ANSYS选择正确的单元类型

合集下载

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则

ANSYS中单元类型介绍和单元的选择原则ANSYS中单元类型的选择初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)、beam3是2D的梁单元,只能解决2维的问题。

2)、beam4是3D的梁单元,可以解决3维的空间梁问题。

3)、beam188是3D梁单元,可以根据需要自定义梁的截面形状。

(常规是6个自由度,比如是用于桁架等框架结构,如鸟巢,飞机场的架构)2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

ansys结构单元类型

ansys结构单元类型

ANSYS结构单元类型主要是用来模拟各种材料和结构的动力学行为,以下是一些常见
的ANSYS结构单元类型:
1.杆单元:如LINK1,主要用于模拟桁架结构和弹簧。

2.梁单元:如BEAM3和BEAM4,主要用于模拟框架结构和薄壁管件。

3.管单元:如PIPE16和PIPE17,主要用于模拟管道和T形管。

4.壳单元:如SHELL181,用于模拟壳结构和接触行为。

5.实体单元:如SOLID185,用于模拟三维实体结构。

除此之外,ANSYS还提供了其他一些特殊单元类型,例如接触单元(CONTAC52)等,用于模拟特定的结构或物理现象。

需要注意的是,不同的结构单元类型具有不同的自由度和适用范围,选择合适的结构
单元类型是进行有限元分析的关键步骤之一。

Ansys单元类型设置

Ansys单元类型设置

Ansys单元类型设置一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。

(仅供参考)ANSYS软件中常用的单元类型

(仅供参考)ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。

link10用来模拟拉索,注意要加初应变,一根索可多分单元。

link180是link10的加强版,一般用来模拟拉索。

(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。

注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。

该单元需要手工在实常数中输入Iyy和Izz,注意方向。

beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。

beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。

缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。

8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。

可见188单元已经很完善,建议使用。

beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。

(3)shell(板壳)系列shell41一般用来模拟膜。

shell63可针对一般的板壳,注意仅限弹性分析。

它的塑性版本是shell43。

加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。

ansys三角形和四边形单元

ansys三角形和四边形单元

一、概述在有限元分析中,选择合适的单元类型对于模拟结果的准确性和可靠性至关重要。

在ANSYS软件中,三角形和四边形单元是常用的两种单元类型,它们在不同的工程问题中具有各自的特点和适用范围。

本文将对ANSYS中的三角形和四边形单元进行介绍和分析,以期帮助工程师和研究人员在实际工程中做出正确的选择。

二、三角形单元的特点和适用范围1. 三角形单元是由三个节点和三个自由度构成的平面单元,适用于对称轴或面对称加载条件的问题。

它具有较好的形状适应性,可以适应复杂的几何形状。

2. 三角形单元适用于轻负载和小变形条件下的结构分析,例如弹性力学问题和轻负载的非线性分析。

3. 由于三角形单元仅有三个节点,所以对于边界条件和加载较复杂的问题,可能需要引入大量的单元来进行建模,从而增加了计算量和求解时间。

4. 三角形单元在非线性分析和大变形条件下的模拟效果较差,容易产生“锯齿”效应和收敛性问题。

三、四边形单元的特点和适用范围1. 四边形单元是由四个节点和四个自由度构成的平面单元,适用于矩形和正交结构的问题。

它具有简单的几何形状和稳定的性能。

2. 四边形单元适用于大变形和非线性条件下的结构分析,例如接触问题、塑性问题和大变形的非线性弹性力学问题。

3. 四边形单元相对于三角形单元具有更好的计算稳定性和收敛性,适用于对称和非对称加载条件的问题。

4. 由于四边形单元具有较好的几何适应性和稳定性,所以在建模过程中可以减少单元数量,从而降低了计算量和求解时间。

