杂环化合物合成-2013.5
有机化学中的杂环化合物的合成

有机化学中的杂环化合物的合成在有机化学中,杂环化合物是一类含有杂原子(即非碳原子)的环状分子,如含氮、氧、硫等的杂环化合物。
这些化合物在医药、材料科学等领域具有重要的应用价值。
本文将介绍有机化合物中的杂环化合物的合成方法及其在不同领域的应用。
一、含氮杂环化合物的合成方法含氮杂环化合物是一类常见的杂环化合物,其合成方法多样。
其中,常见的合成方法包括:1. 氨基化合物与醛酮缩合:通过氨基化合物(如胺)与醛酮反应,可以得到含氮杂环化合物。
这种方法简单直接,适用于合成各种类型的含氮杂环化合物。
2. 亲核取代反应:利用亲核取代反应,将亲核试剂与含氮化合物反应,可以有效合成含氮杂环化合物。
常用的亲核试剂包括氢化试剂、碱性试剂等。
3. 吸电子取代反应:吸电子取代反应是一种有效的合成方法,可以将含氮基团引入分子中,从而得到含氮杂环化合物。
这种方法适用于含氮基团的合成。
二、含氮杂环化合物在医药领域的应用含氮杂环化合物在医药领域具有广泛的应用价值。
其中,许多抗生素、抗癌药物等都是含氮杂环化合物。
这些化合物通过与生物体内的特定目标结合,发挥治疗作用。
因此,含氮杂环化合物在药物研发中扮演着重要的角色。
三、含氧杂环化合物的合成方法含氧杂环化合物是另一类常见的杂环化合物,其合成方法也多样。
常见的合成方法包括:1. 醛酮与羟基化合物缩合:通过醛酮与羟基化合物缩合反应,可以得到含氧杂环化合物。
这种方法具有广泛的适用性,适用于合成各种类型的含氧杂环化合物。
2. 氧化反应:氧化反应是一种有效的合成方法,可以将含氧基团引入分子中,从而得到含氧杂环化合物。
这种方法适用于含氧基团的合成。
四、含氧杂环化合物在材料科学领域的应用含氧杂环化合物在材料科学领域也具有重要的应用价值。
例如,一些聚合物中含有氧杂环化合物,可以提高聚合物的性能,如耐热性、耐腐蚀性等。
因此,含氧杂环化合物在材料科学领域也扮演着重要的角色。
综上所述,有机化学中的杂环化合物是一类重要的化合物,其合成方法多样,应用广泛。
研究含氮杂环化合物的合成及应用

研究含氮杂环化合物的合成及应用引言:含氮杂环化合物是一类具有多种生物活性的有机化合物,广泛应用于药物化学领域。
本文将讨论含氮杂环化合物的合成方法以及其在药物研究和相关领域中的应用。
一、含氮杂环化合物的合成方法1. 氢氧化合物开环反应:这种方法使用碱性条件下的氢氧化合物,如氢化钠或氢化钾,与含氮杂环化合物发生反应,从而开环生成相应的酮或醛。
该方法简单、高效,并且适用于大多数含氮杂环化合物。
2. 过渡金属催化反应:过渡金属催化反应是一种常见的合成含氮杂环化合物的方法。
常用的过渡金属催化剂包括铜、铈、钯等。
这些催化剂可以催化氨基酮、亚胺、氨基醛等底物的环化反应,生成含氮杂环化合物。
3. 合成气体反应:合成气体反应是一种重要的含氮杂环化合物合成方法。
该方法利用合成气体(CO和H2)与适当的底物反应,经过一系列催化反应生成含氮杂环化合物。
这种方法的优点是反应过程环境友好,且合成效率高。
二、含氮杂环化合物在药物研究中的应用1. 抗菌药物:含氮杂环化合物作为抗菌药物广泛应用于医学领域。
例如,喹啉类化合物被广泛用于治疗疟疾,吡嗪类化合物被用于治疗结核病。
2. 抗肿瘤药物:含氮杂环化合物还具有抗肿瘤活性。
一些嘧啶类化合物被用于治疗白血病和肺癌,咪唑类化合物则被用于治疗胃癌和乳腺癌。
3. 镇痛药物:含氮杂环化合物在镇痛药物中也发挥着重要作用。
吗啡类化合物是一类常用的镇痛药物,其含氮杂环结构是其镇痛活性的关键。
