超声波在不同材料中的声速

合集下载

超声波声速与频率关系

超声波声速与频率关系

超声波声速与频率关系
超声波是一种频率高于人耳能听到的声音的机械波,其频率通常大于20kHz。

超声波在医学、工业、军事等领域有广泛应用,其中最常见的应用是医学领域中的超声诊断。

超声波的传播速度与介质密度和弹性有关。

在同一介质中,超声波的传播速度与频率成正比。

这是因为在同一介质中,高频率的超声波具有更短的波长,因此需要更短时间才能完成一个周期振动,从而传播速度更快。

具体来说,在理想情况下,超声波在同一介质中的传播速度(v)与频率(f)之间存在以下关系:
v = f × λ
其中λ表示超声波在介质中的波长。

由于光速是一个恒定值,因此当频率增加时,波长会缩短。

因此,在同一介质中,高频率的超声波具有更短的波长。

另外需要注意的是,在不同介质之间,超声波传播速度和频率之间并不总是成正比关系。

例如,在不同组织(如骨骼、肌肉和脂肪)中,
超声波传播速度和频率之间的关系是复杂的,并且需要考虑介质的密度、弹性、温度等因素。

总之,超声波的传播速度与频率之间存在正比关系。

在同一介质中,高频率的超声波具有更短的波长,因此需要更短时间才能完成一个周期振动,从而传播速度更快。

在不同介质之间,超声波传播速度和频率之间的关系是复杂的,并且需要考虑介质的密度、弹性、温度等因素。

幼儿园科学教案二:探究声音在不同材质中的传播速度

幼儿园科学教案二:探究声音在不同材质中的传播速度

幼儿园科学教案二:探究声音在不同材质中的传播速度探究声音在不同材质中的传播速度引言:声音是我们生活中重要的一部分。

我们可以通过声音交流、学习、获取信息和娱乐。

但是,声音的传播速度是什么呢?不同材质的物体上声音的传播速度是否相同呢?今天,我们就要来探究一下这些问题。

目标:1.了解声音的产生与传播2.了解不同材质物体上声音传播的速度3.通过实验探究,让幼儿了解声音在不同材质中的传播速度4.培养幼儿的动手能力和观察能力材料:1.钟表或秒表2.蓝色的毛线和白色的毛线3.不同材质的瓶子(如玻璃瓶、塑料瓶、陶瓷瓶等)4.小贴纸和笔5.一个大房间或者是一个课堂步骤:1.班级分成若干个小组,每个小组选取不同的材质瓶子,用小贴纸写上材质的名字并贴在瓶子上。

2.让幼儿分成两个小组,然后在房间里分别摆放两个瓶子,一个是蓝色毛线系在瓶子口边上,另一个是白色毛线安放在房间的远处,距离和高度要一致。

3.让有一个小组守在白毛线旁边,另一个小组守在蓝毛线旁边,记录下蓝毛线被振动的时间,和白毛线到达时的时间。

4.把这两个时间相减,得到声音穿过材质的瓶子的速度,用百分比算出速度与空气的速度之比。

5.让幼儿记录它们的实验结果并将速度与空气的速度进行比较。

比较各个材质瓶子的音速。

6.教师可以处理实验数据和结果,让幼儿们观察,比较和总结所有材料瓶子的效果。

7.与幼儿一起讨论结果,发现不同的材料对声音的传播速度有何影响以及声波如何穿过各种材料,以及如何在生活中应用,如医疗診断和噪音控制领域。

结论:通过这次实验,幼儿们能够了解声音的产生和传播,并且学习如何在不同材质中探究声音的传播速度。

幼儿也能够培养自己的动手能力和观察能力。

在日常生活中,我们可以应用所学到的知识,如噪声控制和医疗诊断等方面。

通过这次实验,让我们更加明白声音的奥秘,也增长了我们的知识面。

超声光栅测声速实验

超声光栅测声速实验

用超声光栅测液体中的声速1932年,德拜(Debge)和席尔斯(Sears)在美国以及陆卡(Hucas)和毕瓜(Biguand)在法国,分别独立地首次观察光在液体中的超声波衍射的现象,从而提出了直接确定液体中声速的方法。