5. 在一些规则的结构问题中,四边形单元可能出现局部变形的问题,需要适当处理。

四、结论和建议在实际工程中,选择合适的单元类型是非常重要的。

根据上述分析,对于对称轴或面对称加载条件的问题可以选择三角形单元,而对于大变形和非线性条件下的问题可以选择四边形单元。

根据实际的工程需求和计算资源,也可以选择合适的单元类型,进行合理的建模和分析。

希望本文能够为工程师和研究人员在使用ANSYS软件进行有限元分析时提供一定的参考和帮助,使得模拟结果更加准确和可靠。

Ansys单元类型设置

Ansys单元类型设置

Ansys单元类型设置一、单元类型选择概述:ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;二、单元类型选择方法(续一)2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;三、单元类型选择方法(续二)4.确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad8node 82 Quad 8node 183前两组即为低阶单元,后两组为高阶单元;四、单元类型选择方法(续三)5.根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;五、单元类型选择方法(续四)6.根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

六、单元类型选择方法(续五)7.进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。

Ansys-单元类型选择方法

Ansys-单元类型选择方法

单元类型选择方法ANSYS的单元库提供了100多种单元类型,单元类型选择的工作就是将单元的选择范围缩小到少数几个单元上;单元类型选择方法:1.设定物理场过滤菜单,将单元全集缩小到该物理场涉及的单元;2.根据模型的几何形状选定单元的大类,如线性结构则只能用“Plane、Shell”这种单元去模拟;3.根据模型结构的空间维数细化单元的类别,如确定为“Beam”单元大类之后,在对话框的右栏中,有2D和3D的单元分类,则根据结构的维数继续缩小单元类型选择的范围;4. 确定单元的大类之后,又是也可以根据单元的阶次来细分单元的小类,如确定为“Solid-Quad”,此时有四种单元类型:Quad 4node 42 Quad 4node 183 Quad 8node 82 Quad 8node 183 前两组即为低阶单元,后两组为高阶单元;5. 根据单元的形状细分单元的小类,如对三维实体,此时则可以根据单元形状是“六面体”还是“四面体”,确定单元类型为“Brick”还是“Tet”;6. 根据分析问题的性质选择单元类型,如确定为2D的Beam单元后,此时有三种单元类型可供选择,如下:2D elastic 3 2Dplastic 23 2D tapered 54,根据分析问题是弹性还是塑性确定为“Beam3”或“Beam4”,若是变截面的非对称的问题则用“Beam54”。

7. 进行完前面的选择工作,单元类型就基本上已经定位在2-3种单元类型上了,接下来打开这几种单元的帮助手册,进行以下工作:仔细阅读其单元描述,检查是否与分析问题的背景吻合、了解单元所需输入的参数、单元关键项和载荷考虑;了解单元的输出数据;仔细阅读单元使用限制和说明。

Mass21是由6个自由度的点元素,x,y,z三个方向的线位移以及绕x,y,z轴的旋转位移。

每个自由度的质量和惯性矩分别定义。

Link1可用于各种工程应用中。

根据应用的不用,可以把此元素看成桁架,连杆,弹簧,等。

ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型

ANSYS软件中常用的单元类型一、单元(1)link(杆)系列:link1(2D)和link8(3D)用来模拟珩架,注意一根杆划一个单元。

link10用来模拟拉索,注意要加初应变,一根索可多分单元。

link180是link10的加强版,一般用来模拟拉索。

(2)beam(梁)系列:beam3(2D)和beam4(3D)是经典欧拉梁单元,用来模拟框架中的梁柱,画弯据图用etab 读入smisc数据然后用plls命令。

注意:虽然一根梁只划一个单元在单元两端也能得到正确的弯矩图,但是要得到和结构力学书上的弯据图差不多的结果还需多分几段。

该单元需要手工在实常数中输入Iyy和Izz,注意方向。

beam44适合模拟薄壁的钢结构构件或者变截面的构件,可用"/eshape,1"显示单元形状。

beam188和beam189号称超级梁单元,基于铁木辛科梁理论,有诸多优点:考虑剪切变形的影响,截面可设置多种材料,可用"/eshape,1"显示形状,截面惯性矩不用自己计算而只需输入截面特征,可以考虑扭转效应,可以变截面(8.0以后),可以方便地把两个单元连接处变成铰接(8.0以后,用ENDRELEASE命令)。

