(1)33÷11%=300 (人).(解法不唯一)300×62%=186(人).答:参与本次抽样调查的学生人数为300人,这些学生中选择“从图书馆借阅”的人数为186人;(2)3600×32%=1152(人).答:估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数有1152人;(3)答案不唯一.例如:第一项:∵平均每周阅读课外书的时间在“4~6小时”的人数最多;∵平均每周阅读课外书的时间在“0~4小时”的人数最少;∵平均每周阅读课外书的时间在“8小时及以上”的学生人数占调查总人数的32%等.第二项:∵阅读的课外书的主要来源中选择“从图书馆借阅”的人数最多;∵阅读的课外书的主要来源中选择“向他人借阅”的人数最少等.。

2022年中考数学三轮复习:数据收集与处理(附答案解析)

2022年中考数学三轮复习:数据收集与处理(附答案解析)

2022年中考数学三轮复习:数据收集与处理一.选择题(共10小题)1.(2021•房山区二模)根据国家统计局2016﹣2020年中国普通本专科、中等职业教育及普通高中招生人数的相关数据,绘制统计图如图:下面有四个推断:①2016﹣2020年,普通本专科招生人数逐年增多;②2020年普通高中招生人数比2019年增加约4%;③2016﹣2020年,中等职业教育招生人数逐年减少;④2019年普通高中招生人数约是中等职业教育招生人数的1.4倍.所有合理推断的序号是()A.①④B.②③C.①②④D.①②③④2.(2021•双柏县模拟)大理古城是闻名遐迩的历史文化名城,春节期间相关部门对到大理观光的游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若春节期间到大理观光的游客有60万人,则选择自驾方式出行的约有25万人3.(2021•新都区模拟)水产养殖中常采用“捉﹣﹣放﹣﹣捉”的方式估计一个鱼塘中鱼的数量,如从某个鱼塘中随机地捞出100条鱼,将这些鱼作上记号后再放回鱼塘,隔数日后再从该鱼塘随机捞出144条鱼,其中带有记号的有6条,从而估计该鱼塘有()条鱼.A.1600B.2400C.1800D.2000 4.(2021•孝南区二模)如图是济南市一周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.最高气温是28℃B.众数是28℃C.中位数是24℃D.平均数是26℃5.(2021•河北模拟)某品牌汽车公司的销售部对40位销售员本月的汽车销售量进行了统计,绘制成如图所示的扇形统计图,则下列结论错误的是()A.这40位销售人员本月汽车销售量的平均数为13B.这40位销售人员本月汽车销售量的中位数为14C.这40位销售人员本月汽车销售量的众数为8D.这40位销售人员本月汽车的总销售量是566.(2021•雁塔区校级二模)如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<SC.S=S D.无法判断7.(2021•绵竹市模拟)为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面3个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半以上的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60﹣120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③8.(2020•肥东县二模)某中学随机抽取200名学生寒假期间平均每天体育锻炼时间进行问卷调查,并将调查结果分为A、B、C、D四个等级.A:1小时以内;B:1小时~1.5小时;C:1.5小时~2小时;D:2小时以上;根据调查结果绘制了不完整的统计图(如图).若用扇形统计图来描述这200名学生寒假期间平均每天的体育锻炼情况,则C等级对应的扇形圆心角的度数为()A.36°B.60°C.72°D.108°9.(2021•广西一模)以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神舟八号”航天飞船各零部件的情况10.(2021•海淀区校级模拟)“一带一路”倡议提出五年多来,交通、通信、能源等各项相关建设取得积极进展,也为增进各国民众福祉提供了新的发展机遇,如图是2017年“一带一路”沿线部分国家的通信设施现状统计图.根据统计图提供的信息,下列推断合理的是()A.互联网服务器拥有个数最多的国家是阿联酋B.宽带用户普及率的中位数是11.05%C.有8个国家的电话普及率能够达到平均每人1部D.只有俄罗斯的三项指标均超过了相应的中位数二.填空题(共5小题)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.13.(2021•潍城区二模)为了打赢“脱贫攻坚”战役,国家设立了“中央财政脱贫专项资金”以保证对各省贫困地区的持续投入.小莹同学通过登陆国家乡村振兴局网站,查询到了2020年中央财政脱贫专项资金对28个省份的分配额度(亿元),并对数据进行整理和分析.图1是反映2020年中央财政脱贫专项资金分配额度的频数分布直方图,且在20≤x <40这一组分配的额度分别是:25,28,28,30,37,37,38,39,39.图2是反映2016﹣2020年中央财政脱贫专项资金对自治区A和自治区B的分配额度变化折线图.则下列说法中正确的是.A.2020年,中央财政脱贫专项资金对各省份的分配额度的中位数为37.5亿元B.2020年,某省获得的分配额度为95亿元,该额度在28个省份中由高到低排第六名C.2016﹣2020年,中央财政脱贫专项资金对自治区A的分配额度逐年增加D.2016﹣2020年,中央财政脱贫专项资金对自治区A的分配额度比对自治区B的稳定14.(2021•瑞安市模拟)某班级对40位学生的一分钟仰卧起坐测试成绩进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在35次及以上的学生有人.15.(2021•孝南区二模)某校在“祖国好、家乡美”主题宣传周里推出五条A、B、C、D、E旅游线路.某校摄影社团随机抽取部分学生举行“最爱旅游路线”投票活动,参与者每人选出一条心中最爱的旅游路线,社团对投票进行了统计,并绘制出如下不完整的条形统计图和扇形统计图.全校2400名学生中,请你估计,选择“C”路线的人数约为.三.解答题(共5小题)16.(2021•临沂三模)某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费,为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图,(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图,求扇形图中“15吨~20吨”部分的圆心角的度数是.(3)如果自来水公司将基本用水量定为每户25吨,那么该地区7万用户中约有多少万户的用水全部享受基本价格?17.(2021•南岗区模拟)考试前,同学们总会采用各种方式缓解考试压力,以最佳状态迎接考试,某校对该校九年级的部分同学做了一次内容为“最适合自己的考前减压方式”的调查活动,学校减压方式分为五类,同学们可根据自己的情况必选且只选其中一类,学校收集整理数据后,绘制了图①和图②两幅不完整的统计图,请根据统计图中的信息解答下列问题:(1)这次抽样调查,一共抽查了多少名学生?(2)请补全条形统计图;(3)根据调查结果,估计该校九年级500名学生中采用“听音乐”的减压方式的人数.18.(2021•莫旗一模)为进一步推广“阳光体育”大课间活动,莒县某中学对已开设的A 实心球,B立定跳远,C跑步,D跳绳四种活动项目的学生喜欢情况,进行调查,随机抽取了部分学生,并将调查结果绘制成图1、图2的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(3)在扇形统计图,请计算本项调查中喜欢“跑步”部分所对应的圆心角的度数;(4)如果全校共1200名同学,请你估算喜欢“跑步”的学生人数.19.(2021•葫芦岛一模)我校学生会新闻社准备近期做一个关于“H7N9流感病毒”的专刊,想知道同学们对禽流感知识的了解程度,决定随机抽取部分同学进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的同学共有名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小;(3)为了让全校师生都能更好地预防禽流感,学生会准备组织一次宣讲活动,由问卷调查中“了解”的几名同学组成一个宣讲团.已知这几名同学中只有两个女生,若要在该宣讲团中任选两名同学在全校师生大会上作代表发言,请用列表或画树状图的方法,求选取的两名同学都是女生的概率.20.(2020•徽县一模)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下图1、图2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了名学生;学生参加体育活动时间的中位数落在时间段(填写上面所给“A”、“B”、“C”、“D”中的一个选项);(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.2022年中考数学三轮复习:数据收集与处理参考答案与试题解析一.选择题(共10小题)1.(2021•房山区二模)根据国家统计局2016﹣2020年中国普通本专科、中等职业教育及普通高中招生人数的相关数据,绘制统计图如图:下面有四个推断:①2016﹣2020年,普通本专科招生人数逐年增多;②2020年普通高中招生人数比2019年增加约4%;③2016﹣2020年,中等职业教育招生人数逐年减少;④2019年普通高中招生人数约是中等职业教育招生人数的1.4倍.所有合理推断的序号是()A.①④B.②③C.①②④D.①②③④【考点】条形统计图;用样本估计总体.【专题】统计的应用;推理能力.【分析】根据条形统计图给出的数据,分别对每一项进行分析,即可得出答案.【解答】解:①2016﹣2020年,普通本专科招生人数逐年增多,正确;②2020年普通高中招生人数比2019年增加约×100%≈4%,正确;③从2016﹣2018年,中等职业教育招生人数逐年减少,从2019﹣2020年,中等职业教育招生人数增加,故本选项错误;④2019年普通高中招生人数约是中等职业教育招生人数的839÷600≈1.4倍,正确.故选:C.【点评】此题考查了条形统计图,读懂统计图,从图中得到必要的信息是解题的关键.2.(2021•双柏县模拟)大理古城是闻名遐迩的历史文化名城,春节期间相关部门对到大理观光的游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若春节期间到大理观光的游客有60万人,则选择自驾方式出行的约有25万人【考点】条形统计图;总体、个体、样本、样本容量;扇形统计图.【专题】统计的应用;数据分析观念.