7.3 区间估计
区间估计

常见形式
间估计的区间上、下界通常形式为:“点估计±误差” “总体均值”的区间估计
总体均值:μ 总体方差:σ 样本均值:x =(1/n)×Σ(Xi) 样本方差:s =(1/(n-1))×Σ(Xi-x)^2 符号假设置信水平:1-α 显著水平:α
已知n个样本数据Xi (i=1,2,...,n),如何估计总体的均值? 首先,引入记号: 区间估计σ'=σ/sqrt(n) s'=s/sqrt(n) 然后,分情况讨论: 情况1 小样本(n<30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况2 小样本(n<30),σ未知,此时区间位于 x ± t(α/2)×s' 区间估计情况3 大样本(n≥30),σ已知,此时区间位于 x ± z(α/2)×σ' 情况4 大样本(n≥30),σ未知,此时区间位于 x ± z(α/2)×s' 其中, z(α/2)表示:正态分布的水平α的分位数 t(α/2)表示:T分布的水平α的分位数
置信区间
区间估计有时,对所考虑的置信区间(或上、下限)加上某种一般性限制,在这个前提下寻找最优者。无偏 性是经常用的限制之一,如果一个置信区间(上、下限)包含真值θ的概率,总不小于包含任何假值θ┡的概率, 则称该置信区间(上、下限)是无偏的。同变性(见统计决策理论)也是一个常用的限制。
求置信区间的方法 最常用的求置信区间及置信上、下限的方法有以下几种。
即
费希尔把这个等式解释为:在抽样以前,对于θ落在区间内的可能性本来一无所知,通过抽样,获得了上述 数值,它表达了统计工作者对这个区间的"信任程度",若取b)=-α=uα/2,则得到区间,其信任程度为 1-α。即 当用上述区间作为θ的区间估计时,对于“它能包含被估计的θ”这一点可给予信任的程度为1-α。
§7-3 区间估计

S S X tα / 2 ( n 1) , X tα / 2 ( n 1) n n
二.正态总体均值与方差的置信区间
S S X tα / 2 ( n 1) , X tα / 2 ( n 1) n n
例题 1
有一大批糖果。现从中随机地取16袋,称得重量 (以克计)如下:
称随机区间 X 1.96 15 , X 1.96 15
为未知参数 的置信度为0.95的置信区间.
置信区间的意义
反复抽取容量为5的样本,都可得一个
区间,此区间不一定包含未知参数 的真
值, 而包含真值的区间占95%. 若测得 一组样本值, 算得 x 1.86 则得一区间 (1.86 – 0.877, 1.86 + 0.877) 它可能包含也可能不包含 的真值, 反复 抽样得到的区间中有95%包含 的真值.
注 记
(2)概率等式
确定方法: ◆ 当 W 的分布为对称时,可取 a = - b ,使得
Pa W b 1 中 a, b 的 α
P b W b 1 α
此时,b 为随机变量 W 的 上 /2 分位点。 ◆ 当 W 的分布为非对称时,可取a, b ,使得
P a α / 2 W
( n 1) S 2 , 2 χ ( n 1) α/2
( n 1) S
( n 1) S 2 χ1α / 2 (n 1)
2
χ
2 α/2
,
( n 1)
( n 1) S 2 χ1α / 2 (n 1)
P b α / 2 W
此时,b 为随机变量 W 的 上 /2 分位点,
统计学中的区间估计方法及其应用

统计学中的区间估计方法及其应用统计学是一门研究数据收集、分析和解释的学科。
在统计学中,区间估计是一种常用的方法,用于估计总体参数的范围。
本文将介绍区间估计的基本概念和常见方法,并探讨其在实际应用中的意义。
一、区间估计的基本概念区间估计是通过样本数据对总体参数进行估计,并给出一个范围,使得该范围内有一定的置信水平包含真实的总体参数值。
常见的区间估计方法有点估计法、区间估计法和极大似然估计法等。
点估计法是通过样本数据计算得到一个点估计值,作为总体参数的估计值。
例如,通过样本均值估计总体均值,通过样本方差估计总体方差等。
区间估计法是在点估计的基础上,给出一个置信区间,该区间包含了总体参数的真实值。
置信区间的计算依赖于样本数据的分布和样本容量等因素。
极大似然估计法是通过最大化似然函数,寻找最有可能生成观测数据的参数值。
该方法常用于对总体分布的参数进行估计。
二、常见的区间估计方法1. 正态分布的区间估计在正态分布的区间估计中,常用的方法有Z检验和T检验。
Z检验适用于大样本,T检验适用于小样本。
这两种方法都是基于正态分布的性质,通过计算样本均值与总体均值之间的差异,得出置信区间。
2. 二项分布的区间估计对于二项分布的区间估计,常用的方法是Wald区间估计和Wilson区间估计。
