2012中考数学试题及答案分类汇编:三角形
2012年全国各地中考数学解析汇编16三角形

2012年全国各地中考数学解析汇编16 三角形16.1与三角形中的边角关系16.2命题与证明16.3全等三角形16.4等腰三角形(2012广东肇庆,9,3)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16 B.18C.20 D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.(2012广东肇庆,3,3)如图1,已知D、E在△ABC的边上,DE∥BC,∠B = 60°,∠AED = 40°,则∠A 的度数为AD EB C图1A.100°B.90°C.80°D.70°【解析】结合两直线平行,同位角相等及三角形内角和定理,把已知角和未知角联系起来,即可求出角的度数.【答案】C【点评】本题考查了三角形的内角和定理,及平行线的性质。
(2012山东省滨州,1,3分)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【解析】三角形的三个角依次为180°×=30°,180°×=45°,180°×=105°,所以这个三角形是钝角三角形.【答案】选D.【点评】本题考查三角形内角和定理:三角形的内角和是180°.再由三个角的大小之比可求出三个角的大小.( 2012年四川省巴中市,3,3)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【解析】根据中线的定义,”连接三角形一个顶点和它对边中点的线段叫做三角形的中线”,知三角形的中线把三角形分成等底同高的两个三角形,它们的面积相等.故选A.【答案】A【点评】本题考查三角形中线及三角形面积的有关概念,比较容易.(2012广东汕头,7,3分)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()21世纪教育网A BCD A . 5 B . 6 C . 11 D . 16分析: 设此三角形第三边的长为x ,根据三角形的三边关系求出x 的取值范围,找出符合条件的x 的值即可. 解答: 解:设此三角形第三边的长为x ,则10﹣4<x <10+4,即6<x <14,四个选项中只有11符合条件. 故选C . 点评: 本题考查的是三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.(2012年广西玉林市,8,3)如图在菱形ABCD 中,对角线AC 、DB 相交于点O ,且AC ≠BD ,则图中全等三角形有A .4对B .6对C .8对D .10对分析:根据菱形四边形等,对角线互相垂直且平分,结合全等三角形的判定即可得出答案. 解:图中全等三角形有:△ABO ≌△ADO 、△ABO ≌△CDO ,△ABO ≌△CBO ;△AOD ≌△COD ,△AOD ≌△COB ;△DOC ≌△BOC ;△ABD ≌△CBD ,△ABC ≌△ADC ,共8对.故选C .点评:此题考查了全等三角形的判定及菱形的性质,注意掌握全等三角形的几个判定定理,在查找时要有序的进行,否则很容易出错.10. ( 2012年四川省巴中市,10,3)如图3,已知AD 是△ABC 的 BC 边上的高,下列能使△ABD ≌△ACD 的条件是( ) A.AB=AC B.∠BAC=900 C.BD=AC D.∠B=450【解析】由条件A,与直角三角形全等的判定“斜边、直角边”可判定△ABD ≌△ACD ,其它条件均不能使 △ABD ≌△ACD ,故选A 【答案】A【点评】本题考查直角三角形全等的判定“斜边、直角边”应用.(2012四川泸州,11,3分)若下列各组值代表线段的长度,则不能构成三角形的是( ) A.3,8,4 B.4,9,6 C.15,20,8 D.9,15,8解析:根据三角形两边之和大于第三边或两边边之差小于第三边进行判断.由于3+4<8,所以不能构成三角形;因为4+6>9,所以三线段能构成三角形;因为8+15>20,所以三线段能构成三角形;因为9+8>15,所以三线段能构成三角形.故选A. 答案:A点评:判断三条线段能否构成三角形的边,可以从三条线段中选较小两边之和与剩下一边比较,和大于这边,就能够组成三角形的边.(2012黑龙江省绥化市,4,3分)等腰三角形的两边长是3和5,它的周长是 .【解析】 解:题中给出了等腰三角形的两边长,因没给出具体谁是底长,故需分类讨论:①当3是底边长时,周长为5+5+3=13;②当5是底边长时,周长为3+3+5=11. 【答案】 11或13.【点评】 本题考查了等腰三角形中的常见分类讨论思想,已知两边求第三边长或周长面积等,解决本题的关键是注意要分类讨论,但注意有时其中一种情况不能构造出三角形,考生稍不留神也会写出这种不合题意的答案.难度中等.(2012深圳市 6 ,3分)如图1所示,一个60o角的三角形纸片,剪去这个60o角后,得到一个四边形,则∠+∠12 的度数为( )A. 120oB. 180oC. 240oD. 300o【解析】:考查多边形的内角和,根据公式()n -1802o 来算即可。
三角形2012年贵州中考数学题(带答案)