三、含氮杂环化合物在其他领域的应用1. 生物传感器:含氮杂环化合物可以用于构建生物传感器。
利用它们特有的光电性能,通过与特定生物分子的结合,测定样品中生物分子的含量。
2. 光电器件:含氮杂环化合物的光电性能使其成为制备光电器件的理想材料。
例如,它们可以用作有机发光二极管(OLED)的电子传输层。
3. 有机合成:含氮杂环化合物是有机合成的重要基石。
它们可以作为合成其他有机化合物的起始物或中间体,为合成复杂有机物提供了重要的基础。
杂环化合物的合成

嘧啶
噻唑
尿嘧啶
吡啶
常见杂环的合成设计方法
6.1 含1个杂原子的五元杂环化合物 代表性的含1个杂原子的杂环有吡咯(pyrrole)、呋喃(furan)
和噻吩(thiofuran),这三种杂环都是通过4个碳原子上的π电 子和杂原子上非共用电子对的离域化形成6π电子的芳香体 系。
呋喃可以从多糖类热分解产物糠醛(呋喃甲醛)的Cannizzaro 反应而得到,吡咯和噻吩可以从煤焦油中提取,而它们衍 生物的典型化学合成方法都可以利用Paal-Knorr(帕路-诺尔) 合成法,即用l,4-二羰基化合物为原料,脱水成呋喃衍生物, 与氨类物质反应成吡咯衍生物,与硫化磷反应得噻吩衍生 物。
适用于伴有或不伴有先兆 症状的偏头痛的急性治疗。
治偏头痛或神经血管性头痛。
起效快,疗效好 ,剂量低 , 副作用小,应用范围广
到达最大浓度时间短,半衰期长
是chler-Mohlau(毕史勒)吲哚合成法: BischlerMohlau是比较重要的合成吲哚衍生物的方法,其是 由 2-溴-1-苯乙酮和过量苯胺加热生成2-芳基吲哚。
咔唑虽有吡咯结构,但吡咯的两个双键已被苯环代 替,所以咔唑只能在苯环上发生亲电取代反应,而且 取代的位置都在3,6位及1,8位。
咔唑是染料、颜料和医药等产品的中问体,我国所 使用的咔唑大多从煤焦油中提取,收牢低,纯度差, 三废污染严重。近年来国内外对咔唑及其衍生物的研 究和应用正进一步深人,对咔唑的需求也激剧增加, 因此研究咔唑的化学合成方法并使之便于工业化生产 具有一定的现实意义。
+ C≡NCH2CO2R3
反应机理
三、噻吩衍生物
从1,4-二酮可以制取噻吩(thiophene),由此衍生出来 的还有Hinsberg(欣斯贝格)噻吩合成法,就是用1,2二酮或者l,3-二酮与硫代酯反应。
杂环化合物的合成

适用于伴有或不伴有先兆 症状的偏头痛的急性治疗。
治偏头痛或神经血管性头痛。
起效快,疗效好 ,剂量低 , 副作用小,应用范围广
到达最大浓度时间短,半衰期长
是曲坦类药物中最新、效果最好的一种
Bischler-Mohlau(毕史勒)吲哚合成法: BischlerMohlau是比较重要的合成吲哚衍生物的方法,其是 由 2-溴-1-苯乙酮和过量苯胺加热生成2-芳基吲哚。
+ C≡NCH2CO2R3
反应机理
三、噻吩衍生物 从1,4-二酮可以制取噻吩(thiophene),由此衍生出来 的还有Hinsberg(欣斯贝格)噻吩合成法,就是用1,2二酮或者l,3-二酮与硫代酯反应。
Gewald reaction (格瓦尔德反应)
The Gewald reaction is an organic reaction involving the condensation of a ketone (or aldehyde when R2 = H) with a α-cyanoester in the presence of elemental sulfur and base to give a poly-substituted 2-amino-thiophene.
