数理统计 区间估计
数理统计之区间估计(ppt 50页)

置信水平的大小是根据实际需要选定的.
例如,通常可取置信水平1 =0.95或0.9等.
根据一个实际样本,由给定的置信水平,我
们求出一个尽可能小的区间 [ˆ1,ˆ2],使
P {ˆ1ˆ2}1
称区间 [ˆ1,ˆ2]为 的 置信水平为1 的
置信区间.
寻找置信区间的方法,一般是从确定 误差限入手.
教材上讨论了以下几种情形:
单个正态总体均值和方差 2的区间估计.
两个正态总体均值差 1 2和方差比
的区间估计.
2 1 2 2
比例 p 的区间估计.
下面我们举几个例子,其余部分请自己看.
休息片刻继续
例2 已知某地区新生婴儿的体重X~N(,2),
, 2未知,
…
随机抽查100个婴儿 得100个体重数据 X1,X2,…,X100
相应的置信区间平均长度越长.
也就是说,要想得到的区间估计可靠 度高,区间长度就长,估计的精度就差. 这是一对矛盾.
实用中应在保证足够可靠的前提下, 尽量使得区间的长度短一些 .
例3 某单位要估计平均每天职工的总医疗费, 观察了30天,其总金额的平均值是170元,标准 差为30元,试决定职工每天总医疗费用平均值 的区间估计(置信水平为0.95).
(ˆ1 ˆ2) 满足
P {ˆ1ˆ2}1
则称区间 [ˆ1,ˆ2]是 的置信水平(置信度、
置信概率)为 1 的置信区间.
ˆ1和ˆ2 分别称为置信下限和置信上限.
可见,
对参数 作区间估计,就是要设法找出
两个只依赖于样本的界限(构造统计量)
ˆ1 ˆ1(X1,…Xn) ˆ2 ˆ2(X1,…Xn)
下面我们就来正式给出置信区间的定义, 并通过例子说明求置信区间的方法.
概率论与数理统计-第6章-第4讲-区间估计

本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
02 求置信区间的步骤
例 设X1,…Xn 是取自 N (, 2 ) 的样本, 2已知,
求参数 的置信水平为 1 的置信区间.
明确问题:求什么参数的置信区间?置信水平是多少?
解 选 的点估计为 X
寻找未知参数的
取 U X N (0,1) 一个良好估计 n
u
2} 1
1
为什么 这样取?
u
u
2
2
8
02 求置信区间的步骤
从中解得
P{|
X
n
|u2}源自1P{Xn u 2
X
n
u
2}
1
于是所求 的 置信区间为
[X
n u 2 ,
X
n u
2]
也可简记为 X n u 2
从例题的过程,我们归纳出求置信区间的
一般步骤如下:
1
u
u
2
2
9
02 求置信区间的步骤
求置信区间的步骤
10
本讲内容
01 置信区间定义 02 求置信区间的步骤 03 几点说明
03 几点说明
1. 要求 θ 以很大的可能被包含在 [θˆ1, θˆ2 ]
内,P(ˆ1 ˆ2 ) 1 要尽可能大.
即要求估计尽量可靠. 2. 估计的精度要尽可能的高. 如要求区间
长度 θˆ2 θˆ1 尽可能短.
置信度与精度是一对矛盾,当样本容 量固定时,置信度越高,则精度越差.
u
u
2
2
区间的长度为 2u —— 达到最短
2n
14
03 几点说明
特别说明
即使在概率密度不对称的情形,如
《概率论与数理统计》学习笔记十一

σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一
即
θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若
概率论与数理统计 第七章2

P{θ1 ≤ θ ≤ θ 2 } ≥ 1 − α , (0 < α < 1)
称区间(θ1,θ 2 )为θ的置信水平为1 − α 该区间的置信区间 。
区间(θ1,θ2)是一个随机区间; α给出该区间含真 1− 值θ的可靠程度。α表示该区间不包含真值θ的可能性。
ch7-1 2
上海理工大学
University of Shanghai for Science and Technology
( X −u1−α
σ
2
n
,
X + u1−α
σ
2
n
)
可得所求的置信区间为
2 (12.35 ± 1.96 × ) = (12.35 ± 1.307) = (11.043,13.657) 9
ch7-1 8
上海理工大学
University of Shanghai for Science and Technology
上海理工大学
University of Shanghai for Science and Technology
College of Science
理学院
概率论与数理统计
区 间 估 计
ch7-1
1
上海理工大学
University of Shanghai for Science and Technology
1001,1004,1003,997,999,1000, , , , , , , 1004,1000,996, 1002,998,999. , , , , ,
求σ2的置信水平为 的置信水平为0.95的置信区间 的置信区间. 的置信区间 −α的置信区间如 解:本例中 µ未知, σ2的置信水平为 −α的置信区间如 本例中 未知, 的置信水平为1−α的置信区间如. (n −1)S2 (n −1)S2 2 , 2 χ1−α (n −1) χα (n −1) 其中n=12,计算得:(n−1)s2=11×6.932=76.25.又 计算得: − 其中 计算得 × 又 查自由度为11的 分布分位数表,得 α=1− 0.95=0.05, 查自由度为 的 χ 2分布分位数表 得 −
数理统计11:区间估计,t分布,F分布

数理统计11:区间估计,t分布,F分布在之前的⼗篇⽂章中,我们⽤了九篇⽂章的篇幅讨论了点估计的相关知识,现在来稍作回顾。
⾸先,我们讨论了正态分布两个参数——均值、⽅差的点估计,给出了它们的分布信息,并指出它们是相互独⽴的;然后,我们讨论到其他的分布族,介绍了点估计的评判标准——⽆偏性、相合性、有效性;之后,我们基于⽆偏性和相合性的讨论给出了常⽤分布的参数点估计,并介绍了两种常⽤于寻找点估计量的⽅法——矩法与极⼤似然法;最后,我们对点估计的有效性进⾏了讨论,给出了⼀些验证、寻找UMVUE的⽅法,并介绍了CR不等式,给出了⽆偏估计效率的定义。
以上就是我们在前九篇⽂章中提到的主要内容,还顺便介绍了⼀些常⽤的分布:Γ分布、β分布、χ2分布。
今天开始,我们将进⼊区间估计与假设检验部分。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是区间估计区间估计同样是参数估计的⼀种⽅法,不同于点估计⽤样本计算出的⼀个统计量直接作为原始参数的估计,区间估计会根据抽取出的样本,计算出⼀个基于样本观测值的区间。
简单说来,如果对总体f(x;θ)中的参数θ作估计,则⾸先从总体中获得样本\boldsymbol{X}=(X_1,\cdots,X_n),并确定两个具有确定⼤⼩关系的统计量\hat g_1(\boldsymbol{X})\le \hat g_2(\boldsymbol{X}),根据样本观测值计算出的区间[\hat g_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})]就是待估参数\theta的区间估计。
由此,我们可以看出,区间估计依然是依赖于统计量的,并且往往需要不⽌⼀个统计量。