【实验目的】1、了解超声致光衍射的原理2、学会一种利用超声光栅测量超声波在液体中传播速度的方法。

【实验原理】单色光沿垂直于超声波传播方向通过这疏密相同的液体时,就会被衍射,这一作用,类似光栅,所以称为超声光栅。

超声波传播时,如前进波被一个平面反射,会反向传播。

在一定条件下前进波与反射波叠加而形成超声频率的纵向振动驻波。

由于驻波的振幅可以达到单一行波的两倍,加剧了波源和反射面之间液体的疏密变化程度。

某时刻,纵驻波的任一波节两边的质点都涌向这个节点,使该节点附近成为质点密集区,而相邻的波节处为质点稀疏处;半个周期后,这个节点附近的质点有向两边散开变为稀疏区,相临波节处变为密集区。

在这些驻波中,稀疏作用使液体折射率减小,而压缩作用使液体折射率增大。

在距离等于波长A的两点,液体的密度相同,折射率也相等,如图1所示。

图1 在t和t+T/2(T为超声振动周期)两时刻振幅y、液体疏密分布和折射率n的变化单色平行光λ沿着垂直于超声波传播方向通过上述液体时,因折射率的周期变化使光波的波阵面产生了相应的位相差,经透镜聚焦出现衍射条纹。

这种现象与平行光通过透射光栅的情形相似。

因为超声波的波长很短,只要盛装液体的液体槽的宽度能够维持平面波(宽度为ι),槽中的液体就相当于一个衍射光栅。

图中行波的波长A 相当于光栅常数。

由超声波在液体中产生的光栅作用称作超声光栅。

当满足声光喇曼-奈斯衍射条件:202/L πλΛ<<时,式中L 为声束宽度,Λ 为声波在介质中的波长,0λ 为真空中的光波波长,这种衍射与平面光栅衍射类似,可得如下光栅方程(式中k 为衍射级次,φk 为零级与k 级间夹角):sin k k φλΛ= (1)在调好的分光计上,由单色光源和平行光管中的可调狭缝S 与会聚透镜(L 1)组成平行光系统,如图2所示。

超声波在不同介质中的传播速度及损耗系数测量-声学论文-物理论文

超声波在不同介质中的传播速度及损耗系数测量-声学论文-物理论文

超声波在不同介质中的传播速度及损耗系数测量-声学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——超声波是一种在弹性介质中传播的机械波,由于其具有波长短、传播方向性好等优点,在大学物理的声速测量实验中一般选择超声波段的声波进行测量。

超声波由于其频率高、功率大、穿透能力强、信息携带量大等特点,已广泛应用于工业、农业、生物医学以及科学研究等领域,如超声波测距和定位、超声波无损检测、超声波清洗等。

描述声波的物理量有波长、频率、传播速度、强度等,对这些量的测量是声学技术的重要内容,声速的测量在声波测距、定位和无损检测中有着广泛的应用。

声速测量实验属于大学物理实验中的基础性实验,一般仅开设超声波在空气中传播速度的测量,该部分原理简单,导致实验内容不饱满,因此,根据仪器特点,可将声速测量实验改造为超声波专题设计综合实验,增设一些设计性实验内容。

测量超声波在不同介质中的传播速度;研究同一介质中随发射和接收端距离变化,接收端振幅的变化规律;计算不同介质中超声波的损耗系数等。

对于实验数据的处理要求学生使用Origin、Matlab 等软件辅助完成,在学习物理内容的同时,熟练掌握常用数据处理软件的使用,不断挖掘学生学习的积极主动性,培养学生的创新意识和能力。

1 实验原理超声波传播速度常用的测量方法有共振干涉法、相位法、反射回波法等,本文采用共振干涉法研究不同介质中超声波的传播特性。

共振干涉法又称驻波法,实验装置如图 1 所示,由示波器、声速测量仪和信号发生器组成,S1和S2为压电陶瓷换能器,利用压电效应实现声压和电压之间的相互转换。

在信号发生器产生的交变电压作用下,使发射端S1产生机械振动,将激发的超声波经介质传播到接收端S2,若接收面与发射面平行,声波在接收面处就会被垂直反射,当接收端与发射端距离恰好等于半波长的整数倍时,两波叠加后形成驻波,当信号发生器的激励频率等于压电陶瓷换能器的固有频率时,会产生驻波共振。