三角形2012年贵州中考数学题(带答案)贵州各市2012年中考数学试题分类解析汇编专题9:三角形一、选择题1.(2012贵州贵阳3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是【】A.∠BCA=∠FB.∠B=∠EC.BC∥EFD.∠A=∠EDF【答案】B。
【考点】全等三角形的判定。
190187。
【分析】应用全等三角形的判定方法逐一作出判断:A、由AB=DE,BC=EF和∠BCA=∠F构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;B、由AB=DE,BC=EF和∠B=∠E构成SAS,符合全等的条件,能推出△ABC≌△DEF,故本选项正确;C、∵BC∥EF,∴∠F=∠BCA。
由AB=DE,BC=EF和∠F=∠BCA构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误;D、由AB=DE,BC=EF和∠A=∠EDF构成SSA,不符合全等的条件,不能推出△ABC≌△DEF,故本选项错误。
故选B。
2.(2012贵州贵阳3分)如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是【】A.3B.2C.D.1【答案】B。
【考点】线段垂直平分线的性质,含30度角的直角三角形的性质,等腰三角形的判定。
【分析】连接AF,∵DF是AB的垂直平分线,∴AF=BF。
∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°。
∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°。
∵DE=1,∴AE=2DE=2。
∵∠FAE=∠AFD=30°,∴EF=AE=2。
故选B。
3.(2012贵州安顺3分)某一时刻,身髙1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得某旗杆的影长是5m,则该旗杆的高度是【】A.1.25mB.10mC.20mD.8m【答案】C。
广东省2012年中考数学试题分类解析汇编 专题9 三角形

某某2012年中考数学试题分类解析汇编 专题9:三角形 一、选择题1. (2012某某某某3分)在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是【 】A .B .C .D .【答案】A 。
【考点】勾股定理,点到直线的距离,三角形的面积。
【分析】根据题意画出相应的图形,如图所示。
在Rt△ABC 中,AC=9,BC=12,根据勾股定理得:2222AB=AC +BC 9+1215==。
过C 作CD⊥AB,交AB 于点D ,则由S △ABC =12AC•BC=12AB•CD,得AC BC 91236CD AB 155⋅⨯===。
∴点C 到AB 的距离是365。
故选A 。
2. (2012某某某某3分)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为300,同一时 刻,一根长为l 米、垂直于地面放置的标杆在地面上的影长为2米,则树的高度为【 】A.(63)+米B.12米C.(423)+米 D .10米【答案】A 。
【考点】解直角三角形的应用(坡度坡角问题),锐角三角函数定义,特殊角的三角函数值,相似三角形的判定和性质。
【分析】延长AC交BF延长线于E点,则∠CFE=30°。
作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF=4cos30°=23,在Rt△CED中,CE=2,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,∴DE=4。
∴BD=BF+EF+ED=12+23。
∵△DCE∽△DAB,且CE:DE=1:2,∴在Rt△ABD中,AB=12BD=()112+236+32=。
故选A。
3. (2012某某某某3分)如图,已知:∠MON=30o,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为【】A.6 B.12 C.32 D.64【答案】C。
2012年浙江省三角形中考数学试题专题解析

2012年浙江省三角形中考数学试题专题解析浙江11市2012年中考数学试题分类解析汇编专题9:三角形一、选择题1.(2012浙江杭州3分)如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则【】A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°【答案】C。
【考点】平行线的性质,点到直线的距离,锐角三角形函数定义。
【分析】由已知,根据锐角三角形函数定义对各选项作出判断:A、由于在Rt△ABO中∠AOB是直角,所以B到AO 的距离是指BO的长。
∵AB∥OC,∴∠BAO=∠AOC=36°。
在Rt△BOA中,∵∠AOB =90°,AB=1,∴BO=ABsin36°=sin36°。