区间估计相⽐于点估计的特点是,区间估计给出了⼀个相对“粗糙”的范围,这就导致你需要使⽤这个参数时,不像点估计⼀样能直接把估计值拿来⽤;但是,区间估计具有涵盖参数真值的可能,因为当参数空间\Theta的取值连续时,点估计\hat\theta与真值相等的可能性\mathbb{P}(\hat\theta=\theta)=0,但是区间估计包含真值的可能性\mathbb{P}(\theta\in[\hatg_1(\boldsymbol{X}),\hat g_2(\boldsymbol{X})])>0,这使得区间估计⽐起点估计⽽⾔,增加了⼀定的可靠性。
数理统计区间估计总结

数理统计区间估计总结数理统计是一门研究数据收集、整理、分析和解释的学科,而区间估计是其中一种重要的方法。
区间估计是通过样本数据来推断总体参数的取值范围,它能够提供关于总体参数的不确定性程度的信息。
本文将对区间估计的概念、应用以及优缺点进行探讨,以期帮助读者更好地理解和运用这一统计方法。
一、区间估计的概念区间估计是一种基于样本数据的统计推断方法,通过计算得到一个包含未知总体参数的区间范围。
这个区间的上限和下限是根据样本数据计算出来的,并且具有一定的置信水平,代表了对总体参数的估计精度。
二、区间估计的应用区间估计广泛应用于各个领域的研究中,特别是在市场调研、医学实验、经济学研究等方面。
例如,在市场调研中,通过对样本数据的分析,可以得到某一产品销售量的置信区间,以评估其市场潜力。
在医学实验中,可以利用区间估计来确定某种药物的有效剂量范围,以指导临床应用。
三、区间估计的优缺点区间估计具有以下优点:首先,它能够提供对总体参数的估计精度信息,使得决策者能够更加准确地评估风险和不确定性。
其次,区间估计不依赖于总体分布的假设,适用于各种类型的数据。
最后,区间估计可以较好地处理样本量较小的情况,提供对总体参数的合理估计。
然而,区间估计也存在一些缺点。
首先,区间估计只能提供对总体参数的范围估计,无法给出具体的点估计。
其次,区间估计的置信水平不一定能够准确反映总体参数的真实情况,存在一定的误差。
最后,区间估计对样本数据的分布和总体参数的假设要求较高,如果假设不满足,估计结果可能会失真。
区间估计是一种重要的统计推断方法,可以提供对总体参数的估计范围和置信水平信息。
它在各个领域的研究中有着广泛的应用,并具有一定的优点和缺点。
因此,在实际应用中,我们需要根据具体情况选择合适的区间估计方法,并结合其他统计方法进行综合分析,以获得更加准确的结论。
概率论与数理统计第6章参数区间估计2,3节

n
E(X
k
)
E(X
k)
i1
i1
二、有效性
未知参数 的无偏估计量不是唯一的.
设 ^1 和 ^2 都是参数 的无偏估计量,
θˆ 1
θˆ 2
集中
分散
蓝色是采用估^ 计量 1 , 用 14 个样本值得到的 14 个估计值. 紫色是采用估^ 计量 2 , 用 14 个样本值得到的 14 个估计值.
若limD(ˆ)0, 则ˆ是的一致估 . 计量 n
回顾例子.设总体X的概率密度为
f(x)6x3 (x),0x;
0, 其他
X1, X2,…, Xn 是取自总体X 的简单随机样本, (1) 求的矩估计量 ˆ;
(2) 求ˆ的方差D(ˆ).
解:矩估计 ˆ量 2X. D(ˆ)4D(X)4D(X)2
若滚珠直径服从正态分布X ~ N( , 2), 并且已知 = 0.16(mm),求滚珠直径均值的置信水平为95%
的置信区间.
解:由上面求解的置信水平为1- 的置信区间
Xσn 0 uα/,2 Xσn 0 uα/2
已 n 知 1,0 0 0 .1,6 0 .0,5 x110i110xi 14.92,
若进行n次独立重复抽样,得到n个样本观测值,
每个样本观测 个值 随确 机(定 ˆ1区 ,ˆ2一 )间 .那么
每个区间的 可真 能 , 或 值 包不 含包 的含 真 , 值
根据伯努利大数定理, 在这n个随机区间中,
包含 真值1 的 0(1 0 约 )% 占 ,不包含 10 的 % 0. 约
便得 k的 到 最大似 ˆk(X 1,然 X 2, ,估 X n).计
第二节 判别估计量好坏的标准
概率论与数理统计第九章区间估计

1, n2
1)
S12
2 1
S
2 2
2 2
F (n1 1, n2 1)} 2
即
P{ S12
1
2 1
S12
1
} 1
S
2 2
F1 2 (n1 1, n2
1)
2 2
S
2 2
F
(n1 1, n2 1)
2
因此方差比
2 1
2 2
的置信水平为1-a置信区间为
二、.方差比
2 1
2 2
的置信区间
例5 研究由机器A和机器B生产的钢管的内径,随机抽取
机地取Ⅰ型子弹10发,得到枪口速度的平均值为