Wald区间估计是基于正态近似的方法,适用于大样本。
Wilson区间估计是一种修正的方法,适用于小样本。
3. 指数分布的区间估计对于指数分布的区间估计,常用的方法是对数似然比法和置信上限法。
对数似然比法是通过最大化似然函数,得到参数的估计值,并计算置信区间。
置信上限法是寻找参数的最大值,使得观测值在该上限下的概率达到一定的置信水平。
三、区间估计的应用意义区间估计在实际应用中具有重要的意义。
首先,区间估计提供了对总体参数范围的估计,使得我们能够更准确地了解总体的特征。
其次,区间估计能够帮助我们进行决策和预测。
例如,在市场调研中,我们可以通过区间估计来估计产品的需求量,从而制定合理的生产计划。
7.3参数的区间估计-09

§7.3参数的区间估计一、置信区间的概念设θ是总体X 的未知参数,1ˆθ和2ˆθ是统计量,若对于给定的α(10<<α),有αθθθ-=≤≤1}ˆˆ{21P ,则称]ˆ,ˆ[21θθ是参数θ的置信度为α-1的置信区间.二、单个正态总体的置信区间以下设总体X ~),(2σμN ,n x x x ,,,21 是X 的样本,置信水平为α-1. 1.已知202σσ=时μ的置信区间(1)选用样本函数:nx u /0σμ-=~)1,0(N ;(2)令αα-=≤1}|{|2/u u P ,即αα=>}|{|2/u u P ,有21)(2/αα-=Φu ,反查P .195标准正态分布表,求出2/αu (考试时直接给出);(3)解不等式2/||αu u ≤,得μ的置信区间:⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x 02/02/,σσαα.例1(P .157例7-18)设总体(直径)X ~)06.0,(μN ,样本观测值为1.15,2.15,8.14,9.14,1.15,6.14,求平均直径μ的置信区间:(1)05.0=α;(2)01.0=α.(96.1025.0=u ,576.2005.0=u )解 已知06.020=σ,6=n ,算得95.14=x . (1)05.0=α时,96.1025.02/==u u α,196.01.096.1606.096.102/=⨯=⨯=⋅nu σα,μ的置信度为95%的置信区间为⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x 02/02/,σσαα]146.15,754.14[]196.095.14,196.095.14[=+-=;(2)01.0=α时,576.2005.02/==u u α,2576.01.0576.2606.0576.202/=⨯=⨯=⋅nu σα,μ的置信度为99%的置信区间为⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x 02/02/,σσαα]2076.15,6924.14[]2576.095.14,2576.095.14[=+-=. 例2(P .157例7-19)设总体(物体重量)X ~)1.0,(2μN ,9=n ,4.15=x ,求物体平均重量μ的0.95置信区间.(96.1025.0=u )解 1.00=σ,9=n ,4.15=x ,05.0=α,96.1025.02/==u u α,0653.091.096.102/=⨯=⋅nu σα,μ的0.95置信区间为⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x 02/02/,σσαα]4653.15,3347.15[]0653.04.15,0653.04.15[=+-=.例3(P .157例7-20)设总体X ~)1,(μN ,为使μ的0.95置信区间长度不超过1.2,样本容量n 应为多大?(96.1025.0=u )解 10=σ,05.0=α,96.1025.02/==u u α,为使置信区间长度2.1196.12202/≤⨯⨯=⋅nnu σα,只要2.196.12⨯≥n ,1167.102.196.122≈=⎪⎭⎫⎝⎛⨯≥n ,即样本容量至少为11.2.未知2σ时μ的置信区间 (1)选用样本函数:ns x t /μ-=~)1(-n t ;(2)令αα-=-≤1)}1(|{|2/n t t P ,即αα=->)}1(|{|2/n t t P ,有2)}1({2/αα=->n t t P ,查t 分布表,求出)1(2/-n t α(考试时直接给出);(3)解不等式)1(||2/-≤n t t α,得μ的置信区间:⎥⎦⎤⎢⎣⎡⋅-+⋅--n s n t x n s n t x )1(,)1(2/2/αα.