故本选项错误。
B、由A可知,选项错误。
C、如图,过A作AD⊥OC于D,则AD的长是点A到OC的距离。
在Rt△BOA中,∵∠BAO=36°,∠AOB=90°,∴∠ABO=54°。
∴AO=AB• sin54°= sin54°。
在Rt△ADO中,AD=AO•sin36°=AB•sin54°•sin36°=sin54°•sin36°。
故本选项正确。
D、由C可知,选项错误。
故选C。
3.(2012浙江湖州3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是【】A.20B.10C.5D.【答案】C。
【考点】直角三角形斜边上的中线性质。
【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长:∵在Rt△ABC中,∠ACB=90°,AB=10,CD是AB边上的中线,∴CD= AB=5。
江苏省泰州市2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年江苏泰州中考数学试题分类解析汇编(12专题)专题9:三角形一、选择题1.(江苏省泰州市2002年4分)Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数是【】(精确到1°)A、30°B、37°C、38°D、39°【答案】B。
【考点】三角函数定义,计算器的应用。
【分析】根据题中所给的条件,在直角三角形中应用正切函数解题:∵Rt△ABC中,∠C=90°,,∴tan A= a:b=3:4=0.75。
运用计算器得,∠A≈37°。
故选B。
2.(江苏省泰州市2003年4分)如图,某防洪大坝的横断面是梯形,斜坡AB的坡度i=1∶2.5,则斜坡AB的坡角 为【】(精确到1°)A.24° B.22° C.68° D.66°【答案】B。
【考点】解直角三角形的应用(坡度坡角问题),正切函数定义,计算器的应用。
【分析】算出坡角的正切值,用计算器即可求得坡角:如图,∵坡度tanα=铅直高度AC:水平距离BC=1:2.5=0.4,∴α=21.8°≈22°。
故选B。
3.(江苏省泰州市2003年4分)在Rt△ABC的直角边AC边上有一点P(点P与点A、C不重合),过点P作直线截△ABC,使截得的三角形与△ABC相似,满足条件的直线共有【】A.1条 B.2条 C.3条 D.3条或4条【答案】D。
【考点】相似三角形的判定。
【分析】过点P作直线与另一边相交,使所得的三角形与原三角形已经有一个公共角,只要再作一个等于△ABC 的另一个角即可:(1)若AC <BC (如图1),过点P 作PD 1⊥AB,或作PD 2⊥AC,或作PD 3∥AB,或作∠PD 4C=∠A,这样截得的三角形与△ABC 相似。
即满足条件的直线共有4条。
(2)若AC >BC 且PC BC >(如图2),同(1)有PD 1,PD 2,PD 3。
中考数学模拟试题分类汇编三角形全等

三角形全等一、选择题 1、(2012年江西南昌十五校联考)如图,在下列条件中,不能..证明△ABD ≌△ACD 的是条件( ).A. ∠B =∠C ,BD =DCB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD. BD =DC , AB =AC 答案:A2、 3、二、填空题1、(2012年,辽宁省营口市)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为 。
答案: 42(2012荆州中考模拟).如图, (甲)是四边形纸片ABCD ,其中∠B =120︒,∠D =50︒。
若将其右下角向内折出 PCR ,恰使CP∥AB ,RC∥AD ,如图(乙)所示,则∠C = °.答案:95︒三、解答题1、(2012年福建福州质量检查)(每小题7分,共14分)(1) 如图,在平行四边形ABCD 中,E 为BC 中点,AE 和延长线与DC 的延长线相交于点F .证明:△AB E ≌△FCE .ABCDEF第17(1)题图第17(2)题图AC DR图(乙) AD图(甲)(2) 如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角α为45°,看这栋高楼底部的俯角β为60°,热气球与高楼的水平距离AD =80m ,这栋高楼有多高(3≈1.732,结果保留小数点后一位)?答案:(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,∴AB ∥CD , ······························································································· 2分 ∴∠F =∠F AB . ·························································································· 4分 ∵E 是BC 的中点, ∴BE =CE , ······························································ 5分 又∵ ∠AEB =∠FEC , ·············································································· 6分 ∴ △ABE ≌△FCE . ·················································································· 7分 (2)解:如图,α=45°,β=60°,AD =80.