x1 =500(m/s),标准差 s1 =1.10(m/s), 随机地取Ⅱ型
子弹20发, 得到枪口速度的平均值为x 2 =496(m/s),标
准差 s2 =1.20(m/s),假设两总体都可认为近似地服从正
态分布。且由生产过程可认为方差相等。求两总体均值
差-
机器A生产的管子18只,测得样本方差 s12=0.34( ); 抽取机器B生产的管子13只,测得样本方差 s2 2 =0.29(mm2), 设两样本相互独立,且设由机器A和机器B生产的管子内
径分别服从正态分布
N(1,
2)和
1
N(2, 22),这里
i
,
2 i
(i
1,2)
均未知,试求两个总体样本方差比
2 1
1 均值差
的置信区间
2
方差比
2 1
2 2
的置信区间
一、均值差
的置信区间
1 因为
所以
均为已知
X
Y~N (1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 0.504, 0.696 )
注 另一解法见后面附录
二. 正态总体的情形 (一) 一个正态总体的情形 (1) 方差 2已知, 的置信区间
( X u
2
0
n
, X u
2
0
n
)
(3)
推导 由 X
~ N ( ,
0
n
2
)
选取枢轴量
X
g ( X 1 , X 2 , , X n , )
(2) 取 T
X S 6
~ t (5)
查表
t0.025 (5) 2.5706
由给定数据算得
s
2
x 14.95
2
1 5
( xi 6 x ) 0.051.
2 i 1
6
s 0.226
由公式 (4) 得 的置信区间为
(X S 6 ( 14.71, t 0.025 (5), 15.187 )
2 2
1 2 u
2
0.2
0.1
-2 u1
-1
3.92
2
0.4
0.3
0.2
u 2 u1 1.84 (2.13)
3 3
0.1
3.97
1
-2 u1
-1
u 22
3
3
置信区间的定义
设 为待估参数, 是一给定的数, ( 0<<1). 若能找到统计量 1 , 2 , 使
2
~ ( n 1)
2
~ N (0,1)
2
2
2
~ ( m 1)
2
2
( n 1) S1
( m 1) S2
2
~ ( n m 2)
2
( X Y ) ( 1 2 ) 1 n 1 m ( n 1) S1 ( m 1) S2
2 2
~ t ( n m 2)
n m2
P
( X Y ) ( 1 2 ) 1 n 1 m ( n 1) S1 ( m 1) S2
2 2
n m2
t 1 2
1 2 的置信区间为
1 1 ( X Y ) t (n m 2) W 2 n m (7)
(6)
② 1 , 2 未知( 但 1 2 ) 1 2的置信区间
2 2
2 2 2
X Y ~ N ( 1 2 , ( X Y ) ( 1 2 ) 1 n 1 m
2
2
( n 1) S1
2
)
n
m
2 ( m 1) S2
0 / n
~ N (0,1)
由
X P / n 0
u 2
确定 u
2
解
X
0 /
u
2
n
得 的置信概率为 1 的置信区间为
( X u
2
0
n
,
X u
2
0
n
)
(2) 方差 2未知 , 的置信区间
S* S* , X t ( n 1) X t ( n 1) 2 2 n n (4)
置信概率为 1
①
1 , 2
2
2
已知, 考虑 1 2的置信区间
1
n
2
X ~ N ( 1 ,
), Y ~ N ( 2 ,
2
m
2
)
X ,Y
相互独立,
( X Y ) ( 1 2 )
1
n
2
2
m
2
~ N (0,1)
1 2
的置信区间为
2 2 2 2 (X Y ) u 1 2 , (X Y ) u 1 2 2 2 n m n m
X
2
1
X n
i 1
n
i
m n
2
2
m m m S X i X 1 n i 1 n n n n
1
n
2
m
代入(1)式得
m u n 2 1 m m m u 1 , 2 n n n n 1 m m 1 n n n
1
• 2
2
4
6
8
•
2
2
10
2
(5)
例3 某工厂生产一批滚珠, 其直径 X 服从 正态分布 N( 2), 现从某天的产品中随机 抽取 6 件, 测得直径为 15.1 , 14.8 , 15.2 , 14.9 , 14.6 , 15.1
(1) 若 2=0.06, 求 的置信区间 置信概率 2未知,求 的置信区间 (2) 若 均为0.95 (3) 求方差 2的置信区间.