例4(P .158例7-21)设总体(寿命)X ~),(2σμN ,σ未知,12=n ,样本观测值为(略),求平均寿命μ的0.95置信区间.(2010.2)11(025.0=t )解 12=n ,05.0=α,2010.2)11()1(025.02/==-t n t α,算得7092.4=x ,0615.02=s ,1576.00716.02010.2120615.02010.2)1(2/=⨯=⨯=⋅-ns n t α,μ的0.95置信区间为⎥⎦⎤⎢⎣⎡⋅-+⋅--n s n t x n s n t x )1(,)1(2/2/αα]1576.07092.4,1576.07092.4[+-=]8668.4,5516.4[=.3.2σ的置信区间 (1)选用样本函数:222)1(σχsn -=~)1(2-n χ;(2)令αχχχαα-=-≤≤--1)}1()1({22/222/1n n P ,由21)}1({22/12αχχα-=->-n P 和2)}1({22/2αχχα=->n P ,查2χ分布表,求出)1(22/1--n αχ和)1(22/-n αχ(考试时直接给出);(3)解不等式)1()1(22/222/1-≤≤--n n ααχχχ,得2σ的置信区间: ⎥⎥⎦⎤⎢⎢⎣⎡-----)1()1(,)1()1(22/1222/2n sn n s n ααχχ. 注:开方可得σ的置信区间.例5(P .159例7-22)设总体(零件重量)X ~),(2σμN ,9=n ,样本观测值为(略),求总体标准差σ的0.95置信区间.(1797.2)8(2975.0=χ,5345.17)8(2025.0=χ)解 9=n ,05.0=α,1797.2)8()1(2975.022/1==--χχαn ,5345.17)8()1(2025.022/==-χχαn ,算得0325.02=s ,26.00325.08)1(2=⨯=-s n ,2σ的0.95置信区间为⎥⎥⎦⎤⎢⎢⎣⎡-----)1()1(,)1()1(22/1222/2n sn n s n ααχχ]1193.0,0148.0[1797.226.0,5345.1726.0=⎥⎦⎤⎢⎣⎡=(近似值),从而σ的0.95置信区间为]3454.0,1217.0[]1193.0,0148.0[=(近似值.教材答案为[0.1218,0.3454]).。
区间估计公式

区间估计公式区间估计公式是指一种统计方法,用于估计未知参数的范围。
它是根据给定的数据集以及其参数的极限均值推断出的。
这样可以对参数的正确取值作出一个初步的估算。
一、经典区间估计公式1、样本均值估计法根据“大数定律”,当一个随机变量X的抽样样本个数n(→∞)时,X的样本均值的分布收敛到N(μ,σ2/n),可使用样本均值估计法来估计参数μ的值,即令μ = X的样本均数。
2、样本标准差估计法根据中心极限定理,当样本量趋于无穷的时候,样本标准差的分布符合t分布。
令特定的置信度α代替t值,可求得标准差的估计值,即σ^2 '= n·D / (tα/2)^2二、偏态分布估计量偏态分布估计量是一种分布估计法,它采用具备偏态分布特征的数值来估算参数μ和σ。
偏态分布是所有概率分布中最广泛应用的分布之一,它把参数μ和σ拆分成三部分:偏态参数γ,偏度参数ω和尾部形状参数λ。
从而可以从偏态分布中估计出μ、σ和γ、ω、λ的参数值。
三、无偏估计量无偏估计量是另一种用于估算量的分布。
它使用极值法,即按照某种规则,从一系列有限但不受限制的抽样样本中挑选某个值作为未知数的无偏估计值。
最常用的无偏估计量有方差法和方差除以样本数法。
方差估计量是一种比较简单的无偏估计量,它可用以下公式计算:σ^2 = 1 / n*Σ(xi - X)^2其中n是样本量,xi代表每个样本取值,X表示样本均值。
而另一种常用的无偏估计量就是方差除以样本数的方法,它的公式为:σ^2 = Σ(xi - X)^2 / n - 1四、交叉验证法交叉验证是一种分布估计法,它可以用来预测参数μ和σ,以便获得更准确的估算结果。
交叉验证首先将样本随机分为若干组,然后在每一组中利用其他组的信息来估计参数。
估计出的参数值在另外一组中进行验证,以期往复进行,直到每个组都意义数次验证。
然后再求出每次验证的参数的平均值以求得参数的最终估计值。
五、bootstrap法bootstrap是一种分布估计的方法,它可以用来估计三种不同的参数:均值、标准差和相关系数等。
7.3 区间估计

首页 上页 返回 下页 结束
(1)
第7章
§7.3 区间估计
第2页
对给定的 (0<<1),满足P{<< }=1
§7.3 区间估计
第4页
在概率密度为单峰且对称的情形,当c = d 时求得 的置信区间的长度为最短.