测量声速的实验报告声速测定实验数据处理

测量声速的实验报告声速测定实验数据处理

测量声速的实验报告声速测定实验数据处理测量声速(实验报告)实验目的:1)探究影响声速的因素,超声波产生和接收的原理。

2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。

4)三种声速测量方法作初步的比较研究。

实验仪器:1)超声波发射器2)超声波探测器3)平移与位置显示部件。

4)信号发生器:5)示波器实验原理:1)空气中:a.在理想气体中声波的传播速度为v(式中 cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。

)标准干燥空气的平均摩尔质量为Mst =28.966 10-3kg/mol b.在标准状态下(T0 273.15K,p 101.3 kPa),干燥空气中的声速为v0=331.5m/s。

在室温t℃下,干燥空气中的声速为v v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。

当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。

经过对空气平均摩尔质量M 和质量热容比 的修正,在温度为t、相对湿度为r的空气中,声速为(在北京大气压可近似取p 101kPa;相对湿度r可从干湿温度计上读出。

温度t℃时的饱和水汽压ps可用lgps 10.2861780237.3trp v 331s 16m s (3)计算)d.式(3)的计算结果与实际的超声声速真值可能有一定偏差。

引起偏差的原因有:~状态参量的测量误差~理想气体理论公式的近似性~实际超声声速还与频率有关的声“色散”现象等。

实验方法:A. 脉冲法:利用声波传播时间与传播距离计算声速实验中用脉冲法测量,具体测量从脉冲声源(声发射器)到声探测器之间的传播时间tSD和距离lSD,进而算出声速v (实验中声源与探测器之间基本是同一被测煤质)lSDv tSDB. 利用声速与频率、波长的关系测量(要求声发射器的直径显著大于波长、声探测器的的直径小于波长(反射很少))测波长的方法有B-1 行波近似下的相位比较法B-2 驻波假设下的振幅极值法B-3 发射器与探测器间距一定时的变频测量法实验步骤:1)用行波近似下的相位比较法测量空气中的声速a. 正确接线将信号发生器的输出连接到声速仪的超声发射器信号的输入端的T型三通接头上,三通的另一个借口用导线连到示波器的一个输入端。

声 速 的 测 量(超声波法)

声 速 的 测 量(超声波法)

声速的测量(超声波法)声波是一种在弹性媒质中传播的机械波。

声波在媒质中传播时,声速,声强等诸多参量都和媒质的特性与状态有关,通过测量这些声学量可以测知媒质的特性及状态变化。

例如,通过测量声速可求出固体的弹性模量:气体、液体的比重、成分等参量。

在同一媒质中,声速基本与频率无关,例如在空气中,频率从20赫兹变化到8万赫兹,声速变化不到万分之二。

由于超声波具有波长短,易于定向发射,不会造成听觉污染等优点,我们通过测量超声波的速度来确定声速。

超声波在医学诊断,无损检测,测距等方面都有广泛应用。

声速的测量方法可分为两类;第一类方法是直接根据关系式v=S/t,测出传播距离S和所需时间t后即可算出声速,称为“时差法”。

第二类方法是利用波长频率关系式v=fλ,测量出频率f和波长λ来计算出声速。

【实验目的】1.了解超声换能器的工作原理和功能2.学习不同方法测定声速的原理的技术3.熟悉测量仪和示波器的调节使用4.测定声波在空气及水中的传播速度【实验仪器】QSSV-2型声速测定实验仪、示波器【实验原理】一、声速在空气中的传播速度在理想气体中声波的传播速度为v=(1)式中γ =Cp/Cv称为比热比,即气体定压比热容与定容比热容的比值,μ是气体的摩尔质量,T是绝对温度,R=8.31441J/moL•K为普适气体常数。

由(1)式可见,声速与温度有关,又与摩尔质量μ及比热比γ有关,后两个因素与气体成分有关因此,测定声速可以推算出气体的一些参量。

利用(1)式的函数关系还可制成声速温度计。

在正常情况下,干燥空气成分按重量比为氮:氧:氩:二氧化碳=78.084:20.946:0.934:0.033。

它的平均摩尔质量为0μ=28.94×10-3kg/moL 在标准状态下,干燥空气中的声速为0v =331.5m/S 。

在温室t ℃下,干燥空气中的声速为0v v = (2)式中T0=273.15K 。

由于空气实际上并不是干燥的,总含有一些水蒸气,经过对空气平均摩尔质量a μ和比热比γ的修正,在温度为t 、相对温度为t 0的空气中,声速为(3) 式中s p 为t ℃时空气的饱的和蒸气压,可从饱和蒸气压、蒸气压和温度的关系表中查出;P为大气压,取P =1.013×105Pa 即可;相对温度r 可从干湿温度计上读出。