在Rt △ADB 中, ∵tan α=BDAD,∴BD =AD ·tan α=80×tan45°=80.………2分 在Rt △ADC 中, ∵tan β=CD AD,∴CD =AD ·tan β=80×tan60°=803.……5分∴BC =BD +CD =80+803≈218.6.答:这栋楼高约为218.6m . ………………7分2、(2012昆山一模)已知:如图所示,在△ABC 中,∠ABC =45°,CD ⊥AB 于点D ,BE 平分∠ABC ,且BE ⊥AC 于点E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G.(1)求证:BF=AC(2)猜想CE与BG的数量关系,并证明你的结论.答案:3、(2012兴仁中学一模)(10分)如图,在□ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.D CE【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .4.(2012温州市泰顺九校模拟)(本题6分) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分DCEB DC AE F B D CAEF∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分5. (2012年江苏海安县质量与反馈)如图,ABC △和ECD △都是等腰直角三角形,90ACB DCE ==︒∠∠,D 为AB 边上一点. (1)求证:ACE BCD △≌△;(2)设AC 和DE 交于点M ,若AD =6,BD =8,求ED 与AM 的长.答案:(1)证明全等;(2) DE=10; AM=2724. 6、(2012温州市泰顺九校模拟) 如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明. 答案:解法一:添加条件:AE =AF , ……2分证明:在△AED 与△AFD 中,∵AE =AF ,……1分 ∠EAD =∠FAD ,……1分 AD =AD ,……1分∴△AED ≌△AFD (SAS ). ……1分解法二:添加条件:∠EDA =∠FDA ,……2分证明:在△AED 与△AFD 中, ∵∠EAD =∠FAD ,……1分AD =AD ,……1分 ∠EDA =∠FDA ,……1分∴△AED ≌△AFD (ASA ). ……1分 解法三:添加条件:∠DEA =∠DFA 略……6分7(河南省信阳市二中)(9分)已知:如图,四边形ABCD 是平行四边形,延长BC 到E ,使AE =AB ,连接AC 、DE .(1)写出图中三对你认为全等的三角形(不再添加其他字母和辅助线); (2)选择你在(1)中写出的任意一对全等三角形进行证明. A D B CE M第1题图 B D CAEF、答案:( 1)①△ABC ≌△CDA ;②△ACE ≌△DEC ;③△CAD ≌△EDA ;④△ABC ≌△EAD .……………………………………………………………………3分 (2)证明:△ABC ≌△CDA . ………………………………………………………4分 ∵四边形ABCD 是平行四边形,∴AD =BC ,∠DAC =∠BCA .…………………………………………………………6分 又∵AC =CA ,∴△ABC ≌△CDA (SAS ).…………………………………………………………9分 8、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB ,C EDB∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.9、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .10、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD .∴AB =AF .11、(2012双柏县学业水平模拟考试)如图,四边形ABCD 的对角线AC 与BD 相交于O 点,∠1=∠2,∠3=∠4.求证:OB =OD .答案 :证明:在△ABC 和≌△ADC 中∵ ∠1=∠2 AC =AC ∠3=∠4 ∴ △ABC ≌△ADC ∴ AB =AD∴ △ABD 是等腰三角形,且∠1=∠2 ∴ OB =OD12、(2012年4月韶山市初三质量检测)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证:△ P O D ≌ △Q O B ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形P B Q D 是菱形.