(2)
例2 自一大批产品中抽取100个样品, 其中 有60个一级品, 求这批产品的一级品率 p 的 置信度为0.95的置信区间.
解 将
n 100 , m 60 , u 1.96
2
代入(2)式得
m 1 m m m 1 m m u u 1 , 1 n 2 2 n n n n n n n
问题 1. n 与 确定后,置信区间是否唯一? 2.为何要取 u / 2 ?
答复
1. 不唯一.
2. 当置信区间为 ( X u 区间的长度为 2u
2
2
1 5
, X u
2
1 ) 时, 5
1 5
—— 达到最短.
0.4
0.3
取 = 0.05
u u1 1.96 (1.96)
这时, 2 1 往往增大, 因而估计精度降低.
确定后, 置信区间 的选取方法不唯一,
常选最小的一个.
处理“可靠性与精度关系”的原 则 先
求参数 置信区间 保 证 可靠性
再
提 高 精 度
求置信区间的步骤
寻找一个子样的函数
— 称为枢轴量 它含有待估参数, 不含其它未知参数, 它的分布已知, 且分布不依赖于待估参 数 (常由 的点估计出发考虑 ). 例如 X~N ( , 1 / 5)
g( X 1 , X 2 , , X n , )
取枢轴量
g ( X 1 , X 2 , , X n , ) X 1/ 5
~ N (0, 1)
给定置信度 1 ,定出常数 a , b ,使得
P (a g( X 1 , , X n , ) b) 1
§6.4
区间估计
在前面我们讨论了参数的点估计,参数的点 估计的优点是,它的形式是确定的估计量,因而 可以进行运算.只要给定样本观察值,就能算出参 数的估计值.但用点估计的方法得到的估计值不一 定是参数的真值,即使与真值相等也无法肯定这 种相等(因为总体参数本身是未知的),也就是 说,由点估计得到的参数估计值对估计的精度与 可靠性没有做明确的回答,而在实际问题中,不 仅需要知道未知参数的估计值,往往还需要知道 这些估计值的精度与可靠性.要解决这些问题就要 引入参数的区间估计.
2
X
S 6
t 0.025 (5) )
(3) 选取枢轴量
2
5S
2
2
~ (5) ,
2
S 0.051.
2
2
查表得 0.025 (5) 12.833 , 0975 (5) 0.831 由公式 (5) 得 2 的置信区间为
( 5S
2 2
0.025 (5)
,
5S
2
2
0.975 (5)
X 1 ~ N 0 , 1 X ~ N , U 1 5 5
取 查表得
0.05
u / 2 1.96
这说明
X P 1.96 0.05 1 5
即
P X 1.96 1 X 1.96 1 0.95 5 5
在介绍区间估计之前,我们先看一个例子.
引例 已知 X ~ N ( ,1), 的无偏、有效点估计为 X
常数
随机变量
不同样本算得的 的估计值不同, 因此除了给出 的点估计外, 还希望根据 所给的样本确定一个随机区间, 使其包含 参数真值的概率达到指定的要求.
如引例中,要找一个区间,使其包含 的 真值的概率为0.95. ( 设 n = 5 )
( 引例中 a 1.96, b 1.96 )
由 a g( X1 , , X n , ) b 解出 1 , 2
得置信区间(1 , 2 )
引例中
( 1 , 2 ) ( X 1.96 1 , 5 X 1.96 1 ) 5
置信区间常用公式
一. 非正态总体的情形 (大样本) 设总体的期望 EX 与方差 DX 2 均未知, 用大样本( n 30 )对 作区间估计.
P(1 2 ) 1
则称 (1 , 2 )为 的置信概率为1 - 的
置信区间或区间估计. 1 置信下限 2 置信上限
几点说明
置信区间的长度 2 1 反映了估计精度
2 1越小,
估计精度越高.
反映了估计的可靠度, 越小, 越可靠. 越小, 1- 越大, 估计的可靠度越高,但