缺点是:8.0版本之前beam188用的是一次形函数,其精度远低于beam4等单元,一根梁必须多分几个单元。

8.0之后可设置“KEYOPT(3)=2”变成二次形函数,解决了这个问题。

可见188单元已经很完善,建议使用。

beam189与beam188的区别是有3个结点,8.0版之前比beam188精度高,但因此建模较麻烦,8.0版之后已无优势。

(3)shell(板壳)系列shell41一般用来模拟膜。

shell63可针对一般的板壳,注意仅限弹性分析。

它的塑性版本是shell43。

加强版是shell181(注意18*系列单元都是ansys后开发的单元,考虑了以前单元的优点和缺陷,因而更完善),优点是:能实现shell41、shell63、shell43...的所有功能并比它们做的更好,偏置中点很方便(比如模拟梁板结构时常要把板中面望上偏置),可以分层,等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初学ANSYS的人,通常会被ANSYS所提供的众多纷繁复杂的单元类型弄花了眼,如何选择正确的单元类型,也是新手学习时很头疼的问题。

单元类型的选择,跟你要解决的问题本身密切相关。

在选择单元类型前,首先你要对问题本身有非常明确的认识,然后,对于每一种单元类型,每个节点有多少个自由度,它包含哪些特性,能够在哪些条件下使用,在ANSYS的帮助文档中都有非常详细的描述,要结合自己的问题,对照帮助文档里面的单元描述来选择恰当的单元类型。

1.该选杆单元(Link)还是梁单元(Beam)?这个比较容易理解。

杆单元只能承受沿着杆件方向的拉力或者压力,杆单元不能承受弯矩,这是杆单元的基本特点。

梁单元则既可以承受拉,压,还可以承受弯矩。

如果你的结构中要承受弯矩,肯定不能选杆单元。

对于梁单元,常用的有beam3,beam4,beam188这三种,他们的区别在于:1)beam3是2D的梁单元,只能解决2维的问题。

2)beam4是3D的梁单元,可以解决3维的空间梁问题。

3)beam188是3D梁单元,可以根据需要自定义梁的截面形状。

2.对于薄壁结构,是选实体单元还是壳单元?对于薄壁结构,最好是选用shell单元,shell单元可以减少计算量,如果你非要用实体单元,也是可以的,但是这样计算量就大大增加了。

而且,如果选实体单元,薄壁结构承受弯矩的时候,如果在厚度方向的单元层数太少,有时候计算结果误差比较大,反而不如shell单元计算准确。

实际工程中常用的shell单元有shell63,shell93。

shell63是四节点的shell 单元(可以退化为三角形),shell93是带中间节点的四边形shell单元(可以退化为三角形),shell93单元由于带有中间节点,计算精度比shell63更高,但是由于节点数目比shell63多,计算量会增大。

对于一般的问题,选用shell63就足够了。

除了shell63,shell93之外,还有很多其他的shell单元,譬如shell91,shell131,shell163等等,这些单元有的是用于多层铺层材料的,有的是用于结构显示动力学分析的,一般新手很少涉及到。

通常情况下,shell63单元就够用了。

3.实体单元的选择。

实体单元类型也比较多,实体单元也是实际工程中使用最多的单元类型。

常用的实体单元类型有solid45, solid92,solid185,solid187这几种。

其中把solid45,solid185可以归为第一类,他们都是六面体单元,都可以退化为四面体和棱柱体,单元的主要功能基本相同,(SOLID185还可以用于不可压缩超弹性材料)。

Solid92, solid187可以归为第二类,他们都是带中间节点的四面体单元,单元的主要功能基本相同。

实际选用单元类型的时候,到底是选择第一类还是选择第二类呢?也就是到底是选用六面体还是带中间节点的四面体呢?如果所分析的结构比较简单,可以很方便的全部划分为六面体单元,或者绝大部分是六面体,只含有少量四面体和棱柱体,此时,应该选用第一类单元,也就是选用六面体单元;如果所分析的结构比较复杂,难以划分出六面体,应该选用第二类单元,也就是带中间节点的四面体单元。