【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【解答】解:A.本次抽样调查的样本容量是2000÷40%=5000,此选项正确;B.扇形统计图中的m为1﹣(50%+40%)=10%,此选项正确;C.样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;D.若春节期间到大理观光的游客有60万人,则选择自驾方式出行的有60×40%=24(万人),此选项错误;故选:D.【点评】本题考查了条形统计图和扇形统计图.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.(2021•新都区模拟)水产养殖中常采用“捉﹣﹣放﹣﹣捉”的方式估计一个鱼塘中鱼的数量,如从某个鱼塘中随机地捞出100条鱼,将这些鱼作上记号后再放回鱼塘,隔数日后再从该鱼塘随机捞出144条鱼,其中带有记号的有6条,从而估计该鱼塘有()条鱼.A.1600B.2400C.1800D.2000【考点】用样本估计总体.【专题】统计的应用;数据分析观念.【分析】设鱼塘中有x条鱼,根据题意得出=,解之即可得出答案.【解答】解:设鱼塘中有x条鱼,根据题意,得:=,解得x=2400,经检验x=2400是分式方程的解,所以估计该鱼塘有2400条鱼,故选:B.【点评】本题主要考查了利用样本估计总体的思想,首先设整个鱼塘约有鱼x条,然后利用样本估计总体的思想即可列出方程解决问题.4.(2021•孝南区二模)如图是济南市一周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.最高气温是28℃B.众数是28℃C.中位数是24℃D.平均数是26℃【考点】折线统计图;加权平均数;中位数;众数.【专题】统计的应用;数据分析观念.【分析】先根据折线统计图,将这7天的最高气温从小到大排列,再依据众数、中位数和平均数的概念分别求解即可得出答案.【解答】解:由折线统计图知这7天的最高气温为:20、22、24、26、28、28、30,∴最高气温为30℃,故A选项错误;众数是28℃,故B选项正确;中位数为26℃,故C选项错误;平均数为=(℃),故D选项错误;故选:B.【点评】本题考查折线统计图,众数,中位数,平均数,极差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2021•河北模拟)某品牌汽车公司的销售部对40位销售员本月的汽车销售量进行了统计,绘制成如图所示的扇形统计图,则下列结论错误的是()A.这40位销售人员本月汽车销售量的平均数为13B.这40位销售人员本月汽车销售量的中位数为14C.这40位销售人员本月汽车销售量的众数为8D.这40位销售人员本月汽车的总销售量是56【考点】扇形统计图;加权平均数;中位数;众数.【专题】统计的应用;数据分析观念.【分析】根据平均数、中位数、众数的定义解答.【解答】解:销售8辆的40×40%=16(人),销售14辆的40×15%=6(人),销售16辆的40×20%=8(人),销售18辆的40×25%=10(人),=×(8×16+14×6+16×8+18×10)=13(辆),处在中间的两数为14辆,所以中位数为14,8辆出现次数最多,所以众数为8,销售总数量为16×8+6×14+8×16+10×18=520(辆),故选:D.【点评】本题考查了平均数、中位数、众数,熟悉它们的定义是解题的关键.6.(2021•雁塔区校级二模)如图是甲、乙两名射击运动员10次射击成绩的折线统计图,记甲10次成绩的方差为S,乙10次成绩的方差为S,根据折线图判断下列结论中正确的是()A.S>S B.S<SC.S=S D.无法判断【考点】折线统计图;方差.【专题】数据的收集与整理;几何直观.【分析】利用折线统计图可判断乙运动员的成绩波动较大,然后根据方差的意义可得到甲乙的方差的大小.【解答】解:由折线统计图得乙运动员的成绩波动较大,所以S>S.故选:A.【点评】本题考查了折线统计图和方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.(2021•绵竹市模拟)为了了解2018年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面3个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中至少有一半以上的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的范围是60﹣120元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③【考点】频数(率)分布直方图.【专题】统计的应用;数据分析观念.【分析】①根据图中信息月均花费超过80元的有500人,于是得到结论;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,据此可得平均每人乘坐地铁的月均花费的范围;③该市1000人中,20%左右的人有200人,根据图形可得乘坐地铁的月均花费达到120元的人有200人可以享受折扣.【解答】解:①∵200+100+80+50+25+25+15+5=500人,∴所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论正确;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120;所以估计平均每人乘坐地铁月均花费不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可享受折扣,∴乘坐地铁的月均花费达到120元的人可享受折扣,此结论正确;综上,正确的结论为①②③,故选:D.【点评】本题主要考查了频数分布直方图,抽样调查以及用样本估计总体,一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.8.(2020•肥东县二模)某中学随机抽取200名学生寒假期间平均每天体育锻炼时间进行问卷调查,并将调查结果分为A、B、C、D四个等级.A:1小时以内;B:1小时~1.5小时;C:1.5小时~2小时;D:2小时以上;根据调查结果绘制了不完整的统计图(如图).若用扇形统计图来描述这200名学生寒假期间平均每天的体育锻炼情况,则C等级对应的扇形圆心角的度数为()A.36°B.60°C.72°D.108°【考点】扇形统计图;条形统计图.【专题】统计的应用;应用意识.【分析】根据已知条件求出C的人数从而补全统计图;用C的人数除以总人数再乘以360°,即可得到圆心角α的度数;画出扇形统计图即可.【解答】解:C类的人数是:200﹣60﹣80﹣20=40(人),C等级对应的扇形圆心角的度数为360×=72°;补全条形统计图如图所示;用扇形统计图来描述这200名学生寒假期间平均每天的体育锻炼情况如图所示;故选:C.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.9.(2021•广西一模)以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神舟八号”航天飞船各零部件的情况【考点】全面调查与抽样调查.【专题】数据的收集与整理;数据分析观念;应用意识.【分析】检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神舟八号”航天飞船各零部件的情况,必须使用普查,【解答】解:检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神舟八号”航天飞船各零部件的情况,必须使用普查,故选:D.【点评】考查普查、抽查的意义,把握“普查”“抽查”的适用范围和要求是正确判断的前提.10.(2021•海淀区校级模拟)“一带一路”倡议提出五年多来,交通、通信、能源等各项相关建设取得积极进展,也为增进各国民众福祉提供了新的发展机遇,如图是2017年“一带一路”沿线部分国家的通信设施现状统计图.根据统计图提供的信息,下列推断合理的是()A.互联网服务器拥有个数最多的国家是阿联酋B.宽带用户普及率的中位数是11.05%C.有8个国家的电话普及率能够达到平均每人1部D.只有俄罗斯的三项指标均超过了相应的中位数【考点】条形统计图;折线统计图;中位数.【专题】数据的收集与整理;统计的应用.【分析】互联网服务器个数最多的是俄罗斯,故A选项是不正确的,宽带用户普及率的中位数是(10.4%+11.5%)÷2=10.95%,故B选项不正确,俄罗斯的电话普及率处于第5名,与马来西亚的电话普及率的平均数是中位数,故D不正确,因此只有C事正确的.【解答】解:互联网服务器个数最多的是俄罗斯,故A选项是不正确的,宽带用户普及率的中位数是(10.4%+11.5%)÷2=10.95%,故B选项不正确,俄罗斯的电话普及率处于第5名,与马来西亚的电话普及率的平均数是中位数,故D不正确,故选:C.【点评】考查统计图表的识图能力,中位数、平均数的意义,通过复杂的统计图中获取有用的数据是做出判断的前提.二.填空题(共5小题)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是9.75.【考点】折线统计图;中位数.【专题】统计的应用;数据分析观念.【分析】根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.即可得解.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:=9.75.故答案为:9.75.【点评】本题考查了折线统计图、中位数,解决本题的关键是掌握中位数的定义.12.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为240人.【考点】频数(率)分布表;总体、个体、样本、样本容量;用样本估计总体.【专题】统计的应用;数据分析观念.【分析】根据频数分布表数据可得a和b的值,进而可以估计该校七年级学生身体素质良好及以上的人数.【解答】解:根据频数分布表可知:9÷15%=60,∴a=60×30%=18,b=1﹣30%﹣15%﹣5%=50%,∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人.故答案为:240.【点评】本题考查了频数分布表、总体、个体、样本、样本容量、用样本估计总体,解决本题的关键是掌握统计的相关知识.13.(2021•潍城区二模)为了打赢“脱贫攻坚”战役,国家设立了“中央财政脱贫专项资金”以保证对各省贫困地区的持续投入.小莹同学通过登陆国家乡村振兴局网站,查询到了2020年中央财政脱贫专项资金对28个省份的分配额度(亿元),并对数据进行整理和分析.图1是反映2020年中央财政脱贫专项资金分配额度的频数分布直方图,且在20≤x <40这一组分配的额度分别是:25,28,28,30,37,37,38,39,39.图2是反映2016﹣2020年中央财政脱贫专项资金对自治区A和自治区B的分配额度变化折线图.则下列。

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)

中考数学复习专项知识总结—数据的收集、整理、描述与分析(中考必备)1、全面调查与抽样调查全面调查:考察全体对象的调查叫做全面调查。

抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查。

2、总体、个体及样本总体是要考察的全体对象。

其中每一个考察对象叫做个体。

当总体中个体数目较多时,一般从总体中抽取一部分个体,这部分个体叫做总体的样本。

样本中个体的数目叫做样本容量。

3、常见统计图表直方图、扇形图、条形图、折线图。

4、平均数 平均数:)(121n x x x nx +++=加权平均数:nnn k k k k x k x k x x ++++++=212211(1x 、2x …n x 的权分别是1k 、2k …n k )5、众数与中位数众数:一组数据中出现次数最多的数据称为这组数据的众数。

中位数:将一组数据按由小到大(或由大到小)的顺序排列。

如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数。

6、方差方差:])()()[(1222212x x x x x x ns n -++-+-=方差越大,数据的波动越大;方差越小,数据的波动越小。

1、经历收集、整理、描述和分析数据的活动,了解数据处理的过程;能用计算器处理较为复杂的数据。

2、体会抽样的必要性,通过实例了解简单随机抽样。

3、会制作扇形统计图,能用统计图直观、有效地描述数据。

4、理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述。

5、体会刻画数据离散程度的意义,会计算简单数据的方差。

6、通过实例,了解频数和频数分布的意义,能画频数直方图,能利用频数直方图解释数据中蕴涵的信息。

7、体会样本与总体的关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。

8、能解释统计结果,根据结果作出简单的判断和预测,并能进行交流。

中考数学复习:数据的收集与整理 课件

中考数学复习:数据的收集与整理 课件

总体中所占的百分比
百分比×360°
能清楚地表示出每个项目
条形统计图
各组数据之和等于抽样数据总数(样本容量)
的具体数目
能清楚地表示出数据变化
折线统计图
各组数据之和等于抽样数据总数(样本容量)
的趋势
名称
优点
数据特点
1. 清楚显示各组数据分布的 1. 各组频数之和等于抽样数据总数(样本
频数分布直 情况; 容量);
方图 2. 易于显示各组之间频数的 2. 数据总数×某组的频率=相应组的频数
差别
容易判断数据的多少,比较
频数分布表
各组频数之和等于数据总数(样本容量)
各个小组的差别
随堂练习
1. 以下调查中,适宜全面调查的是( B )A. 调查某批次汽车的抗撞击 能力B. 了解某班学生的身高情况C. 调查春节联欢晚会的收视率D. 调查 市场上某种食品的色素含量是否符合国家标准
________,m=________;
【解法提示】a=(1-20%-10%- 4 )×100=30;
10
∵在七年级10名学生的竞赛成绩中96出现的次数最多, ∴b=96;由题意知,八年级10名学生的成绩在A组和B组的共有3人, ∵八年级10名学生的竞赛成绩的中位数是第5和第6个数据的平均数,且 在C组中的数据是92,92,94,94, ∴m= 92 94 =93.
2. 为了解全校学生的上学方式,需要在全校1200名学生中抽取300名学 生进行调查.(1)下列抽取学生的方法合理的是( )A. 在七年级学生中 随机抽取300 名B. 在男生中随机抽取D300名C. 在全校随机抽取300名师生 D. 在全校随机抽取300名学生
(2)此调查方式为_抽__样__调__查___;(3)此次调查的总体为 ____________________全__校__1_2_0,0名个学体生为的__上__学__方__式__

专题1.1数据的收集整理与描述精讲精练

专题1.1数据的收集整理与描述精讲精练

2022-2023学年八年级数学下学期复习备考高分秘籍【苏科版】专题1.1数据的收集整理与描述(8大易错题型深度导练)【目标导航】【知识梳理】1. 全面调查和抽样调查(1)统计调查的方法有调查(即普查)和调查.(2)全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.2.总体、个体、样本、样本容量:①总体:我们把所要考察的对象的叫做总体;②个体:把组成总体的考察对象叫做个体;③样本:从总体中取出的叫做这个总体的一个样本;④样本容量:一个样本包括的叫做样本容量.3.用样本估计总体:用样本的频率分布估计总体分布:从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用来表示相应样本的频率分布,从而去估计总体的分布情况.4.统计图的选用:(1)扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出的关系.(2)条形统计图:条形统计图是用线段长度表示数据,根据画成长短不同的矩形直条,然后按顺序把这些直条排列起来.(3)折线统计图:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的情况.5.频数和频率:(1)频数是指每个对象出现的.(2)频率是指每个对象出现的次数与总次数的(或者百分比).即一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.6.频数分布表:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的称为组数,每一组两个端点的称为组距,称这样画出的统计图表为分布表.7.频数分布直方图:(1)计算极差,即计算最大值与最小值的.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.【典例剖析】【考点1】普查与抽样调查【例1】(2022秋·江苏盐城·八年级校考期中)下列调查,适合用普查方式的是()A.了解一批电视机显像管的使用寿命B.了解某河段被污染的程度C.了解你们班同学的视力情况D.了解人体血液的成分【变式训练】1.(2021春·江苏苏州·八年级校考期中)下列调查方式,适合的是().A.要了解外地游客对我市景点的满意程度,采用普查的方式B.新冠肺炎防控期间,要了解全体师生入校时的体温情况,采用普查的方式C.审核书稿中的错别字,采用抽样调查的方式D.要了解一批中性笔芯的使用寿命,采用普查的方式2.(2021春·江苏南京·八年级校考期中)下面的说法正确的是()A.调查一批牛奶的质量情况,选择普查B.为了解长江的水质情况,选择普查C.为了解全国八年级学生的睡眠情况,选择普查D.为确保“嫦娥五号”探测器顺利发射,对其全部零件进行普查3.(2021春·江苏南京·八年级校考期中)下列调查中,适宜采用普查方式的是().A.调查大批产品的次品率情况B.调查某一天离开某市的人口数量C.调查某城市居民的人均收入情况D.调查某校初中生体育中考的成绩【考点2】总体、个体、样本、样本容量【例2】(2022秋·江苏盐城·八年级校考阶段练习)根据“五项管理”和“双减”的政策要求,要充分保障学生睡眠的质量,我市某中学为了解本校1200名学生的睡眠情况,从中抽查了200名学生的睡眠时间进行统计,下面叙述正确的是( )A.总体是该校1200名学生B.200名学生是样本容量C.200名学生是总体的一个样本D.每名学生的睡眠时间是一个个体【变式训练】4.(2022春·江苏苏州·八年级校考阶段练习)去年我市有约7万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1000名考生是总体的一个样本B.1000名学生是样本容量C.每位考生的数学成绩是个体D.约7万名考生是总体5.(2022春·江苏苏州·八年级校考期中)因疫情反复,苏州某小区决定了解本小区居民对“疫情卫生防护知识”知晓情况,从全小区3254位居民中随机抽取了120名进行调查,在这次调查中,样本是()A.所抽取的120名居民对“疫情卫生防护知识”的知晓情况B.3245C.120名居民D.3245名居民对“疫情卫生防护知识”的知晓情况6.(2022秋·江苏徐州·八年级校考期末)为了解我市参加中考的5000名学生的身高情况,抽查了其中200名学生的身高进行统计分析.下列叙述正确的是()A.5000名学生是总体B.从中抽取的200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查【考点3】用样本估计总体【例3】(2023春·江苏·八年级专题练习)一个不透明袋子里有12枚冰墩墩纪念币和若干雪容融纪念币,在不允许将它们倒出来的前提下,小红为估计袋子中雪容融纪念币数量,采用如下方法:从袋子中一次摸出10枚币,求出冰墩墩纪念币数与10的比值,再把纪念币放回袋中摇匀.不断重复上述过程5次,得到冰墩墩纪念币数与10的比值分别是0.6,0.5,0.6,0.7,0.6,根据上述数据,小红可估计袋子中大约有_________.【变式训练】7.(2022春·江苏无锡·八年级校考阶段练习)为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数分布直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~12小时之间的学生数大约是( )A.280B.100C.380D.2608.(2023春·江苏·八年级专题练习)为了解某县初中学生视力情况,有关部门进行了一次抽样调查,数据如下表.若该县共有初中学生15000人,则全县视力不良的初中学生人数大约是()视力不良的学生人数/人抽样人数/人男生女生合计450097511852160A.2160人B.7200人C.7800人D.4500人9.(2021春·江苏泰州·八年级统考期中)小华和同学做“抛掷质地均匀的硬币试验”获得的数据如下表:抛掷次数100200300400500正面朝上的频数5298155201249若抛掷硬币的次数为1200,则正面朝上的频数最接近()A.400B.600C.800D.900【考点4】统计图的选用【例4】(2023春·八年级单元测试)近年来,我国城乡居民的收入有了大幅提高,为了了解蓝田县城乡居民收入10年来的变化趋势,适合采用的统计图是________统计图.(填“扇形”“条形”或“折线”)【变式训练】10.(2023春·八年级单元测试)新冠肺炎疫情是一场突发的公共卫生事件,某同学收集了2021年1月份石家庄每天新增确诊病例、患者年龄等情况,为了了解每天新增确诊人数的变化趋势以及儿童感染人数所占的比例,分别选择合适的统计图是( )A.条形统计图,扇形统计图B.折线统计图,扇形统计图C.折线统计图,条形统计图D.条形统计图,频数分布直方图11.(2023春·江苏·八年级专题练习)“双减”政策实施后,某校为了解七年级学生每天的作业完成时间的变化情况,最适合采用下列哪种统计图来进行描述()A.条形统计图B.扇形统计图C.折线统计图D.以上三种统计图都可以12.(2023春·江苏·八年级专题练习)疾控中心统计冬季流感疫情,既想知道每天患病人数的多少,又要能反映疫情变化的情况和趋势,最好选用()A.条形统计图B.折线统计图C.扇形统计图D.统计表【考点5】频数与频率【例5】(2021春·江苏常州·八年级常州市清潭中学校考期中)已知在一个样本中,将100个数据分成4组,并列出频率分布表,其中第一组的频数是22,第二组与第四组的频率之和是0.53,那么第三组的频数是__.【变式训练】13.(2023春·江苏·八年级专题练习)将50个数据分成3组,其中第1组与第3组的频数之和为35,则第2组的频率是______.14.(2023春·江苏·八年级专题练习)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的有______人.组别A型B型AB型O型频率0.40.350.10.1515.(2023春·江苏·八年级专题练习)重庆市统计局在2022年3月随机抽测了2500名七年级学生(共抽测了25所学校,每所学校100名学生)的身高(单位:cm),结果身高在150~160这一小组的百分比为18%,则该组的人数为______人.【考点6】有关扇形统计图的解答题【例6】(2021春·江苏南京·八年级校考期中)某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:转动转费的次数n1001502005008001000落在“铅笔”区域的频数m68111136345564701落在“铅笔”区域的频率0.680.740.680.690.705(1)填写表中的空格.(2)指针落在“铅笔”区城的频率稳定在(精确到0.1);顾客获得铅笔的概率估计值为(精确到0.1).(3)在该转盘中,表示“可乐”区域的扇形的圆心角约是多少度?【变式训练】16.(2021春·江苏徐州·八年级校考阶段练习)已知2014年3月份在某医院出生的20名新生婴儿的体重如下(单位:kg)4.7 2.9 3.2 3.5 3.8 3.4 2.8 3.3 4.0 4.53.64.8 4.3 3.6 3.4 3.5 3.6 3.5 3.7 3.7(1)求这组数据的最大值与最小值的差;(2)若以0.4kg为组距,对这组数据进行分组,制作了如下的“某医院2014年3月份20名新生婴儿体重的频数分布表”(表格不完整),请在频数分布表的空格中填写相关的量.频数分布表组别(kg)划记频数3.55~3.95正一6合计20(3)经检测,这20名婴儿的血型的扇形统计图如图所示(不完整),求:①这20名婴儿中是A型血的人数;②表示O型血的扇形的圆心角度数.17.(2023春·八年级单元测试)学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下的统计表和扇形统计图.态度非常喜欢喜欢一般不喜欢人数90b3010百分比a35%20%请你根据统计图表提供的信息解答下列问题:(1)该校随机抽取了____________名同学进行问卷调查;(2)求出a、b的值;(3)求在扇形统计图中“喜欢”部分扇形所对应的圆心角的度数.18.(2023春·江苏·八年级专题练习)中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A,B,C,D四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图.频数分布表等级分值跳绳(次/1分钟)频数9~10150~1704A8~9140~150127~8130~14017B6~7120~130m5~6110~1200C4~590~110n3~470~901D0~30~700(1)求m,n的值;(2)在抽取的这个样本中,请说明哪个分数段的学生最多?(3)请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).【考点7】有关条形统计图的解答题【例7】(2023春·江苏·八年级专题练习)东北育才学校决定在学生中展开篮球、足球、排球、网球四种社团活动,为了解学生对四种社团活动的喜欢情况,随机调查了m名学生最喜欢的一种社团活动(每名学生必选且只能选择四种社团活动中的一种),并将调查结果绘制成如图的不完整的统计图表:学生最喜欢的社团活动的人数统计表社团活动学生数百分比篮球8040%足球60p排球n10%网球4020%根据图表中提供的信息,解答下列问题:(1)m=______,n=______,p=______;(2)请根据以上信息直接在图中补全条形统计图;(3)根据调查结果,请估计我校2000名学生中有多少名学生最喜欢足球社团活动.【变式训练】19.(2023春·江苏·八年级专题练习)为了解某校九年级学生数学期末考试情况,小方随机抽取了部分学生的数学成绩(分数都为整数)为样本,分为A(120~96分)、B(95~72分)、C(71~48分)、D(47~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)该校九年级共有学生1200人,若分数为72分以上(含72分)为及格,请估计这次九年级学生期末数学考试成绩为及格的学生有多少人?20.(2022春·江苏苏州·八年级校考期中)某校为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查,问卷给出了四种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)补全条形统计图;(3)如果全校有1500名学生,学校准备的400个自行车停车位是否够用?21.(2022春·江苏无锡·八年级校考阶段练习)某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”,“科技制作”,“数学思维”,“阅读写作”这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇形统计图中“艺术鉴赏”部分的圆心角是度;(2)此次调查“数学思维”的人数为;(3)现该校共有600名学生报名参加这四个选修项目,请你估计大约有名学生选修“科技制作”项目.【考点8】频数分布直方图【例8】(2022春·江苏徐州·八年级校考阶段练习)某中学为迎接第53届世乒赛,在九年级举行了“乒乓球知识竞赛”,从全年级600名学生的成绩中随机抽选了100名学生的成绩,根据测试成绩绘制成以下不完整的频数分布表和频数分布直方图:频率分布表:组别成绩x分频数(人数)50≤x<608第1组60≤x<7016第2组第3组70≤x<80a 第4组80≤x<9032第5组90≤x<10020请结合图表完成下列各题:(1)求表中a的值:(2)请把频数分布直方图补充完整;(3)若测试成绩不低于90分的同学可以获得第53届世乒赛吉祥物“乒宝”,请你估计该校九年级有多少位同学可以获得“乒宝”?【变式训练】22.(2023春·江苏·八年级专题练习)某中学积极开展跳绳锻炼,一次体育测试后,体育委员统计了全班同学单位时间的跳绳次数,绘制了如图所示的频数分布表和频数分布直方图.次数频数60≤x<80a80≤x<1004100≤x18<120120≤x13<140140≤x8<160160≤xb<180180≤x1<200(1)填空:a=____________,b=_____________,这个班共有____________人;(2)补全频数分布直方图;(3)若规定跳绳次数不低于140次为优秀,求全班同学跳绳的优秀率是多少?23.(2022春·江苏宿迁·八年级统考期中)某校为了增强学生的疫情防控意识,组织全校2000名学生进行了疫情防控知识竞赛.小杨从中随机抽取了部分学生的竞赛成绩(满分100分,每名学生的成绩记为x分),分成四组:A组:60≤x<70;B组:70≤x<80;C组:80≤x<90;D组:90≤x≤100,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,回答下列问题:(1)扇形统计图中,A组所对应的扇形圆心角度数为_______°;(2)请计算并补全频数分布直方图;(3)该校对成绩为90≤x≤100的学生进行奖励,按成绩从高分到低分设一、二等奖,并且一、二等奖的人数比例为3:7,请你估计全校获得一等奖的学生人数.24.(2022春·江苏苏州·八年级苏州市胥江实验中学校校考期中)某校为加强学生安全意识,组织了全校800名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图解题.分数段频数频率50.5-60.5160.0860.5-70.5400.270.5-80.5500.2580.5-90.5m0.3590.5-100.524n(1)这次抽取了________名学生的竞赛成绩进行统计,其中:m=________,n=________.(2)补全频数分布直方图.(3)若成绩在80分以下(含80分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?。

2023年中考数学二轮复习之数据收集与整理(含解析)

2023年中考数学二轮复习之数据收集与整理(含解析)

2023年中考数学二轮复习之数据收集与整理一.选择题(共10小题)1.(2022秋•余姚市期末)下列事件中,属于必然事件的是( )A.射击运动员射击一次,命中10环B.有一匹马奔跑的速度是70米/秒C.任意抛掷一只纸杯,杯口朝下D.在地面上向空中抛掷一石块,石块终将落下2.(2022秋•杭州期末)下列事件中,属于随机事件的是( )A.从地面向上抛的硬币会落下B.射击运动员射击一次,命中10环C.太阳从东边升起D.有一匹马奔跑的速度是70米/秒3.(2023•湘潭开学)为了了解学校2000名学生周末完成作业所用时间,数学兴趣小组随机抽取了50名学生进行了调查,在这个问题中,样本容量是( )A.50B.被抽查的50名学生C.2000D.2000名学生4.(2023•郫都区校级开学)下列调查中,最适宜采用普查的是( )A.调查运载火箭的零部件的质量B.调查某批次汽车的抗撞击能力C.调查全市各大超市蔬菜农药残留量D.调查全国中学生每天做作业的时间5.(2022秋•潮州期末)下列说法正确的是( )A.不可能事件发生的概率为1B.随机事件发生的概率为C.概率很小的事件不可能发生D.随着试验次数的增加,频率一般会越来越接近概率6.(2022秋•宜春期末)2022年卡塔尔世界杯期间,“某队点球不进”这一事件是( )A.随机事件B.必然事件C.不可能事件D.无法确定7.(2022秋•叙州区期末)在一个不透明袋子中装有5个只有颜色不同的球,其中3个红球和2个蓝球,从袋子中任意摸出1个球,摸到红球的概率为( )A.B.C.D.8.(2022秋•沂南县期末)下列事件是必然事件的是( )A.掷一枚质地均匀的骰子,掷出的点数不超过6B.篮球队员在罚球线上投篮一次,投中C.经过红绿灯路口,遇到绿灯D.打开电视机,它正在播广告9.(2022秋•屯留区期末)为庆祝党的二十大胜利召开,太原市某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动(一人限参加一项活动)的人数进行了调查,并将数据绘制成如图所示的条形统计图,则参加这次活动的学生总人数为( )A.130B.150C.180D.200 10.(2023•海口一模)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.5二.填空题(共8小题)11.(2022秋•永安市期末)甲、乙两公司近年赢利情况如图所示,由统计图可知,这两家公司近年利润的增长速度较慢的是 .(选填“甲”或“乙”)12.(2022秋•叙州区期末)一次体育测试中,10名女生完成仰卧起坐的个数如下:46、53、44、54、51、48、52、50、47、50,则这次体育测试中仰卧起坐个数大于50个的频率为 .13.(2022秋•叙州区期末)打开电视机,正在播放电视剧.这是一个 事件.(填“确定”或“随机”).14.(2022秋•沂南县期末)我国北方有一个习俗:过年包饺子时会随机在饺子中包上糖果或硬币,我们称其为“幸运饺子”.吃到“幸运饺子”的人新的一年的日子会甜甜美美、万事如意.小亮家共煮了60个饺子,其中有4个“幸运饺子”,小亮从中随机挑选了一个饺子正好是“幸运饺子”的概率是 .15.(2022秋•漳州期末)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有40名学生,其中已经学会炒菜的学生频率是0.45,则该班学会炒菜的学生频数是 .16.(2022秋•潮州期末)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数,现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为 .17.(2022秋•金平区期末)在一个不透明的盒子中装有10个大小相同的乒乓球,做了1000次摸球试验,摸到红球的频数是399,估计盒子中的红球的个数是 .18.(2022秋•磴口县校级期末)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,这三张图片恰好组成一张完整风景图片的概率为 .三.解答题(共3小题)19.(2022秋•雁塔区校级期末)为了了解我校七年级学生的计算能力,学校随机抽取了部分同学进行了数学计算题测试,王老师将成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”、“很差”五个等级,并将收集的数据整理并绘制成两幅统计图:请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共调查了 名同学;(2)扇形统计图中表示“较差”的圆心角度数为 ,并补全条形统计图;(3)若我校七年级有1200人,估算七年级得“优秀”的同学大约有多少人?20.(2023•碑林区校级模拟)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°,转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,转出数字是﹣3的概率是 ;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为负数的概率.21.(2022秋•未央区期末)某学校的九年级某班每月都举行诵读活动,每人诵读的文章内容以抽签形式决定,有一次甲同学从A《沁园春》、B《我爱这土地》、C《乡愁》三个签中随机抽取一个后不放回,乙同学再从剩余签中随机抽取一个.请用列表法或画树状图法求甲、乙两人有一人抽到B《我爱这土地》的概率.2023年中考数学二轮复习之数据收集与整理参考答案与试题解析一.选择题(共10小题)1.(2022秋•余姚市期末)下列事件中,属于必然事件的是( )A.射击运动员射击一次,命中10环B.有一匹马奔跑的速度是70米/秒C.任意抛掷一只纸杯,杯口朝下D.在地面上向空中抛掷一石块,石块终将落下【考点】随机事件.【专题】概率及其应用;推理能力.【分析】根据事件发生的可能性大小判断即可.【解答】解:A.射击运动员射击一次,命中10环,是随机事件,不符合题意;B.有一匹马奔跑的速度是70米/秒,是不可能事件,不符合题意;C.任意抛掷一只纸杯,杯口朝下,是随机事件,不符合题意;D.在地面上向空中抛掷一石块,石块终将落下,是必然事件,符合题意.故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2022秋•杭州期末)下列事件中,属于随机事件的是( )A.从地面向上抛的硬币会落下B.射击运动员射击一次,命中10环C.太阳从东边升起D.有一匹马奔跑的速度是70米/秒【考点】随机事件.【专题】概率及其应用;数据分析观念.【分析】根据事件发生的可能性大小判断即可.【解答】解:A、从地面向上抛的硬币会落下,是必然事件,不符合题意;B、射击运动员射击一次,命中10环,是随机事件,符合题意;C、太阳从东边升起,是必然事件,不符合题意;D、有一匹马奔跑的速度是70米/秒,是不可能事件,不符合题意.故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2023•湘潭开学)为了了解学校2000名学生周末完成作业所用时间,数学兴趣小组随机抽取了50名学生进行了调查,在这个问题中,样本容量是( )A.50B.被抽查的50名学生C.2000D.2000名学生【考点】总体、个体、样本、样本容量.【专题】数据的收集与整理;数据分析观念.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.【解答】解:为了了解学校2000名学生周末完成作业所用时间,数学兴趣小组随机抽取了50名学生进行了调查,在这个问题中,样本容量是50.故选:A.【点评】本题主要考查样本容量的含义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.(2023•郫都区校级开学)下列调查中,最适宜采用普查的是( )A.调查运载火箭的零部件的质量B.调查某批次汽车的抗撞击能力C.调查全市各大超市蔬菜农药残留量D.调查全国中学生每天做作业的时间【考点】全面调查与抽样调查.【专题】数据的收集与整理;数据分析观念.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.调查运载火箭的零部件的质量,适合采用普查,因为每一个零部件对于火箭的安全都十分的重要.故本选项符合题意;B.调查某批次汽车的抗撞击能力,适合抽样调查,故本选项不符合题意;C.调查全市各大超市蔬菜农药残留量,适合抽样调查,故本选项不符合题意;D.调查全国中学生每天做作业的时间,适合抽样调查,故本选项不符合题意.故选A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(2022秋•潮州期末)下列说法正确的是( )A.不可能事件发生的概率为1B.随机事件发生的概率为C.概率很小的事件不可能发生D.随着试验次数的增加,频率一般会越来越接近概率【考点】利用频率估计概率;随机事件;概率的意义.【专题】概率及其应用;推理能力.【分析】利用概率的意义、随机事件的判定等知识分别判断,即可确定正确的选项.【解答】解:A.不可能事件发生的概率为0,故该选项错误,不符合题意;B.随机事件发生的概率大于0,小于1,故该选项错误,不符合题意;C.概率很小的事件也可能发生,故该选项错误,不符合题意;D.随着试验次数的增加,频率一般会越来越接近概率,故该选项正确,符合题意.故选:D.【点评】本题考查了利用频率估计概率、随机事件、概率的意义等知识,解题的关键是了解大量重复试验中,事件发生的频率可以估计概率.6.(2022秋•宜春期末)2022年卡塔尔世界杯期间,“某队点球不进”这一事件是( )A.随机事件B.必然事件C.不可能事件D.无法确定【考点】随机事件.【专题】概率及其应用;推理能力.【分析】根据随机事件的定义即可解答.【解答】解:∵“某队点球不进”可能发生,也可能不发生,∴“某队点球不进”是随机事件.故选:A.【点评】本题主要考查了随机事件的定义,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件).7.(2022秋•叙州区期末)在一个不透明袋子中装有5个只有颜色不同的球,其中3个红球和2个蓝球,从袋子中任意摸出1个球,摸到红球的概率为( )A.B.C.D.【考点】概率公式.【专题】概率及其应用;应用意识.【分析】用红球的个数除以球的总个数即可得.【解答】解:从袋子中任意摸出1个球,有5种等可能结果,其中摸出的球是红球的有3种可能,所以摸出的球是红球的概率为.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.8.(2022秋•沂南县期末)下列事件是必然事件的是( )A.掷一枚质地均匀的骰子,掷出的点数不超过6B.篮球队员在罚球线上投篮一次,投中C.经过红绿灯路口,遇到绿灯D.打开电视机,它正在播广告【考点】随机事件.【专题】概率及其应用;应用意识.【分析】利用必然事件的定义直接写出答案即可.【解答】解:A.掷一枚质地均匀的骰子,掷出的点数不超过6,是必然事件,故此选项符合题意;B.篮球队员在罚球线上投篮一次,投中,是随机事件,故此选项不合题意;C.经过有信号灯的路口,遇到绿灯,是随机事件,故此选项不合题意;D.打开电视机,它正在播广告,是随机事件,故此选项不合题意.故选:A.【点评】本题考查了必然事件的定义,解题的关键是了解能够确定发生的事件称为必然事件.9.(2022秋•屯留区期末)为庆祝党的二十大胜利召开,太原市某校开展了“学党史,悟初心”系列活动.学校对学生参加各项活动(一人限参加一项活动)的人数进行了调查,并将数据绘制成如图所示的条形统计图,则参加这次活动的学生总人数为( )A.130B.150C.180D.200【考点】条形统计图.【专题】统计的应用;运算能力.【分析】根据条形统计图中活动项目中各个人数相加即可得出答案.【解答】解:条形统计图中:大合唱60人,绘画30人,朗诵20人,书法40人,∴参加这次活动的学生总人数为60+30+20+40=150(人),故选:B.【点评】本题考查条形统计图,从图中获取信息是解题的关键.10.(2023•海口一模)对于一组数据﹣1,﹣1,4,2,下列结论不正确的是( )A.平均数是1B.众数是﹣1C.中位数是0.5D.方差是3.5【考点】方差;算术平均数;中位数;众数.【专题】数据的收集与整理;运算能力.【分析】将数据重新排列,再根据平均数、众数、中位数及方差的定义求解即可.【解答】解:将这组数据重新排列为﹣1,﹣1,2,4,所以这组数据的平均数为=1,中位数为=0.5,众数为﹣1,方差为×[2×(﹣1﹣1)2+(2﹣1)2+(4﹣1)2]=4.5,故选:D.【点评】本题主要考查方差,解题的关键是掌握平均数、众数、中位数及方差的定义.二.填空题(共8小题)11.(2022秋•永安市期末)甲、乙两公司近年赢利情况如图所示,由统计图可知,这两家公司近年利润的增长速度较慢的是 乙 .(选填“甲”或“乙”)【考点】折线统计图.【专题】统计的应用;几何直观.【分析】根据图象的变化趋势求解即可.【解答】解:∵甲公司的利润从2004年的40万增长到2010年的130万,而乙公司的利润从2004年的40万增长到2010年的90万,∴这两家公司近年利润的增长速度较慢的是乙.故答案为:乙.【点评】此题考查了统计图,解题的关键是正确统计图的数据.12.(2022秋•叙州区期末)一次体育测试中,10名女生完成仰卧起坐的个数如下:46、53、44、54、51、48、52、50、47、50,则这次体育测试中仰卧起坐个数大于50个的频率为 0.4 .【考点】频数与频率.【专题】数据的收集与整理;运算能力.【分析】正确数出10个数据中大于50的数据个数,即为频数,根据频率=频数÷总数,进行计算.【解答】解:根据题意,可知这次体育测试中仰卧起坐个数大于50个的有4个数据,故其频率是=0.4.故答案为:0.4.【点评】本题考查频率、频数的关系:频率=.13.(2022秋•叙州区期末)打开电视机,正在播放电视剧.这是一个 随机 事件.(填“确定”或“随机”).【考点】随机事件.【专题】概率及其应用;应用意识.【分析】根据理解必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,可能正在播放电视剧,也可能不在播放电视剧,所以打开电视机,正在播放电视剧是随机事件,故答案为:随机.【点评】本题考查的是理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14.(2022秋•沂南县期末)我国北方有一个习俗:过年包饺子时会随机在饺子中包上糖果或硬币,我们称其为“幸运饺子”.吃到“幸运饺子”的人新的一年的日子会甜甜美美、万事如意.小亮家共煮了60个饺子,其中有4个“幸运饺子”,小亮从中随机挑选了一个饺子正好是“幸运饺子”的概率是 .【考点】概率公式.【专题】概率及其应用;运算能力.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:任意挑选一个饺子共有50种等可能结果,其中正好是包有“幸运饺子”的有4种结果,所以小亮从中随机挑选了一个饺子正好是“幸运饺子”的概率是=.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(2022秋•漳州期末)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有40名学生,其中已经学会炒菜的学生频率是0.45,则该班学会炒菜的学生频数是 18 .【考点】频数与频率.【专题】统计的应用;数据分析观念.【分析】用频率乘以总数即可求.【解答】解:该班学会炒菜的学生频数为:40×0.45=18,故答案为:18.【点评】本题考查了频数的计算;掌握频数的计算公式是解题的关键.16.(2022秋•潮州期末)9张背面相同的卡片,正面分别写有不同的从1到9的一个自然数,现将卡片背面朝上,从中任意抽出一张,正面的数是偶数的概率为 .【考点】概率公式.【专题】概率及其应用;运算能力.【分析】根据概率计算公式进行求解即可.【解答】解:∵1到9的自然数中偶数有2,4,6,8一共4个,∴从中任意抽出一张,正面的数是偶数的概率为,故答案为:.【点评】本题主要考查了简单的概率计算,熟知概率计算公式是解题的关键.17.(2022秋•金平区期末)在一个不透明的盒子中装有10个大小相同的乒乓球,做了1000次摸球试验,摸到红球的频数是399,估计盒子中的红球的个数是 4 .【考点】利用频率估计概率.【专题】概率及其应用;运算能力.【分析】根据概率公式先求出摸到红球的概率,然后乘以总球的个数即可得出答案.【解答】解:∵做了1000次摸球试验,摸到红球的频数为399,∴摸到红球的频率是:,∴估计盒子中的红球的个数为:10×0.4=4(个);故答案为:4.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.18.(2022秋•磴口县校级期末)把三张形状、大小相同但画面不同的风景图片,都按同样的方式剪成相同三段,然后将上、中、下三段分别混合洗匀,从三堆图片中随机地各抽出一张,这三张图片恰好组成一张完整风景图片的概率为 .【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】把三张风景图片用甲、乙、丙来表示,根据题意画树形图,数出可能出现的结果利用概率公式即可得出答案.【解答】解:把三张风景图片用甲、乙、丙来表示,根据题意画如下的树形图:其中恰好组成一张完整风景图片的有3种,所以这三张图片恰好组成一张完整风景图片的概率为=.【点评】本题考查了列表法和树状图法的相关知识,用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共3小题)19.(2022秋•雁塔区校级期末)为了了解我校七年级学生的计算能力,学校随机抽取了部分同学进行了数学计算题测试,王老师将成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”、“很差”五个等级,并将收集的数据整理并绘制成两幅统计图:请你根据统计图提供的信息解答下列问题:(1)本次调查中,一共调查了 80 名同学;(2)扇形统计图中表示“较差”的圆心角度数为 67.5° ,并补全条形统计图;(3)若我校七年级有1200人,估算七年级得“优秀”的同学大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计的应用;应用意识.【分析】(1)根据等级为“一般”的有20人,占参加“计算测试”同学数的25%,求出本次调查中总人数即可;(2)根据“较差”的所占总数的百分比求出扇形统计图中表示“较差”的圆心角能度数即可,先算出“良好”的人数,然后补全统计图即可;(3)用七年级学生的总人数乘以得“优秀”的同学的百分比,即可估算出结果.【解答】解:(1)本次调查中,一共调查的学生人数为:20÷25%=80(人),故答案为:80.(2)表示“较差”的圆心角度数为:,良好的学生人数为:80﹣15﹣20﹣15﹣5=25(人),补全条形统计图,如图所示:故答案为:67.5°.(3)(人),答:七年级得“优秀”的同学大约有225人.【点评】本题主要考查了条形统计图和扇形统计图的信息关联,解题的关键是数形结合,根据扇形统计图和条形统计图得出有用的信息.20.(2023•碑林区校级模拟)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°,转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,转出数字是﹣3的概率是 ;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为负数的概率.【考点】列表法与树状图法;概率公式.【专题】概率及其应用;推理能力.【分析】(1)根据概率公式直接求解即可;(2)根据题意列出图表得出所有等情况数,找出两次分别转出的数字之积为正数的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵标有数字“﹣2”的扇形的圆心角度数之和为120°,∴转出的数字是2的概率是=,故答案为:;(2)∵数字“﹣1”的扇形的圆心角为120°,∴数字“2”的扇形的圆心角为120°,∴两个“3”总的扇形的圆心角为120°,根据题意画图如下:1﹣3211﹣32﹣3﹣39﹣622﹣64共有9种等可能的情况数,其中两次分别转出的数字之积为负数的有5种,则两次分别转出的数字之积为负数的概率是.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.21.(2022秋•未央区期末)某学校的九年级某班每月都举行诵读活动,每人诵读的文章内容以抽签形式决定,有一次甲同学从A《沁园春》、B《我爱这土地》、C《乡愁》三个签中随机抽取一个后不放回,乙同学再从剩余签中随机抽取一个.请用列表法或画树状图法求甲、乙两人有一人抽到B《我爱这土地》的概率.【考点】列表法与树状图法.【专题】概率及其应用;推理能力.【分析】画树状图展示所有6种等可能的结果数,再找出甲、乙两人至少有一人抽到B 的结果数,然后根据概率公式计算.【解答】解:树状图如下,∵共有6种等可能的情况,甲、乙两人有一人抽到B《我爱这土地》的情况有4种,∴甲、乙两人中有一人抽到B《我爱这土地》的概率.。

2023年中考数学真题分项汇编(全国通用):数据的收集整理和描述与分析(共60题)(原卷版)

2023年中考数学真题分项汇编(全国通用):数据的收集整理和描述与分析(共60题)(原卷版)

专题26数据的收集整理、描述与分析(60题)一、单选题1.(2023·四川南充·统考中考真题)某女鞋专卖店在一周内销售了某种女鞋60双,对这批鞋子尺码及销量进行统计,得到条形统计图(如图).根据图中信息,建议下次进货量最多的女鞋尺码是()A.22cm B.22.5cm C.23cm D.23.5cm2.(2023·湖南岳阳·统考中考真题)在5月份跳绳训练中,妍妍同学一周成绩记录如下:176,178,178,180,182,185,189(单位:次/分钟),这组数据的众数和中位数分别是()A.180,182B.178,182C.180,180D.178,1803.(2023·湖北随州·统考中考真题)某班在开展劳动教育课程调查中发现,第一小组6名同学每周做家务的天数依次为3,7,5,6,5,4(单位:天),则这组数据的众数和中位数分别为()A.5和5B.5和4C.5和6D.6和54.(2023·四川达州·统考中考真题)一组数据2,3,5,2,4,则这组数据的众数和中位数分别为()A.3和5B.2和5C.2和3D.3和25.(2023·江苏扬州·统考中考真题)空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图6.(2023·云南·统考中考真题)为了解某班学生2023年5月27日参加体育锻炼的情况,从该班学生中随机抽取5名同学进行调查.经统计,他们这天的体育锻炼时间(单位:分钟)分别为65,60,75,60,80.这组数据的众数为()A.65B.60C.75D.807.(2023·浙江金华·统考中考真题)上周双休日,某班8名同学课外阅读的时间如下(单位:时):1,4,2,4,3,3,4,5.这组数据的众数是()A.1时B.2时C.3时D.4时B.统计表中m的值为5岁的人数最多C.长寿数学家年龄在9293D.《数学家传略辞典》中收录的数学家年龄在15.(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.为了解学生想法,校方进行问卷调查(每人选一个地点)知选择雁荡山的有270人,那么选择楠溪江的有(A.90人B.180人A.100B.150C18.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是(A.小车的车流量与公车的车流量稳定;BC.小车与公车车流量在同一时间段达到最小值;19.(2023·浙江宁波·统考中考真题)甲、乙、丙、丁四名射击运动员进行射击测试,每人平均数x(单位:环)及方差2S(单位:环2)如下表所示:甲乙丙丁x98992S 1.20.4 1.80.4A.甲班视力值的平均数大于乙班视力值的平均数B.甲班视力值的中位数大于乙班视力值的中位数C.甲班视力值的极差小于乙班视力值的极差D.甲班视力值的方差小于乙班视力值的方差二、填空题23.(2023·湖南郴州·统考中考真题)为积极响应“助力旅发大会,唱响美丽郴州”的号召,某校在各年级开展合唱比赛,规定每支参赛队伍的最终成绩按歌曲内容占30%,演唱技巧占50%,精神面貌占20%考评.某26.(2023·四川乐山·统考中考真题)小张在“阳光大课间别为:160,163,160,157,160.这组数据的众数为27.(2023·湖北黄冈·统考中考真题)眼睛是心灵的窗户为保护学生视力,启航中学每学期给学生检查视力,下表是该校某班39名学生右眼视力的检查结果,这组视力数据中,中位数是视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7人数1263341228.(2023·湖南岳阳·统考中考真题)有两个女生小合唱队,各由为160cm x ,甲队身高方差2 1.2s 甲,乙队身高方差或“乙”)29.(2023·上海·统考中考真题)垃圾分类(Refuse 及对环境的影响,并根据不同处置方式的要求,分成属性不同的若干种类.某市试点区域的垃圾收集情况如扇形统计图所示,已知可回收垃圾共收集60可收集的干垃圾总量为________.30.(2023·浙江·统考中考真题)青田县“稻鱼共生”种养方式因稻鱼双收、互惠共生而受到农户青睐,现有一农户在5块面积相等的稻田里养殖田鱼,产量分别是(单位:kg):12,13,15,17,18,则这5块稻田的田鱼平均产量是__________kg.31.(2023·四川宜宾·统考中考真题)在“庆五四·展风采”的演讲比赛中,7位同学参加决赛,演讲成绩依次为:77,80,79,77,80,79,80.这组数据的中位数是___________.三、解答题32.(2023·四川泸州·统考中考真题)某校组织全校800名学生开展安全教育,为了解该校学生对安全知识的掌握程度,现随机抽取40名学生进行安全知识测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060x ,7080x ,6070x ,并制作了如图所示的x ,90100x ,8090不完整的频数分布直方图;②在8090x 这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,88,89.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?33.(2023·江苏苏州·统考中考真题)某初中学校为加强劳动教育,开设了劳动技能培训课程.为了解培训效果,学校对七年级320名学生在培训前和培训后各进行一次劳动技能检测,两次检测项目相同,评委依据同一标准进行现场评估,分成“合格”、“良好”、“优秀”3个等级,依次记为2分、6分、8分(比如,某同学检测等级为“优秀”,即得8分).学校随机抽取32名学生的2次检测等级作为样本,绘制成下面的条形统计图:(1)这32名学生在培训前得分的中位数对应等级应为________________;(填“合格”、“良好”或“优秀”)(2)求这32名学生培训后比培训前的平均分提高了多少?(3)利用样本估计该校七年级学生中,培训后检测等级为“良好”与“优秀”的学生人数之和是多少?34.(2023·山东滨州·统考中考真题)中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t 表示,单位h )状况设置了如下四个选项,分别为A :1t ,B :1 1.5t ,C :1.52t ,D :2t ,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上提供的信息解答下列问题:(1)此次调查,选项A 中的学生人数是多少?(2)在扇形统计图中,选项D 所对应的扇形圆心角的大小为多少?(3)如果该县有15000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?(4)请回答你每天完成书面作业的时间属于哪个选项,并对老师的书面作业布置提出合理化建议.x 这一组的成绩是:b.八年级学生上学期期末地理成绩在C.152015,15,15,15,15,16,16,16,18,18(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.平均数众数中位数七年级参赛学生成绩85.5m87八年级参赛学生成绩85.585n根据以上信息,回答下列问题:(1)填空:m ________,n ________;(2)七、八年级参赛学生成绩的方差分别记为21S、22S,请判断(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好.请阅读以上材料,解决下列问题(说明:以上仅展示部分报告内容).(1)求本次被抽样调查的员工人数;(2)该公司总的员工数量为900人,请你估计该公司意向前往保山市腾冲市的员工人数.40.(2023·浙江嘉兴·统考中考真题)小明的爸爸准备购买一辆新能源汽车.在爸爸的预算范围内,小明收集了A,B,C三款汽车在2022年9月至2023年3月期间的国内销售量和网友对车辆的外观造型、舒适程度、操控性能、售后服务等四项评分数据,统计如下:(1)数据分析:①求B款新能源汽车在2022年9月至2023年3月期间月销售量的中位数;②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A款新能原汽车四项评分数据的平均数.(2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.八年级10名学生活动成绩统计表成绩/分678910人数12a b2已知八年级10名学生活动成绩的中位数为请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是分;a______________,b ______________(2)(3)若认定活动成绩不低于9分为“优秀并说明理由.(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.根据统计图信息,解答下列问题:(1)本次调查的师生共有___________人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加44.(2023·湖北十堰·统考中考真题)市体育局对甲、乙两运动队的某体育项目进行测试,两队人数相等,测试后统计队员的成绩分别为:7分、8分、9分、10分(满分为不完整的统计图表:甲队成绩统计表成绩7分8分9分10分人数01m7请根据图表信息解答下列问题:(1)填空: __________ ,m _________;(2)补齐乙队成绩条形统计图;(3)①甲队成绩的中位数为_________,乙队成绩的中位数为②分别计算甲、乙两队成绩的平均数,并从中位数和平均数的角度分析哪个运动队的成绩较好.45.(2023·山西·统考中考真题)为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684(1)在摄影测试中,七位评委给小涵打出的分数如下:__________分,众数是__________分,平均数是__________(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.46.(2023·湖北武汉·统考中考真题)某校为了解学生参加家务劳动的情况,随机抽取了部分学生在某个休息日做家务的劳动时间t(单位:h)作为样本,将收集的数据整理后分为的数据分别为:0.5,0.4,0.4,0.4,0.3,绘制成如下不完整的统计图表.各组劳动时间的频数分布表组别时间/ht频数t 5A00.5t aB0.51C1 1.5t 20t 15D 1.52t 8E2各组劳动时间的扇形统计图请根据以上信息解答下列问题.(1)A组数据的众数是________;(2)本次调查的样本容量是________,B组所在扇形的圆心角的大小是________;(3)若该校有1200名学生,估计该校学生劳动时间超过1h的人数.47.(2023·湖南郴州·统考中考真题)某校计划组织学生外出开展研学活动,在选择研学活动地点时,随机抽取了部分学生进行调查,要求被调查的学生从A、B、C、D、E五个研学活动地点中选择自己最喜欢的一个.根据调查结果,编制了如下两幅不完整的统计图.(1)请把图1中缺失的数据,图形补充完整;(2)请计算图2中研学活动地点C所在扇形的圆心角的度数;(3)若该校共有1200名学生,请估计最喜欢去D地研学的学生人数.48.(2023·河北·统考中考真题)某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?49.(2023·浙江杭州·统考中考真题)某校为了了解家长和学生观看安全教育视频的情况,随机抽取本校部分学生作调查,把收集的数据按照A,B,C,D四类(A表示仅学生参与;B表示家长和学生一起参与;C 表示仅家长参与;D表示其他)进行统计,得到每一类的学生人数,并把统计结果绘制成如图所示的未完成的条形统计图和扇形统计图.(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图.(3)已知该校共有1000名学生,估计B类的学生人数.50.(2023·湖南·统考中考真题)2023年3月27日是第28个全国中小学生安全教育日,为提高学生安全防八、九年级抽取的学生竞赛成绩统计表年级平均数中位数众数八87a九8786根据以上信息,解答下列问题:a________,b(1)填空:(2)该校八、九年级共500人参加了此次竞赛活动,请你估计该校八、九年级参加此次竞赛活动成绩达到请根据相关信息,解答下列问题:(1)填空:a的值为________,图①中m的值为________;(2)求统计的这组学生年龄数据的平均数、众数和中位数.52.(2023·江西·统考中考真题)为了解中学生的视力情况,某区卫健部门决定随机抽取本区部分初、高中学生进行调查,并对他们的视力数据进行整理,得到如下统计表和统计图.整理描述初中学生视力情况统计表视力人数百分比0.6及以下84%0.7168%0.82814%0.93417%1.0m34%(1)m _______,n _______;(2)被调查的高中学生视力情况的样本容量为(3)分析处理:①小胡说:“初中学生的视力水平比高中学生的好.个能反映总体的统计量...说明理由:②约定:视力未达到1.0为视力不良.若该区有视力保护提出一条合理化建议.53.(2023·重庆·统考中考真题)为了解A、有关人员分别随机调查了A、B两款智能玩具飞机各进行整理、描述和分析(运行最长时间用下面给出了部分信息:A款智能玩具飞机10架一次充满电后运行最长时间是:60,64,67,69,71,71,72,72,72,82B款智能玩具飞机10架一次充满电后运行最长时间属于中等的数据是:70,71,72,72,73两款智能玩具飞机运行最长时间统计表,类别A B平均数7070根据以上信息,解答下列问题:a___________(1)上述图表中(2)根据以上数据,你认为哪款智能玩具飞机运行性能更好?请说明理由(写出一条理由即可)(3)若某玩具仓库有A款智能玩具飞机中等及以上的共有多少架?54.(2023·湖南怀化·统考中考真题)近年,了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视55.(2023·浙江台州·统考中考真题)为了改进几何教学,张老师选择班B 实施新的教学方法,在控制班A 采用原来的教学方法.在实验开始前,进行一次几何能力测试(前测,总分25分),经过一段时间的教学后,再用难度、题型、总分相同的试卷进行测试(后测)测数据并整理成表1和表2.表1:前测数据测试分数x05x 510x 1015x 1520x 控制班A28993实验班B251082表2:后测数据测试分数x05x 510x 1015x 1520x 控制班A 1416126……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?估计该校900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.浙江宁波·统考中考真题)宁波象山作为杭州亚运会分赛区,积极推进各项准备工作.某校开展了亚运知识的宣传教育活动,为了解这次活动的效果,从全校1200名学生中随机抽取部分学生进行知识测试(测试满分为100分,得分x均为不小于60的整数),并将测试成绩分为四个等第;合格(一般(7080x ),良好(8090x ),优秀(90100x ),制作了如下统计图(部分信息未给出)由图中给出的信息解答下列问题:(1)求测试成绩为一般的学生人数,并补全须数直方图.(2)求扇形统计图中“良好”所对应的扇形圆心角的度数.(3)这次测试成绩的中位数是什么等第?(4)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校测试成绩为良好和优秀的学生共有多少人?58.(2023·四川自贡·统考中考真题)某校为了解“世界读书日”主题活动开展情况,对本学期开学以来学生课外读书情况进行了随机抽样调查,所抽取的12名学生课外读书数量(单位:本)数据如下:2,4,5,4,3,5,3,4,1,3,2,4.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于3本的学生人数.59.(2023·江苏连云港·统考中考真题)为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择()(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到(4)根据上述调查情况,写一条你的看法.60.(2023·浙江金华·统考中考真题)为激发学生参与劳动的兴趣,某校开设了以要求每位学生在“折纸龙”“采艾叶”“做香囊学生的选课情况,绘制了两幅不完整的统计图.请根据图表信息回答下列问题:(2)本校共有1000名学生,若每间教室最多可安排30名学生,试估计开设“折纸龙”课程的教室至少需要几间.。

中考数学一轮复习精选训练:数据的收集,整理与描述

中考数学一轮复习精选训练:数据的收集,整理与描述

中考数学一轮复习精选训练:数据的收集,整理与描述一、选择题(本大题共12小题,每小题5分,满分60分)1. (2022广西河池模拟预测)下列调查方式合适的是( )A.为了了解电视机的使用寿命,采用全面调查的方式B.为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C.调查某中学七年级一班学生视力情况,采用抽样调查的方式D.为了了解巢湖水资源质量,采用抽样调查的方式2. (2022七下·石景山期末)下列说法中,正确的是( )A.一组数据的众数一定只有一个.B.一组数据的众数是6,则这组数据中出现次数最多的数据是6.C.一组数据的中位数一定是这组数据中的某一个数据.D.一组数据中的最大的数据增大时,这组数据的中位数也随之增大.3. (2020•上海)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A.条形图;B.扇形图;C.折线图;D.频数分布直方图4. (2022·衢州)如图是某品牌运动服的S号,M号,L号,XL号的销售情况统计图,则厂家应生产最多的型号为( )A.S号B.M号C.L号D.XL号5. (2022八上·莱西期中)某次射击比赛,甲队员的成绩如图,根据此统计图,下列结论中错误的是( )A.最高成绩是9.4环B.平均成绩是9环C.这组成绩的众数是9环D.这组成绩的方差是8.76. (2022九上·雁塔月考)盒子中有8个白色乒乓球和若干个黄色乒乓球,这些乒乓球除颜色外其它都完全相同,为求得盒中乒乓球的总数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则盒子中共有( )个乒乓球A.32个B.24个C.70个D.90个7. (2022七上·青州期中)某校有3000名学生在线观看了“天宫课堂”第二课,并参加了关于“你最喜爱的太空实验”的问卷调查,从中抽取500名学生的调查情况进行统计分析,以下说法错误的是( )A.3000名学生的问卷调查情况是总体B.500名学生的问卷调查情况是样本C.500名学生是样本容量D.每一名学生的问卷调查情况是个体8. (2022九上·定海月考)在一个不透明的口袋中,放置6个黄球、1个红球和n个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了黄球出现的频率,如图,则n的值是( )A.2B.3C.5D.89. (2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是( )A.①②③B.①③⑤C.②③④D.②④⑤10. (2022·安徽亳州)为了解某校八年级400名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是( )A.跳绳次数不少于100次的占80%B.大多数学生跳绳次数在140~160范围内C.跳绳次数最多的是160次D.由样本可以估计全年级400人中跳绳次数在60~80次的大约有48人11. (2020•自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计.以下是打乱了的调查统计顺序,请按正确顺序重新排序(只填番号): .①绘制扇形图;②收集最受学生欢迎菜品的数据;③利用扇形图分析出最受学生欢迎的菜品;④整理所收集的数据.12. (2022七下·浙江)随着智能手机的普及,“支付宝支付”和“微信支付”等手机支付方式倍受广大消费者的青睐,某商场对2021年7—12月中使用这两种支付方式的情况进行统计,得到如图所示的折线图,根据统计图中的信息,得出以下四个推断,其中不合理的是( )A.6个月中11月份使用手机支付的总次数最多B.6个月中使用“微信支付”的总次数比使用“支付宝支付”的总次数多C.6个月中使用“微信支付”的消费总额比使用“支付宝支付”的消费总额大D.9月份平均每天使用手机支付的次数为0.314万次二、填空题(本大共8小题,每小题5分,满分40分)13. (2022八上·丰顺月考)如图,阴影部分扇形的圆心角的度数是.14. (2022广西贺州市八步区教学研究室)全国第七次人口普查已经结束,请问在这次人口普查中采用的调查方式是____________.15. (2022广西贺州)为了更好地落实“双减政策要求,某中学从全校共900名学生中随机抽取100名学生的每天课外作业负担情况进行调查,此次调查的样本容量是_____.16. (2020•株洲)王老师对本班40个学生所穿校服尺码的数据统计如下:则该班学生所穿校服尺码为“L”的人数有个.17. (2022广西南宁)如图是某天游玩南宁青秀山的学生人数统计图.若大学生有360人,则初中生有_________人.18. (2022八上·乐清开学考)某校200名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示,结合表的信息,可得测试分数在79.5~89.5分数段的学生有名.19. (2022广西贺州)某老师对九年级1班55名学生的数学成绩进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有______名.20. (2022九上·永嘉月考)在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和2个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在0.2左右,则a的值约为.三、解答题(本大题共6道小题,每小题6-12分)21. (6分)(2022·安徽滁州)国家规定“中小学生每天在校体育活动时间不低于1h”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1hC组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1)本次调查的人数是____________人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为__________ ;(4)本次调查数据的中位数落在__________组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.22. (6分)(2022·安徽马鞍山)某学校组织了一次知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表.学校若干名学生成绩分布统计表请你根据统计图表解答下列问题:(1)此次抽样调查的样本容量是_________.(2)填空:a=_________,b=_________,c=_________.(3)请补全学生成绩分布直方图.(4)比赛按照分数由高到低共设置一、二、三等奖,如果有25%的参赛学生能获得一等奖,那么一等奖的分数线是多少?23. (6分)(2022广西贵港)2021年7月以来,教育部相继出台文件,实施义务教育“双减”政策,某校开展课后延时服务,从篮球、绘画、乐器、手工四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)补全条形统计图.(3)“绘画”所在扇形的圆心角是多少度?(4)若该校爱好篮球的学生共有800名,则该校学生总数大约有多少名?24. (8分)(2022·安徽蚌埠)党的十八大以来,文山州牢固树立科学发展、绿色发展理念,把生态文明建设贯穿于经济、政治、文化和社会建设各个方面,深入实施“七彩云南文山保护行动”和“森林文山”建设.截止2017年底,全州共投入林业生态项目资金35亿元,完成了四项林业生态项目(A表示新一轮退耕还林,B表示石漠化治理,C表示天保工程森林管护,D表示天然商品林停伐)的综合治理.并绘制出以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)此次林业生态项目共完成综合治理面积______万亩.并将条形统计图补充完整;(2)项目C占综合治理面积的百分比是多少?(3)求扇形统计图中,项目D所对应的圆心角的度数.25.(12分)(2021八上·渭滨期末)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;C:7棵;将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(并在图中画出)(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这260名学生共植树多少棵?26. (12分)(2022八下·怀仁期末)6月的第三个星期天是父亲节,某校组织了以“父爱如山”为主题的演讲比赛,根据初赛成绩,七、八年级各选出5名学生组成代表队,参加决赛.并根据他们的决赛成绩绘制了如下两幅统计图表:(满分为100分)(1)补全下表中的数据;(2)结合两队决赛成绩的平均数和中位数,评价两个队的决赛成绩;(3)哪个年级代表队的决赛成绩更稳定.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题复习二十五 数据的收集与整理
【课标要求】
【能力训练】 一、选择题
1.近年来国内生产总值年增长率的变化情况如图所示.从图上看,下列结论中不正确的是( ). A.1995~1999年,国内生产总值的年增长率逐年减小;
B.2000年国内生产总值的年增长率开始回升;
C.这7年中,每年的国内生产总值不断增长;
D.这7年中,每年的国内生产总值不断减小.
2.武汉市某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比.下图是将某年级66篇学生调查报告进行整理,•分成5组画出的频数分布直方图.已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的调查报告有(分别大

分数(分)
99.5
89.579.5
69.559.549.5
年增长率(%)
年代(年)
8.0
7.1
7.8
8.8
9.6
10.5
12.5
2000
1999199819971996199519942
4681012
于或等于80分为优秀,且分数为整数)( ).
A.18篇
B.24篇
C.25篇
D.27篇
3.星期天晚饭后,小红从家里出去散步,•右图
描述了她散步过程中离家的距离s(米)与散
步所用时间t(分)之间的函数关系.依据图
象,下面描述符合小红散步情景的是( ).
A.从家出发,到了一个公共阅报栏,看了一
会儿报,就回家了;
B.从家出发,到了一个公共阅报栏,看了一
会儿报后,继续向前走了一段,然后回家了.
C.从家出发,一直散步(没有停留),然后回家了;
D.从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回.
4.某校为了了解学生的身体素质情况,对初三(2)
班的50•名学生进行了立定跳远、铅球、100
米三个项目的测试,每个项目满分为10分.如
图,是将该班学生所得的三项成绩(成绩均为整
数)之和进行整理后,分成5组画出的频率分布
直方图,已知从左到右前4个小组的频率分别
为0.02,0.1,0.12,0.46.下列说法:①学生的
成绩≥27分的共有15人;②学生成绩的众数在
第四小组(22.5~26.5)内;③学生成绩的中位
数在第四小组(22.5~26.5)范围内.其中正确的说法是( ).
A.①②
B.②③
C.①③
D.①②③
二、填空题
1.现有A、B两个班级,每个班级各有45名学生参加一
次测验.•每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A•班的成绩如下表所示,B班的成绩如图所示.
A班
(1)由观察所得,_____班的标准差较大;
(2)
若两班合计共有60人及格,问
参加者最少获_______分才可以及格.
2.在相同条件下,对30辆同一型号的汽
车进行耗油1•升所走路程的试验,根频率
组距
分数
30.5
26.5
22.5
18.5
14.5
10.5
据测得的数据画出频率分布直方图如图.
则本次试验中,耗油1升所行走的路程在13.•05•~13.•55km•范围内的汽车共有_____辆.
3.2003年,在我国内地发生了
“非典型肺炎”疫情,•在党和
政府的正确领导下,目前疫情
已得到有效控制,下图是今年
5月1日至5月14日的内地新
增确诊病例数据走势图(数据
来源:卫生部每日疫情通报).
中国内地非典新增确诊病例
数据走势图
(截止到2003年5月14日上午10时)
从图中,可知道:
(1)5月6日新增确诊病例人数为________人;
(2)在5月9日至5月11日三天中,共新增确诊病例人数为______人;
(3)从图上可看出,5月上半月新增确诊病例总体呈_______趋势.
4.在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是
对我们的生存环境进行社会调查,并对学生的调查报告进行评比.初三.(3)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频率分布表,并画出了频率分布直方图(部分)如下:
根据以上信息回答下列问题:
(1)该班90分以上(含90分)的调查报告共有________篇;
(2)该班被评为优秀等级(80分及80分以上)的调查报告占_________%;
(3)补全频率分布直方图.
三、解答题
1.为了让学生了解环保知识,增强环保意识,•某中学举行了一次“环保知识竞赛”,共有900
名学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.•请你根据下面尚未完成并有局部污损的频率分布表和
频率分布直方图,解答下列问题:
频率分布表
(1)填充频率分布表中的空格;
(2)初全频率分布直方图;
(3)在该问题中的样本容量是多少?
答:_________________.
(4)全体参赛学生中,竞赛成绩落在哪组范围内的人数最多?(不要求说明理由).
答:________________.
(5)若成绩在90分以上(不含90分)为优秀,则该校成绩优秀的约为多少人?
答:________________.
2.新安商厦对销售较大的A、B、C三种品牌的洗衣粉进行了问卷调查,发放问卷270份(问
卷由单选和多选题组成).对收回的238份问卷进行了整理,•部分数据如下:
一、最近一次购买各品牌洗衣粉用户的比例(如图).
二、用户对各品牌洗衣粉满意情况汇总表:
根据上述信息回答下列问题:
(1)A品牌洗衣粉的主要竞争优势是什么?你是怎样看出来的?
(2)广告对用户选择品牌有影响吗?请简要说明理
由.
(3)你对厂家有何建议?
答案:
一、选择题:1-4:DDBD
二、填空题:1.A班,5;2.12;3.138,-49,下降;4.21,76,略
三、解答题:1.12,0.24,50,1,50,80。

.5-90.5,216
2.质量占40.69%,没有太大的影响,建议厂家以质量为准绳。

相关文档
最新文档