采用Paal-Knorr合成法可以合成降血脂药物阿托伐 他汀(atorvastatin)的重要中间体五取代吡咯衍生物。
化学性质 亲电取代反应(以α取代为主)
z
6 5
(Z=O,N,S) α-取代:
z
其π电子云密度比苯大,故比苯容易亲 电取代
+ H
+
E
+
+
H
H
z
系列氮杂环化合物的合成

一、引言氮杂环化合物是有机化学中重要的类别,具有广泛的应用,如药物、农药、香料等。
近年来,随着有机合成技术的发展,合成氮杂环化合物的方法也发生了很大的变化,从传统的高温高压条件下的合成方法,到现在的低温低压条件下的合成方法,使得合成氮杂环化合物的工艺更加简单、安全、高效。
本文将介绍一系列氮杂环化合物的合成方法,以及其在药物、农药、香料等领域的应用。
二、合成方法1. 高温高压法高温高压法是传统的合成氮杂环化合物的方法,其原理是在高温高压条件下,利用有机物质的反应性,将原料中的氮原子与其他原子结合,形成氮杂环化合物。
优点是反应速度快,产率高,缺点是反应条件复杂,安全性较差。
2. 低温低压法低温低压法是近年来新发展的合成氮杂环化合物的方法,其原理是利用有机物质的反应性,在低温低压条件下,将原料中的氮原子与其他原子结合,形成氮杂环化合物。
优点是反应条件简单,安全性高,缺点是反应速度较慢,产率较低。
三、应用1. 药物氮杂环化合物在药物领域有着广泛的应用,如抗癌药物、抗病毒药物、抗菌药物等。
近年来,随着药物合成技术的发展,氮杂环化合物的应用也发生了很大的变化,使得药物的研发更加简单、安全、高效。
2. 农药氮杂环化合物在农药领域也有着广泛的应用,如杀虫剂、杀菌剂、除草剂等。
近年来,随着农药合成技术的发展,氮杂环化合物的应用也发生了很大的变化,使得农药的研发更加简单、安全、高效。
3. 香料氮杂环化合物在香料领域也有着广泛的应用,如香水、香精、香料等。
近年来,随着香料合成技术的发展,氮杂环化合物的应用也发生了很大的变化,使得香料的研发更加简单、安全、高效。
四、结论氮杂环化合物是有机化学中重要的类别,具有广泛的应用,如药物、农药、香料等。
近年来,随着有机合成技术的发展,合成氮杂环化合物的方法也发生了很大的变化,从传统的高温高压条件下的合成方法,到现在的低温低压条件下的合成方法,使得合成氮杂环化合物的工艺更加简单、安全、高效。
杂环化合物的合成综述

含1个杂原子的五元杂环化合物 代表性的含1个杂原子的杂环有吡咯(pyrrole)、呋喃(furan) 和噻吩(thiofuran),这三种杂环都是通过4个碳原子上的π电 子和杂原子上非共用电子对的离域化形成6π电子的芳香体 系。 呋喃可以从多糖类热分解产物糠醛(呋喃甲醛)的Cannizzaro 反应而得到,吡咯和噻吩可以从煤焦油中提取,而它们衍 生物的典型化学合成方法都可以利用Paal-Knorr(帕路-诺尔) 合成法,即用l,4-二羰基化合物为原料,脱水成呋喃衍生物, 与氨类物质反应成吡咯衍生物,与硫化磷反应得噻吩衍生 物。
4、Madelung(马德隆)吲哚合成法:用邻酰氨基甲苯 为原料,在强碱性条件下加热进行分子内环合,加热 温度一般都在300~400℃,当用丁基锂作为碱时,温 度可以降到室温。
五、咪唑及其衍生物的合成 纯咪唑环的合成可以应用Debus-Radziszewski(德布 斯-阮得采汪斯基)反应,以乙二醛、甲醛和氨或者硫 酸铵为原料进行环合可得到咪唑。
1、Wallach(沃利赫)合成:草酸二乙酯与乙基胺 作用形成草酰胺,在五氯化磷存在下环合也可以得到 咪唑环 ,这个方法叫做Wallach(沃利赫)合成。
2、以邻苯二胺为起始原料,与甲酸环合可以生成 苯并咪唑。苯并咪唑也是重要的药物合成中间体。苯 并咪唑再经双氧水反应开环为5,5-二羧基咪唑,最后 脱羧而得咪唑。
2、Bischler-Mohlau(毕史勒)吲哚合成法: Bischler-Mohlau是比较重要的合成吲哚衍生物的方法, 其是由 2-溴-1-苯乙酮和过量苯胺加热生成2-芳基吲哚。
3 、其他还有Reissert(瑞斯尔特)合成法,由邻硝基
甲苯和草酸二甲酯合成吲哚 。
邻硝基甲苯和草酸二甲酯在乙醇钠存在条件下发生 缩合作用,得到邻硝基苯基丙酮酸酯,用盐酸水解得到 邻硝基苯基丙酮酸,硝基用锌和乙酸还原为胺,得到邻 氨基苯基丙酮酸,它进一步脱水环化得到吲哚-2-羧酸, 此酸再进一步受热脱羧为吲哚 。