【答案】(1)证明: 四边形ABCD 是矩形, ∴AD ∥BC , ∴∠PDO=∠QBO ,又OB=OD ,∠POD=∠QOB , ∴△POD ≌△QOB (2)解法一: PD=8-t∵四边形ABCD 是矩形,∴∠A=90°,∵AD=8cm ,AB=6cm ,∴BD=10cm ,∴OD=5cm. 当四边形PBQD 是菱形时, PQ ⊥BD ,∴∠POD=∠A ,又∠ODP=∠ADB , ∴△ODP ∽△ADB , DCB A O 12 3 4∴OD AD PD BD =,即58810t =-,解得74t =,即运动时间为74秒时,四边形PBQD 是菱形. 解法二:PD=8-t当四边形PBQD 是菱形时,PB=PD=(8-t)cm ,∵四边形ABCD 是矩形,∴∠A=90°,在RT △ABP 中,AB=6cm , ∴222AP AB BP +=, ∴2226(8)t t +=-, 解得74t =,即运动时间为74秒时,四边形PBQD 是菱形.13、(2012年北京市顺义区一诊考试)已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .证明:∵AB=AC ,∴B C ∠=∠.在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE . ∴ AD=AE .∴∠ADE =∠AED .14、(2012年北京市延庆县一诊考试)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB =AF .证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD . ∴∠F =∠2, ∠1=∠D . ∵E 为AD 中点, ∴AE =ED .在△AEF 和△DEC 中 ECBA EBCDAF21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . ∴AF =CD . ∴AB =AF .15、(杭州市2012年中考数学模拟)如图,已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF .求证: BE =CF . 答案:证明:∵AC ∥DF ∴∠ACB =∠F在△ABC 与△DEF 中ACB F A DAB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌△DEF ∴ BC = EF∴ BC –EC = EF –EC 即BE = CF 16.(杭州市2012年中考数学模拟)如图,在边长为6的正方形ABCD 中,点P 在AB 上从A 向B 运动,连接DP 交AC 于点,Q 连接.BQ⑴ 试证明:无论点P 运动到AB 上何处时,都有;ADQ ABQ ∆≅∆⑵ 当ADQ ∆的面积与正方形ABCD 面积之比为1:6时,求BQ 的长度,并直接写出....此时点P 在AB 上的位置. C D Q答案:(1) 证明:在正方形ABCD 中,AD AB DAQ BAQ AQ AQ =⎧⎪∠=∠⎨⎪=⎩∴ADQ ABQ ∆≅ (2) 解:∵ADQ ∆的面积与正方形ABCD 面积之比为1:6且正方形面积为36∴ADQ ∆的面积为6过点Q 作QE AD ⊥于,E QF AB ⊥于,F ∵ADQ ABQ ∆≅ ∴QE QF = ∴162AD QE ⋅= ∴2QE QF ==∵90BAD QEA QFA ∠=∠=∠=∴四边形AEQF 为矩形 ∴2AF QE ==∴624BF =-=在Rt QBF ∆中,BQ ===此时P 在AB 的中点位置(或者回答此时3AP =)17. (杭州市2012年中考数学模拟)如图:在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A 和点C ,与抛物线2y ax ax b =++交于点B ,其中点A (0,2),点B (– 3,1),抛物线与y 轴交点D (0,– 2).(1) 求抛物线的解析式; (2) 求点C 的坐标;(3) 在抛物线上是否还存在点P (点B 除外),使△ACP 仍然是以AC 为直角边的等腰直角三角形?若存在,求所有点P 的坐标;若不存在,请说明理由.答案:解:(1) 将(–3,1),(0,–2)代入得:1193222a a b a b b ⎧=-+=⎧⎪⎪⎨⎨-=⎪⎪⎩=-⎩解得 ABCD PQEF∴ 抛物线的解析式为:211222y x x =+- (2) 过B 作BE ⊥x 轴于E ,则E (–3,0),易证△BEC ≌△COA∴ BE = AO = 2 CO = 1 ∴ C (–1,0)(3) 延长BC 到P ,使CP = BC ,连结AP ,则△ACP 为以AC 为直角边的等腰直角三角形 过P 作PF ⊥x 轴于F ,易证△BEC ≌△DFC ∴ CF = CE = 2 PF= BE = 1 ∴ P (1,– 1)将(1,– 1)代入抛物线的解析式满足 若90CAP ∠=︒,AC = AP 则四边形ABCP 为平行四边形过P 作PG ⊥y 轴于G ,易证△PGA ≌△CEB ∴ PG = 2 AG = 1 ∴ P (2,1)在抛物线上∴ 存在P (1,– 1),(2,1)满足条件18.(海南省2012年中考数学科模拟)(本题满分11分)如图,在正方形ABCD 中,E 是AB 边上任意一点,BG ⊥CE ,垂足为点O,交AC 于点F ,交AD 于点G 。