f (u )
0.95
ccc0Fra bibliotek95d d
u u
0.95
0
d
u
c=d
首页 上页 返回 下页 结束
第7章
§7.3 区间估计
第5页
当概率密度不对称的情形,如 2分布,F 分布,习惯 上仍取对称的百分位点来计算未知参数的置信区间.
(1)
说明 : (1)式表示( , )包含未知参数的真值概率为 1- , 如 0.05时,若从总体中抽得容量相同的 100个样本,则在确定的100个置信区间中将有95个 包含的真值,不包含 真值的区间只有5个。绝不 能理解为的真值落在( , )内的概率为1-!
显然,置信区间不唯一.
n
第6页
2 ( X ) 2 i 2 ~ 2 ( n) i 1
(n 1) S 2 2 ~ (n 1) 2
Φ(x)
1-α
Z
2
2.
P{| t | t a (n)} 1 P | U | u 1 2 2
2 P({ 2 (n) 2 (n)}) 1 1 2 2
第7章
§7.3 区间估计
区间估计知识点总结

区间估计知识点总结区间估计的基本概念区间估计是一种用来估计参数未知真值范围的统计方法。
在假设条件下,利用样本的信息来推断总体参数,并给出一个区间,该区间包含了总体参数真值的一个估计范围。
例如,我们可以用区间估计的方法来估计总体均值、方差、比例等参数的取值范围。
区间估计的优点与点估计相比,区间估计有以下几个优点:1. 提供了参数真值的估计范围,更具有实际应用的意义。
点估计只给出了一个具体的数值,而区间估计可以反映出参数的不确定性。
2. 能够控制估计的置信水平。
在区间估计中,我们可以通过置信水平来控制估计的精度和可靠性,这使得我们可以根据需求来选择合适的置信水平。
区间估计的步骤区间估计的步骤一般包括以下几个方面:1. 确定总体分布类型。
在进行区间估计之前,我们需要对总体的分布类型进行研究,以确定区间估计的方法和技巧。
2. 挑选合适的估计方法。
不同类型的参数估计需要采用不同的估计方法,如均值的区间估计可以使用t分布、z分布或者Bootstrap方法。
因此,在进行区间估计时,需要挑选合适的估计方法。
3. 计算置信区间。
根据所选的估计方法和数据样本,我们可以计算出置信区间的上下限,从而得到参数的估计范围。
区间估计的常用方法在统计学中,常用的区间估计方法有以下几种:1. 正态分布的区间估计。
当总体服从正态分布时,我们可以使用z分布来进行参数估计。
例如,对正态总体的均值进行区间估计时,我们可以使用z分布的方法来计算置信区间。
2. t分布的区间估计。
当总体服从t分布时,我们可以使用t分布来进行参数估计。
常见的例子包括小样本的均值估计和相关系数的区间估计。
3. Bootstrap方法。
Bootstrap方法是一种非参数估计方法,它通过对原始样本进行重抽样,得到估计量的抽样分布,从而计算出参数的置信区间。
区间估计的应用区间估计作为统计推断的重要方法,在各个领域都有着广泛的应用。
在医学、社会科学、经济学和工程学等领域中,人们常常需要对总体参数进行估计,在这些领域中,区间估计可以提供参数估计的可靠性和精度,为决策提供支持。
glCH7-3

2 2 为未知
X 选择样本函数 ~ t ( n 1) S n X P { t ( n 1) t ( n 1)}1 S 2 2 n
2
t (n 1) 0
2
2
t (n 1) t
2
S S 即 P{ X t ( n 1) X t (n 1)} 1 n 2 n 2
2 2 n n 从而正态总体参数 的置信度为 1 的置信区间为 (X z ,X z ) 或 记 作: (X z ) 2 2 2 n n n
即
P{ X
z X
z } 1
2
1-
2
z
0
2
z
2
从而正态总体参数 的置信度为 1 的置信区间为 (X
解: 已知 1 0.95 ,
2 查 t 分布表得: t / 2 (15) t 0.025 (15) 2.1315
0.025 , n 1 15
据题设数据算得x 503.75 及 s 6.2022 则所求均值 的 0.95 置信区间为: 6.2022 503.75 2.1315 即 ( 500.4 , 507.1 ) 16
0.025
s x t 0.025 (5) 14.97 0.21, 即 (14.76,15.18)。 6
所以,的置信度为95%的置信区间的上、下限为:
例 2 从 一 大 批 糖 果 中 随 机取 抽16袋 , 称 得 重 量 如 下 (以克计): 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设 袋 装 糖 果 重 量 近 似从 服正 态 分 布 , 求 总 体值 均 的 置信度为 0.95的 置 信 区 间 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 正态总体均值的置信区间
设 X 1 ,, X n 为总体 X ~ N ( , 2 ) 的一个样本,在 置信度 1 下,来确定 的置信区间 , . ⑴ 方差 已知,估计均值μ
2X X i 是 的一个无偏 n i 1 估计,又 X ~ N (0, 1) / n 对于给定的置信度 1 , 查正态分布表,找出
0 7, 置信度为95%; 试求总体均值μ的置信区间。
解: 已知 0 7, n 9, 0.05.由样本值算得:
1 x (115 120 110) 115 9 查正态分布表得 z0.025 1.96,由此得μ的置信区间
0 z0.025 110.43, 119.57 x n
长度不大于 0.49 ? 解: 设需要抽取容量为n的样本, 其样本均值为 x ,
1 0.95 0.05, 查表得 z 2 1.96, 于是μ的
1.25 z0.025 置信水平为0.95的置信区间为 x n 该区间长度
1.25 4.9 L 2 1.96 0.49 n n
由 1 0.95 0.05
查表得 t 2 (n 1) t0.025 (14) 2.145 由于总体方差 2 未知, 因此 的置信水平为0.95 的置信区间为:
s 8.49 t 2 (n 1) 425.0 2.145 x n 15
2
~ (n 1)
2
2分布不对称性, 由于 寻找使得概率对称的区间
即 P{1
(n 1) S
2
2
2 } 1 ,
2分布表的构造 由
P{1 (n 1) S
2
/2
/2
2
2 } 1
2 (n 1)
1
2 / 2 (n 1)
2
2
标准差σ的一个置信水平为 1 的置信区间
(n 1) S 2 , 2 (n 1) 2
(n 1) S 21 (n 1) 2
2
2
注意:在密度函数不对称时,如 分布.
习惯上仍取对称的分位点,但其置信区间的长度
并不最短。
例6 某自动车床加工零件,抽查16个测得长度(mm)
注:μ的置信水平1-α 的置信区间不唯一。上例 中同样给定 0.05 ,可以取标准正态分布上α 分位点-Z0.04和Z0.01,则也有
0.04 0.01
P{ X
n
z0.01 X
n
z0.04 } 0.95 z 0.04
则μ的置信度为0.95的置信区间为 X z0.01 n 2 z / 2 最短,在显著水平 但对称时的区间长度 L n 一定的条件下,置信区间长度越短精度越高,即对称
例2 从一批零件中随机抽取16个, 测得长度(单 位:厘米) 为 2.14, 2.10, 2.13, 2.15, 2.13, 2.12, 2.13,
2.10, 2.15, 2.12, 2.14, 2.10, 2.13, 2.11, 2.14, 2.11 设 求总体均值μ的置信水 零件长度 X ~ N ( , 0.012 ), 平为 0.90 的置信区间。 查表得 z 2 1.645, , 解: 0.01 0.10,
第七章
§7.3 区间估计
一、置信区间
二、正态总体均值的置信区间 三、正态总体方差的置信区间
第二十一讲
例如,在估计湖中鱼数的问题中,若我们根据 一个实际样本,得到鱼数 N 的估计值为1000条。 湖中鱼数的真值
[
]
也就是说,希望确定一个区间,使我们能以比较 高的可靠程度相信它包含真参数值。 这里所说的“可靠程度”是用概率来度量的,称 为置信度,置信水平或置信概率。
12.15 12.12 12.01 12.08 12.09 12.16 12.03
12.01 12.15 12.06 12.13 12.07 12.11 12.08 12.01 12.06 ,怎样估计该车床加工零件长度的
方差。 0.05) (
1 解: 先求 x 12 [0.15 0.12 0.6] 12.075 16 1 n 2 2 2 2的估计值 s [ xi nx ] 0.0024 σ n 1 i 1
z0.01 , X z0.04 n
z / 2 为最优区间。 区间 X n
例1
已知幼儿身高服从正态分布,现从5~6岁的幼
儿中随机地抽查了9人,其高度分别为:115, 120 131, 115, 109, 115, 115, 105, 110 cm; 假设标准差
查表
2 0.975
2.025 (15) 27.488 (15) 6.262 0
所求σ2的置信度为0.95的置信区间
(n 1) s 2 (n 1) s 2 15 0.0024 15 0.0024 , 2 , 2 6.262 / 2 (n 1) 1 / 2 (n 1) 27.488
解得 n 100 故取 n 100.
⑵ 方差 未知,估计均值μ
2
因为 S 2 是 2 的无偏估计。
1 n 可用样本方差: S 2 ( X i X )2 n 1 i 1
X 而选取样本函数 t ~ t (n 1) S/ n
X 取 P{t / 2 t / 2 } 1 S/ n
P{
2 1
(n 1)
2
(n 1) S
2
2
2
2
/2
(n 1)} 1 ,
2
(n 1) S (n 1) S 2 即 P{ 2 2 } 1 (n 1) 1 (n 1)
2
2 2 (n 1) S , (n 1) S 置信区间 2 (n 1) 21 (n 1) 2 2
其中 n 是样本容量, n-1是表中自由度;
X 得 t (n 1) t / 2 (n 1) /2 S/ n
所以μ的置信水平为1-α的置信区间为
S S t / 2 (n 1), X t / 2 (n 1) X n n
简记为 X S t (n 1) /2
③ 1 表达了区间估计的可靠性;
矛盾
④ 表示该区间不包含真值 的可能性。 即置信度为 1 0.95. 这时重复 例如 若 0.05, 抽样100次, 则在得到的100个区间中包含θ真 值的有95个左右, 不包含θ真值的有5个左右。 通常, 采用0.95的置信度, 有时也取0.99或0.90.
置信区间为 x z 2 2.121, 2.129 n
1 16 x xi 2.125, 所以μ的置信水平为0.90的 16 i 1
问需要抽取容量为多大的 例3 设总体 X ~ N ( , 1.252 ), 样本,才能使
的置信水平为0.95 的置信区间的
临界值 , , 使得 P{ } 1
由此可找出无穷多组 , ,通常我们取对称区间
, 使得
由上 分位点的定义
X P{ } 1 / n
对于给定的 (0 1) 有
X P{ z / 2 z / 2 } 1 / n
可得 P{ X
n
z / 2 X
n
z / 2 } 1
所以μ的置信水平为1-α的置信区间为
z / 2 , X z / 2 简记为 X z / 2 X n n n
例 若取 0.05 ,1 0.95 , 1, n 16 查表得 z / 2 z0.025 1.96,且由一组样本值 算得样本均值的观察值 x 5.20 则得到一个 置信度为0.95的μ的置信区间 (4.71, 5.69).
2 2
⑴ μ的置信区间为
t / 2 (n 1) t0.025 (9) 2.2622 s 35.22 (x t / 2 (n 1)) (457.5 2.2622) n 10
(432.31,482.69)
2 2 (n 1) s (n 1) s ⑵ σ2的置信区间为 2 , 2 (n 1) 1 (n 1) 2 2
使得 P{ } 1 , (0 1), 称区间
1 , 为 的置信区间, 为该区间的置信度。
置信下限
置信上限
称为显著性水平。
说明 ① 区间 , 是一个随机区间; 的精确性;
② 置信区间的平均长度E 表达了区间估计
n
例4 用仪器测量温度, 重复测量7次, 测得温度分别为 115, 120, 131, 115, 109, 115, 115 ; 设温度 X ~ N ( , 2 ) 在置信度为95%时, 试求温度的均值所在范围。 解: 已知 n 7, 0.05. 由样本值算得
x 112.8, s 2 1.29.
413.5, 441.3, 423.0, 428.2, 根据长期经验, 可以认为
最大飞行速度服从正态分布. 求飞机最大飞行速度 的期望值的置信水平为 0.95 的置信区间。 解:以X 表示该飞机的最大飞行速度, 则 X ~ N ( , 2 )
1 15 1 15 2 2 x xi 425.0, s ( xi x ) 72.05 15 i 1 15 1 i 1