杂环化合物的合成

1、Wallach(沃利赫)合成:草酸二乙酯与乙基胺 作用形成草酰胺,在五氯化磷存在下环合也可以得到 咪唑环 ,这个方法叫做Wallach(沃利赫)合成。
2、以邻苯二胺为起始原料,与甲酸环合可以生成 苯并咪唑。苯并咪唑也是重要的药物合成中间体。苯 并咪唑再经双氧水反应开环为5,5-二羧基咪唑,最后 脱羧而得咪唑。
2、 Hantzsch(汉茨施)吡咯合成法 当氯甲酮和β-酮酸酯及一级胺或氨缩合时,得到 吡咯羧酸酯,这个反应称为Hantzsch 反应,在缩合 同时生成HCl和水。
3 、 Barton-Zard(巴顿-杂得)反应:硝基乙烯衍生 物和α-异氰基乙酸酯在碱性条件下环合也可得到吡咯 衍生物,这个反应叫做Barton-Zard(巴顿-杂得)反应。 反应溶剂一般为THF或者醇,反应温度为室温。
(2) 用α-卤代酮和苯酚钠反应得到芳基烷基醚,再在 硫酸或多聚磷酸存在下环合脱水生成3-取代苯并呋喃;
(3)用2-烷基苯酚为原料,热解环合脱氢得到2-取代 苯并呋喃。
一、吡咯及吡咯衍生物的合成 1,4-二羰基化合物与氨化物反应,可得吡咯及其 衍生物。
Hale Waihona Puke 吡咯的反应机理吡咯衍生物的合成 1、丁二醛和氨反应可以合成吡咯环母核。
一、呋喃及呋喃衍生物的合成 Paal-Knorr (帕路-诺尔) 反应 1,4-二羰基化合物在无水的酸性条件下脱水,生成 呋喃及其衍生物。
TsOH:对甲苯磺酸
呋喃的反应机理
呋喃衍生物的合成 Feist-Benary(法伊斯特-本那瑞)合成:除了经典的 Paal-Knorr合成法,α-氯代酮和乙酰乙酸乙酯等化合物 在吡啶存在下反应也可以得到呋喃衍生物,这个反应 称为Feist-Benary(法伊斯特-本那瑞)合成。
有机化学中的杂环化合物的合成

有机化学中的杂环化合物的合成有机化学中的杂环化合物的合成功能在有机化学中,杂环化合物是指分子中含有除碳之外的原子组成的环状结构。
这类化合物具有广泛的应用领域,例如药物合成、材料科学等。
本文将介绍几种常见的杂环化合物的合成方法和其在实际应用中的重要性。
一、五元杂环的合成五元杂环是最常见的杂环结构之一,包括噻吩、吡咯和嗪等。
它们具有独特的化学性质和应用价值。
五元杂环的合成通常采用环加成或环合成的方法。
例如,可以通过硫醇与1,2-二卤代乙烷反应得到噻吩环:二、六元杂环的合成六元杂环是有机化学中常见的结构单元,包括吡啶、噻吩和三嗪等。
这些化合物在医药领域和材料科学中具有重要的应用。
六元杂环的合成方法多种多样,如使用不饱和化合物和亲核试剂进行环加成反应。
例如,可以通过苯和氨反应得到吡啶环:三、七元杂环的合成七元杂环是一类相对较少见但具有重要意义的杂环结构。
其中较为典型的是苯并噻吩和苯并嗪等。
其合成方法包括环化合成和环加成等。
例如,可以通过亚硝基化合物和硫化合物的反应得到苯并噻吩环:四、杂环化合物在药物合成中的应用杂环化合物在药物合成中具有广泛的应用。
由于其结构多样性和生物活性,很多杂环化合物被用作药物的核心骨架。
例如,噻吩类化合物常用于抗癌药物的合成,其具有抗氧化和抗炎等重要作用。
此外,嗪类化合物也被广泛应用于中枢神经系统疾病的治疗。
五、杂环化合物在材料科学中的应用杂环化合物也在材料科学领域中发挥着重要作用。
例如,含有噻吩结构的聚合物被广泛应用于有机太阳能电池的制备,其光电转换效率高,具有良好的稳定性。
此外,吡咯类的杂环化合物也被用作染料和光敏材料。
综上所述,有机化学中的杂环化合物的合成是一个重要的研究领域。
通过合理选择反应条件和合成方法,可以高效地合成各种杂环化合物。
这些化合物在药物合成和材料科学等领域中展示出广阔的应用前景,将为人类的生活和科学研究带来更多的可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:A = H, 烷基, 芳基, OH, OR, SH, NH2, NHR, NR2……; E, E' = CHO, COR, COOR, CN, CH(OR)2,CH(SR)2等; X, X' = H, 烷基, 芳基, OH, NH2, SH……