【中考12年】安徽省2001-2012年中考数学试题分类解析 专题9 三角形

2001-2012年安徽省中考数学试题分类解析汇编专题9:三角形一、选择题1. (2001安徽省4分)如图,已知AC=BD,要使△ABC≌△DCB,只需添加的一个条件是▲ 。
【答案】AB=CD(答案不独一)。
【考点】开放型,全等三角形的判定。
【分析】要使△ABC≌△DCB,根据三角形全等的判定方法添加合适的条件即可:∵AC=BD,BC=BC,∴可添加∠ACB=∠DBC或AB=CD分别利用SAS,SSS判定△ABC≌△DCB。
2. (2002安徽省4分)在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC 的度数是▲ .【答案】15°。
【考点】线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理。
【分析】∵AB=AC,∠A=50°,∴∠ABC=∠C=(180°-50°)÷2=65°。
∵DE为AB的中垂线。
∴AD=BD。
∴∠ABD=∠A=50°。
∴∠CBD=∠ABC-∠ABD=15°。
3. (2005安徽省大纲4分)如图,在△ABC中,∠A=30°,tanB=32,AC=23,则AB=【】A、4B、5C、6D、7【答案】B。
【考点】解直角三角形,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,作CD⊥AB于点D,由题意知,CD=ACsinA=ACsin30°=3,∴AD=ACcos30°=3。
∵tanB=CD3BD2,∴BD=2。
∴AB=AD+BD=2+3=5。
故选B。
4. (2006安徽省大纲4分)在Rt△ABC中,∠C=90°,若AB=5,BC=3,则cosB=【】A.45B.35C.43D.43【答案】B。
【考点】锐角三角函数的定义。
【分析】根据余弦的定义知,BC3cosBAB5==。
故选B。
5. (2007安徽省4分)如图,已知AB∥CD,AD与BC相交于点P,AB=4,CD=7,AD=10,则AP=【】A.4011B.407C.7011D.704【答案】A。
三角形2012年四川中考数学题(含答案和解释)

三角形2012年四川中考数学题(含答案和解释)四川各市2012年中考数学试题分类解析汇编专题9:三角形选择题1. (2012四川乐山3分)如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为【】A.B.C.D.1【答案】C。
【考点】锐角三角函数定义,特殊角的三角函数值。
【分析】∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA= 。
∴∠A=30°。
∴∠B=60°。
∴sinB= 。
故选C。
2. (2012四川乐山3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C到线段EF的最大距离为.其中正确结论的个数是【】A.1个B.2个C.3个D.4个【答案】B。
【考点】全等三角形的判定和性质,等腰直角三角形,三角形中位线定理,勾股定理。
【分析】①连接CD(如图1)。
∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB。
∵AE=CF,∴△ADE≌△CDF(SAS)。
∴ED=DF,∠CDF=∠EDA。
∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°。
∴△DFE是等腰直角三角形。
故此结论正确。
②当E、F分别为AC、BC中点时,∵由三角形中位线定理,DE平行且等于BC。
∴四边形CEDF是平行四边形。
又∵E、F分别为AC、BC中点,AC=BC,∴四边形CEDF 是菱形。
又∵∠C=90°,∴四边形CEDF是正方形。
故此结论错误。
③如图2,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,由②,知四边形CMDN是正方形,∴DM=DN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012中考数学试题及答案分类汇编三角形2.选择题1. (天津3分)sin45°的值等于(A) 12(B) 22(C) 32(D) 1【答案】B。
【考点】特殊角三角函数。
【分析】利用特殊角三角函数的定义,直接得出结果。
2.(河北省3分)如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB、AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为A、B、2 C、3 D、4【答案】B。
【考点】翻折变换(折叠问题),相似三角形的判定和性质。
【分析】∵△ABC沿DE折叠,使点A落在点A′处,∴∠EDA=∠EDA′=90°,AE=A′E,∴△ACB∽△AED。
∴ED AEBC AC=。
又∵A′为CE的中点,∴AE=A′E=A′C。
∴ED163=。
∴ED=2。
故选B。
3.(山西省2分)如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为A.33cm B.4cm C.23cm D.25cm【答案】D。
【考点】等腰三角形的性质,三角形中位线定理,正方形的性质,勾股定理。
【分析】根据三角形的中位线定理可得出BC=4,由AB=AC,可证明BG=CF=1,由勾股定理可求出CE=5,即可得出AC=25。
故选D。
4.(内蒙古呼和浩特3分)如果等腰三角形两边长是6cm和3cm,那么它的周长是A、9cmB、12cmC、15cm或12cmD、15cm【答案】D。
【考点】等腰三角形的性质,三角形三边关系。
【分析】求等腰三角形的周长,即要确定等腰三角形的腰与底的长,根据三角形三边关系知当6为腰,3为底时,6﹣3<6<6+3,能构成等腰三角形,周长为6+6+3=15;当3为腰,6为底时,3+3=6,不能构成三角形。
故选D。
5.(内蒙古呼伦贝尔3分)如图,△ACB≌△A1CB1, ∠BCB1=30°,则∠ACA1的度数为A.20° B. 30° C. 35° D. 40°【答案】B。
【考点】全等三角形的性质。
【分析】根据全等三角形对应角相等的性质,得∠ACB=∠A1CB1,所以∠ACB-∠BCA1=∠A1CB1-∠BCA1,即∠ACA1=∠BCB1=35°。
故选B。
3.填空题1. (山西省3分)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是▲。
【答案】132【考点】平行的性质,相似三角形的判定和性质,勾股定理。
【分析】过点E作EG⊥AB,垂足为点G,AB与DC交于点F,则DA∥GE∥BC。
∵点E 是CD 的中点,AB=12,∴根据平行的性质,得AG=6。
∵DA∥BC,∴△ADF∽△BCF。
∴DA AFCB BF =。
∵AB=12,即BF=12-AF 。
∴DA AF CB 12AF =-。
又∵AD=5,BC=10,∴5AF 1012AF =-,解得,AF=4,FB=8。
FG=6-4=2。
∵GE∥BC,∴△FGE∽△FBC。
∴FG GE FB BC =,即2GE 810=,解得,GE=52。
∴在Rt△AGE 中,由勾股定理,得AE=2222513GE +AG 622⎛⎫=+= ⎪⎝⎭。
2.(内蒙古巴彦淖尔、赤峰3分)如图,AD 是△ABC的中线,∠ADC=60°,BC=6,把△ABC 沿直线AD 折叠,点C 落在C ′处,连接BC ′,那么BC ′的长为 ▲ .【答案】3。
【考点】翻折变换(折叠问题),轴对称的性质,平角定义,等边三角形的判定与性质。
【分析】根据题意:BC=6,D 为BC 的中点;故BD=DC=3。
由轴对称的性质可得:∠ADC=∠ADC′=60°,∴DC=DC′=2,∠BDC′=60°。
故△BDC′为等边三角形,故BC′=3。
3.(内蒙古巴彦淖尔、赤峰3分)如图,EF是△ABC的中位线,将△AEF 沿AB方向平移到△EBD的位置,点D在BC上,已知△AEF的面积为5,则图中阴影部分的面积为▲.【答案】10。
【考点】三角形中位线定理,相似三角形的判定和性质,平移的性质。
【分析】∵EF是△ABC的中位线,∴EF∥BC,∴△AEF∽△ABC。
∴EF:BC=1:2,∴S△AEF:S△ABC=1:4。
∵△AEF的面积为5,∴S△ABC=20。
∵将△AEF沿AB方向平移到△EBD的位置,∴S△EBD=5。
∴图中阴影部分的面积为:S△ABC﹣S△EBD﹣S△AEF=20﹣5﹣5=10。
DF EAB C4.(内蒙古包头3分)如图,△ABD 与△AEC 都是等边三角形,AB≠AC,下列结论中:①BE=DC;②∠BOD=60°;③△BOD∽△COE.正确的序号是▲ .【答案】①②。
【考点】等边三角形的性质,全等三角形的判定和性质,三角形的内角和定理,相似三角形的判定。
【分析】∵△ABD、△AEC 都是等边三角形,∴AD=AB,AE=AC ,∠DAB=∠CAE=60°。
∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°。
∴∠DAC=∠BAE。
∴△DAC≌△BAE(SAS )。
∴BE=DC。
【①正确】∴∠ADC=∠ABE。
∵∠BOD+∠BDO+∠DBO=180°,∴∠BOD=180°﹣∠BDO﹣∠DBO=60°。
【②正确】∵由△DAC≌△BAE 和AB≠AC,得∠ADC≠∠AEB,∴∠ODB≠∠OEC。
A DB CE O又∵∠ODB<60°,∠OCE>60°,∴∠ODB≠∠OCE。
而∠DOB=∠EOC,∴△BOD 和△COE 不相似。
【③错误】5.(内蒙古呼和浩特3分)如图所示,在梯形ABCD中,AD∥BC,CE 是∠BCD 的平分线,且CE⊥AB,E为垂足,BE=2AE ,若四边形AECD 的面积为1,则梯形ABCD 的面积为 ▲ . 【答案】157。
【考点】角平分线和垂直的定义,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,三角形的面积,梯形的面积,一元一次方程的应用。
【分析】延长BA 与CD ,交于F ,∵CE 是∠BCD 的平分线,∴∠BCE=∠FCE。
∵CE⊥AB,∴∠BEC=∠FEC=90°。
∵EC=EC,∴△BCE≌△FCE(ASA )。
∴BE=EF。
∵BE=2AE,∴BF=4AF。
又∵AD∥BC,∴△FAD∽△FBC。
∴2FAD FBC S AF 1S BF 16∆∆⎛⎫= ⎪⎝⎭=。
设S △FAD =x ,S △FBC =16x ,S △BCE =S △FEC =8x ,∴S 四边形AECD =7x 。
∵四边形AECD 的面积为1,∴7x=1,∴x=17。
∴梯形ABCD 的面积为:S △BCE +S 四边形AECD =15x=157。
6.(内蒙古乌兰察布4分)如图,在Rt△ABC 中,∠ABC = 900,AB = 8cm , BC = 6cm , 分别以A,C 为圆心,以AC 2的长为半径作圆, 将 Rt△ABC 截去两个扇形,则剩余(阴影)部分的面积为 ▲ cm 2(结果保留π) 【答案】25244π-。
【考点】直角三角形两锐角的关系,勾股定理,扇形的面积。
【分析】由题意可知,阴影部分的面积为三角形面积减去两个扇形面积。
三角形面积为168242=⨯⨯。
由勾股定理,得AC=10,圆半径为5。
∵在Rt△ABC 中,∠ABC = 900,∴∠A+∠C =900。
∴两个扇形的面积的和为半径5,圆心角900的扇形的面积,即四分之一圆的面积254π。
∴阴影部分的面积为25244π- cm 2。
7.(内蒙古乌兰察布4分)某厂家新开发的一种电动车如图,它的大灯A 射出的光线AB,AC 与地面MN 所夹的锐角分别为 80和 100,大灯A 与地面离地面的距离为lm 则该车大灯照亮地面的宽度BC 是 ▲ m .(不考虑其它因素)【答案】75。
【考点】解直角三角形的应用,锐角三角函数定义。
【分析】过点A 作AD⊥BC,垂足为点D 。
由锐角三角函数定义,得BC =BD -CD =00AD AD 2877AD 71tan8tan10555===⎛⎫--⨯ ⎪⎝⎭。
4.解答题1.(北京5分)如图,点A 、B 、C 、D 在同一条直线上,BE∥DF,∠A=∠F,AB=FD .求证:AE=FC .【答案】证明:∵BE∥DF,∴∠ABE=∠D。
在△ABC 和△FDC 中ABE D AB FD A F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC≌△FDC(ASA )。
∴AE=FC.【考点】平行线的性质,全等三角形的判定和性质。
【分析】利用平行线同位角相等的性质可得∠ABE=∠D,由已知用ASA 判定△ABC≌△FDC,再由全等三角形对应边相等的性质证得AE=FC 。
2.(北京5分)如图,在△ABC,AB=AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF=12∠CAB. (1)求证:直线BF 是⊙O 的切线;(2)若AB=5,sin∠CBF=55,求BC 和BF的长.【答案】解:(1)证明:连接AE 。
∵AB 是⊙O 的直径,∴∠AEB=90°。
∴∠1+∠2=90°。
∵AB=AC,∴∠1=12∠CAB。
∵∠CBF=12∠CAB,∴∠1=∠CBF。
∴∠CBF+∠2=90°。
即∠ABF=90°。
∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线。
(2)过点C 作CG⊥AB 于点G 。
∵sin∠CBF=55,∠1=∠CBF,∴sin∠1=55。
∵∠AEB=90°,AB=5,∴BE=AB•sin∠1=5。
∵A B=AC ,∠AEB=90°,∴BC=2BE=25。
在Rt△ABE 中,由勾股定理得AE=25,∴sin∠2=255,cos∠2=55。
在Rt△CBG 中,可求得GC=4,GB=2,∴AG=3。
∵GC∥BF,∴△AGC∽△BFA。
∴GC AG BF AB =。
∴GC AB 20BF AG 3⋅==。
【考点】切线的判定和性质,勾股定理,圆周角定理,相似三角形的判定和性质,解直角三角形。
【分析】(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABE=90°。
(2)利用已知条件证得∴△AGC∽△BFA,利用对应边的比求得线段的长即可。
3.(北京5分)阅读下面材料:小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD 的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC的三条中线分别为AD,BE,CF.(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三.角形的面积等于34【答案】解:△BDE的面积等于1。