新手最容易犯的一个错误就是选用了第一类单元类型(六面体单元),但是,在划分网格的时候,由于结构比较复杂,六面体划分不出来,单元全部被划分成了四面体,也就是退化的六面体单元,这种情况,计算出来的结果的精度是非常糟糕的,有时候即使你把单元划分的很细,计算精度也很差,这种情况是绝对要避免的。

六面体单元和带中间节点的四面体单元的计算精度都是很高的,他们的区别在于:一个六面体单元只有8个节点,计算规模小,但是复杂的结构很难划分出好的六面体单元,带中间节点的四面体单元恰好相反,不管结构多么复杂,总能轻易地划分出四面体,但是,由于每个单元有10个节点,总节点数比较多,计算量会增大很多。

前面把常用的实体单元类型归为2类了,对于同一类型中的单元,应该选哪一种呢?通常情况下,同一个类型中,各种不同的单元,计算精度几乎没有什么明显的差别。

选取的基本原则是优先选用编号高的单元。

比如第一类中,应该优先选用solid185。

第二类里面应该优先选用solid187。

ANSYS的单元类型是在不断发展和改进的,同样功能的单元,编号大的往往意味着在某些方面有优化或者增强。

对于实体单元,总结起来就一句话:复杂的结构用带中间节点的四面体,优选solid187,简单的结构用六面体单元,优选solid1852.1规划的重要性当开始建模时,用户将(有意地或无意地)作许多决定以确定如何来对物理系统进行数值模拟;分析的目标是什么?模型是全部或仅是物理系统的部分?模型将包含多少细节?选用什么样的单元?有限元网格用多大的密度?总之,你将对要回答的问题的计算费用(CPU时间等)及结果的精度进行平衡考虑。

你在规划阶段作出的这些决定将大体上控制你分析的成功与否。

2.2确定分析目标确定分析目标的工作与ANSYS程序的功能无关,完全取决于用户的知识、经验及职业技能,只有用户才能确定自己的分析目标,开始时建立的目标将影响用户生成模型时的其它选择。

2.3选择模型类型(二维、三维等)有限元模型可分为二维和三维两种。

可以由点单元、线单元、面单元或实体单元组成,当然,也可以将不同类型的单元混合使用(注意要保证自由度的相容性)。

例如,带筋的薄壳结构可用三维壳单元离散蒙皮,用三维梁单元来离散蒙皮下的筋。

对模型的尺寸和单元类型的选择也就决定生成模型的方法。

线模型代表二维和三维梁或管结构,及三维轴对称壳结构的二维模型。

实体建模通常不便于生成线模型,而通常由直接生成方法创建。

二维实体模型在薄平板结构(平面应力),等截面的“无限长”结构(平面应变)或轴对称实体结构。

尽管许多二维分析模型用直接生成方法并不困难,但通常用实体建模更容易。

三维壳模型用于描述三维空间中的薄壁结构,尽管某些三维壳模型用直接生成方法创建并不困难,但用实体建模方法通常会更容易。

三维实体分析模型用于描述三维空间中截面积不等,也不是轴对称的厚结构。

用直接生成的方法建立三维实体模型较复杂,实体建模会使其变得容易些。

2.4线性和高次单元的选择ANSYS程序的单元库包括两种基本类型的面和体单元:线性单元(有或无特殊形状的)和二次单元。

2.4.1线性单元(无中间节点)对结构分析,带有附加形函数的角点单元会在合理的计算时间内得到准确的结果。

当使用这些单元时,要注意防止在关键区域的退化形式。

即避免在结果梯度很大或其它关注的区域使用二维三角形单元和楔形或四面体形的三维线单元。

还应避免使用过于扭曲的线性单元,对于非线性结构分析,如果使用线性单元细致地而不是用二次单元相对粗糙的进行网格划分,那么将以很少的花费获得很好的精度。

当对弯曲壳体建模时,必须选用弯曲的(二次的)或平面(线性)的壳单元,每种选择都有其优缺点,对于多数的实际情况,主要问题利用平面单元以很少的计算时间,即可获得很高精度的结果。