上式为这一类型嘧啶合成法的总结,式中的E,E'可以同时 为相同功能基团,即E=E'。这样的三碳化合物有如:1,3-二 醛、1,3-二酮、1,3-二酯、1,3-二腈等。E和E'也可分别为不同 的功能基团,即E≠E' ,这样的三碳原料有如:1,3-醛酮、1,3醛酯、1,3-酮酯、1,3-醛腈、1,3-酮腈等。 总之, Y
氯喹中间体
Kinetic control vs. thermodynamic control
OEt O rt NH2 O O (KC) Me 140℃ (TC) OEt O O
250℃ N H Me 70% N H Me Me
250℃ N H O N H 50% O
Low T----- kinetic control High T----- thermodynamic control
NH
O F CO2H HCl/H2O N HN N HN N F
O CO2H
N
HCl H2O
第四节
1、引言
嘧啶衍生物的合成
(Ring Synthesis of Pyrimidines)
含单独嘧啶环和含有嘧啶环的化学或生物合成的, 以及从天然产物中分离的药物在所有药物中占有的数 量为最多,同时几乎复盖所有的药物种类,如其中包 括:抗菌的磺胺嘧啶类,镇静和催眠用的巴比土酸类, 抗病毒和抗肿瘤的嘧啶及其核苷,抗疟、降压的嘧啶 类药物,以及维生素类(如VB1)等,所以,掌握合成嘧 啶类化合物的方法与原理极为重要。
杂环的合成
Hantzsch合成法
杂环的合成
1,5-二羰基化合物合成法
杂环的合成
简单醛酮与氨反应
杂环的合成
Fischer吲哚合成法
杂环的合成
Skraup喹啉合成法
环合策略和环合反应原理
1、环合策略
结构剖析-逆向分析-环合方式选择确定合成路线.
2、环合反应原理(环合方法学)
1)环合中最常用的反应类型—缩合反应
N
H
N
N CN O Me N + CN aq AcOH 95℃ Me O N Me N 28% -HCN HO
第三节
1、概 述
喹啉衍生物的合成
CONH(CH2)2NEt2
CO2H
N 辛可卡因
OC4H9
N 辛可芬
Ph
2、常用合成方法
常用苯胺衍生物为原料,进行环合得喹啉。合成法 设计可分为五大类(见下图),I和II类合成法应用较多。
杂环化合物的合成 Synthesis of Heterocyclic Compounds
概述
• 酶 • 核酸
酵母中的
氢化氧化酶的 辅基
概述
• 利用杂环保护官能团
概述
• 杂环与药物化学关系 • 药物中以含氮杂环最多,其次氧杂环 • 生物碱:吗啡、利血平、马钱子碱、黄连 素、奎宁 • 抗生素 • 磺胺药 • 维生素 • 抗癌药
2) From arylamines and α,β-unsaturated carbonyl compounds (I 类合成法)
a) The Skraup Synthesis
O + NH2 H O N H OH H2SO4(C)/ PhNO2 HO OH O H N H OH 85% Oxidation -H2O N H H H2SO4(C)/ PhNO2 130℃ N
应用以上合成原理的例子将在下面具体的杂环化合物合成 中介绍。
2)环加成反应
(1)分子内环加成----电环化反应 即分子内的周环反应 (Pericyclic Reactions) ,发生键的协同重组,这一反应在杂环 化合物的合成中较少使用到。
电环化反应的规律
4n个-电子体系—— 加热:顺旋,对称性允 许 光照:对旋,对称性允 许 4n+2个-电子体系—— 加热:对旋,对称性允 许 光照:顺旋,对称性允 许
O R' R" O
NH 3
R CHO O O
O O R' R" R" R O R' R" N R" N H R" -3H2O R' R H O R'
Oxidation
R'
Hantzsch法已成为合成Dipine类抗高血压、心绞 痛与心衰药物的首选方法,如硝苯地平的合成:
H NO2 CHO CH3COCH2CO2CH3 NH3 H3COOC H3C NH NO2 H2 N COOCH3 CH3
H3COOC H3C NH2
NO2 COOCH3 CH3
-NH3
H3COOC H3C N HNO2ຫໍສະໝຸດ COOCH3 CH3NH2