超声波技术原理

超声波技术原理

超声波技术原理
超声波技术是一种利用超声波在物体中传播和反射的原理来获取物体结构和性质信息的技术。

超声波是一种频率高于20kHz (人耳听觉上限)的机械波,通过在材料中传播,通过与材料的界面反射或散射,可以获取材料内部的结构和性质信息。

超声波技术的原理主要基于两个原理:声学波传播和声学波的反射。

一、声学波传播原理:
超声波在材料中的传播速度基本是恒定的,当超声波通过材料时,它会传播到材料内部并与材料中的各种不同结构相互作用。

不同结构的材料会对超声波的传播产生不同的效应,包括声速、吸收和散射。

根据材料中超声波的传播速度的改变,可以通过测量超声波信号的传播时间来确定材料的厚度或深度。

二、声学波的反射原理:
当超声波从一个介质传播到另一个介质时,部分能量会被反射回来。

这种反射现象可以用来检测材料的界面、缺陷和其他结构信息。

通过测量超声波信号的反射时间和强度,可以判断材料的界面或内部的结构和缺陷。

基于以上原理,超声波技术可以用于各种应用,如医学超声成像、材料无损检测、建筑结构监测等。

在医学领域,超声波可以通过人体组织传播,对人体内脏器官进行成像;在工业领域,可以通过测量材料的超声波反射和传播时间来检测材料的缺陷
和性质。

通过合理应用超声波技术,可以非侵入性地获取到材料内部的结构和性质信息,实现无损检测和成像。

超声波检测的原理和应用

超声波检测的原理和应用

超声波检测的原理和应用1. 原理超声波检测是利用超声波的传播特性来实现物体检测和测量的技术。

其原理基于声波在介质中传播的特性,超声波是一种频率高于人耳可听范围的声波,通常在20kHz到1GHz的范围内。

在超声波检测中,常用的超声波发生器产生超声波信号,然后经过传感器或探头发送到被测物体表面。

当超声波遇到物体界面时,一部分超声波会被反射回来,而剩余的超声波则会继续传播。

接收到反射超声波的传感器或探头会将其转化为电信号,并经过放大和处理后进行分析和判断,从而得到被测物体的信息。

超声波检测主要依赖以下原理:•声速变化原理:不同材料的声速是不同的,通过测量声波在被测物体中传播的时间,可以间接得到物体材料的声速,进而推导出其密度、弹性模量和压缩系数等物理特性。

•声阻抗匹配原理:当超声波从一个介质传播到另一个介质时,会发生反射和透射。

根据不同介质的声阻抗,可以判断界面是否有反射或透射,从而实现检测。

•声能传播原理:超声波在物体内部传播时,会受到散射、衍射、吸收和衰减等现象的影响。

通过分析超声波的传播特性,可以检测到物体内部的缺陷、杂质或结构变化等情况。

2. 应用2.1 材料检测超声波检测在材料工程领域有着广泛的应用。

通过超声波的传播特性,可以判断材料的质量、结构和性能。

以下是超声波检测在材料检测中的一些典型应用:•缺陷检测:超声波可以检测材料内部的缺陷,如裂纹、夹杂和气泡等。

通过分析反射超声波的特性,可以定位和评估缺陷的尺寸和形态,对于材料质量控制和安全性评估具有重要意义。

•厚度测量:通过测量超声波在材料中的传播时间,可以精确测量材料的厚度。

这在钢铁、玻璃、陶瓷等工业生产中非常重要,可以用于质量监控和制程控制。

•结构分析:超声波还可以用于分析材料的结构和成分。

例如,通过测量超声波的传播速度和衰减程度,可以推断出材料的弹性模量、密度和几何形状等参数。

2.2 医学影像超声波检测在医学影像领域是一项重要的诊断技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档