但是,必须保证使用足够多的平面单元来创建曲面。

明显地,单元越小,准确性越好。

推荐三维平面壳单元延伸不要超过15度的弧,圆锥壳(轴对称线)单元应限制在10度的弧以内(或离Y轴5度)。

对多数非结构分析(热、电磁等),线性单元几乎与高次单元有同样好的结果,而且求解费用较低。

退化单元(三角形和四面体)通常在非结构分析中产生准确结果。

2.4.2 二次单元(带中间节点)对于用退化的单元形式进行的结构分析(即二维三角形单元和楔形或三维四面体单元),二次单元通常会以比线性单元的求解费用更低且产生良好的结果。

可是,为正确地使用这些单元,需要注意它们的特殊的性质:·对于分布载荷和面压力不象线性单元按一般意义上分配到单元节点上(见图2-3),单元的中间节点对反力也表现出相同的非直观的解释。

·三维带中间节点的热流单元在承受对流载荷时按固定模式分配热流,在中间节点沿一个方向流动而在角点又沿另外方向的流动。

·对于结构单元,中点节点的温度如果在两相邻角点温度范围之外则要重新定义为这两角点的平均温度。

·由于中间节点的质量也大于角节点的质点,所以通常将中间节点选为主自由度(对于减缩自由度分析)。

·由于质量分配不均匀,在动力分析中感兴趣的波传波技术不推荐使用带中间节点的单元。

·不要在有中间节点(CONTAC12, COMBIN40, CONTAC48, CONTAC49, and CONTAC52)的边定义节点为基础的接触单元,也不要将间隙单元与带中间节点的边连接。

类似地,对热问题,不要应用辐射连接或非线性对流表面到带有中间节点的边。

节点为基础的接触要同有中间节点的表面接触,中间节点应该去掉。

对面对面接触单元不用担心(TARGE169, TARGE170, CONTA171, CONTA172, CONTA173, and CONTA174)。

划分实体模型时提供了一些方法忽略一些中间节点。

·当约束一个单元(或表面)的边缘自由度,包括中间节点在内的边缘上所有的节点都要约束。

·单元的角点只能与单元的角点相连,而不能与相邻单元的中间节点相连。

相邻的单元应该有相连(或共同的)中间节点·对于有中间节点的单元,通常希望每一个这样的中间节点在相应角点之间连线的中点位置,可是,有时却希望出现在其它地方:─节点沿着弯曲的几何边界通常可产生更准确的分析结果─所有的ANSYS网格划分器缺省地将它们放在那里。

─有的内边界也不得不弯曲以防止单元倒置或过于扭曲,ANSYS网格划分器有时也产生这种弯曲。

─用带有故意将中间节点偏离中心四分之一点可以模拟裂纹尖端的奇异性,利用ANSYS的KSCON命令可以产生这种特殊的面网格。

(MainMenu>reprocessor>-Meshing-Size Cntrls>-Concentrat KPs-Create)·中间节点位置可由下面描述的单元形状测试进行检查(对于控制单元形状的检查信息可参见本手册的§7章)。

─除三节点三角形和四节点四面体外的所有实体和壳单元都要进行实三维空间与单元本身的自然坐标空间一致性映射的测试。

雅可比比值过大表明单元过于扭曲,可能是由中间节点的位置设置不当引起的。

关于雅可比比值测试的细节,参见《ANSYS, Inc. Theory Reference》中的单元形状测试部分。

·如果不给中间节点指定位置,程序会自动按线性笛卡尔坐标插值将中间节点放在两角点的中间,按此法放置的节点的节点坐标系旋转角度也是按线性插值得到。

·在相连单元的公共边应有相同的节点数,当混合单元类型时有必要从一个单元去除中间节点。

相关文档
最新文档