3) Unsymmetrical pyridine Synthesis,又称: Hantzsch变易法
O O H O H + H2N 95oC 2d N O
CN O H O + H2N O EtOH 60oC N H
e
or
b c d
or b
c d
or b
c
e
a : 亲核进攻, c : 亲电进攻
B
b
a + c
e b d
a
e d
a
or
d
b c e
(协同过程)
c
c.环加成反应的理论基础: Woodward-Hoffmann规则和前线 轨道理论
五元杂环的合成
• Yure’v法(吡咯、呋喃、噻吩分子互换)
H2O NH3 H2S H2O NH3 H2S
C C C N (I) C C C N (III) (IV) N (V) C C C N (II) C C C N C C C
3、吡啶衍生物的合成 (Synthesis of Quinolines)
1) From arylamines and 1,3-dicarbonyl compounds a) The Combes Synthesis (I 类合成法)
H O O
旋 对 hv
H H O
顺 旋
H
(2)分子间环加成
a.加成类型 由成环的大小,形成σ键的数量,以及环原子 的数量来划分
b.分子间环加成的过程 不管那种环加成都可概括成两种途 径,下面以1,3-环加成为例说明这两途径:
A
b c a + d e b c a b c d d a a e a a e e d
a) The Friedlä nder Synthesis
Ph Ph O + NH2 O Me KOH EtOH/0℃ 71% N Et Me
) SO 4(c at.H 2 cOH/c A
N Ph
Me
88%
eg.:
NO2 NO2 H O NH2 O N HO N N
b) The Pfitzinger Synthesis
2、嘧啶的化学合成
根据逆向合成分析法,嘧啶母核分子的合成法可 归纳为下列三种类型,最好的嘧啶合成路径为类型 Ⅰ,事实上也是类型Ⅰ最常用,它是由N-C-N和CC-C两部分参与缩合。
N C Ⅰ N C Ⅱ N C Ⅲ
C N
C C
C N
C C
C N
C C
1) 类型Ⅰ的合成法
对于类型Ⅰ的缩合,常采用1,3-二功能化的三碳化合物与 N-C-N胺类化合物为原料,在缩合过程中,可发生氨基对羰 基、羧基、酯基、酰氯或烯醇醚中缺电子碳原子的亲核进攻, 进行脱水、脱醇或脱HX的缩合;也可发生氨基直接亲核加成 到腈基或极性的双键上。其反应通式如下:
喹诺酮类抗菌药物常用该法合成,我国汪敦佳等人合成环丙沙星的 O F COCH2CO2Me 路线如下: F C
Me Cl F Cl O C C HC Cl Cl O F K2CO3 DMF CO2Me 水解 Cl N Cl N F OEt CO2Me F NH2 -EtOH Cl O CO2H O (1) EtO C N (2)OH-, H+ Cl (MeO)2CO NaOMe Cl Cl HC(OEt)2 Ac2O O C C HC N H CO2Me
烟酸(维生素类,治疗肝胆道疾病)、异烟肼类抗结核病药物、 维生素VB6、驱虫啶、等
CO2H CONHNH2 CONHNHR
N 烟酸 CH2OH HO CH2OH N isoniazide (异烟肼) N 异烟肼类
H3C
N H Cl VB6
N
CH2CH2OCH3 驱虫啶
2、吡啶衍生物的合成 (Ring Synthesis of Pyridines)
eg.:
HO OH NH2 N OH
HO OH NH2 OMe
OH
N OMe
b) The Doebner-Von Miller Variation
α,β-unsaturated aldehydes and ketones are used in place of glycerol in a).
Me Me + NH2 O Me ZnCl2/FeCl3 EtOH/ N (65%) Me
Me
N
Me
not observed !!
原始的 Doebner-Von Miller Methode 如下,反 应中应用了两分子苯胺,其中一个与醛基反应成亚 胺,以利环合: