距离之和最小值的数型结合的应用

合集下载

小学奥数-数形结合

小学奥数-数形结合

专题二 数形结合【方法简介】数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长,是优化解题过程的重要途径之一,有助于把握数学问题的本质,“数”和“形”是紧密联系的。

我们在研究“数”的时候,往往要借助于“形”,在探讨“形”的性质时,又往往离不开“数”。

由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.【应用场合】简易方程:路程问题、和差倍问题,几何应用,统计与可能性 【典型应用1】简易问题应用1:在简易方程题目中最为关键的一点就是找等量关系,通过画线段图就能清晰找出这种关系.先选对参照物,分清楚研究对象,再根据题目画出研究对象的数量关系,最后设未知数,列方程.【题1】小胖和小巧一共有208张邮票,小胖的邮票张数是小巧的3倍,小胖、小巧各有多少张邮票? [略解]解:设小巧有x 张邮票,那么小胖有3x 张邮票.2083=+x x ,2084=x ,52=x .答:小巧有52张邮票,那么小胖有156张邮票.【技巧贴士】这是一道典型的和倍问题,首先找出等量关系,从图中可以看出小巧与小胖的邮票数之和为208张,再列方程.最后提醒别忘了算小胖的邮票数. 【题2】一辆客车和一辆轿车从宁波出发开往上海,轿车比客车迟开0.3小时,客车平均每小时行驶90千米,轿车平均每小时行108千米.轿车开出多少小时后追上客车? [略解]解:设轿车开出小x 时后追上客车.x x 108903.090=+⨯,x 1827=,5.1=x答:轿车开出1.5小时后追上客车.【技巧贴士】 这是道追及问题,在本题中因为客车与轿车行驶的路程是相等的,我们可以将两辆车的路程画作两段来分析题目,这样更容易找出等量关系. 【题3】小刘和小王两家之间的路程是1500千米,两人同时从家里出发相向而行,小刘平均每分钟走72米,小王平均每分钟走75米,几分钟后两人还相距324米? [略解]解:设x 分钟后两人还相距324米.150********=++x x ,8=x答:设8分钟后两人还相距324米.【技巧贴士】本道题目是将相遇问题进行了改变,我们还可以这样理解题目,小王和小刘之间还有324米就相遇了,所以1500米减去324米,就是他们一共走的总路程,即方程为32415007572-=+x x .【巩固练习】第一期第一部分基础达标1.商店里出售精装、平装两种集邮册.精装集邮册的售价比平装集邮册贵9.6元,是平装集邮册价格的1.6倍,这两种集邮册的售价分别是多少元?2.一辆轿车和一辆大巴士先后从南京出发开往上海,大巴士先行150千米后轿车也出发了,大巴士平均每小时行80千米,轿车平均每小时行100千米.轿车几小时后追上大巴士?3.上海到宁波的高速公路全长296千米,两辆旅游巴士车同时从两地出发,途中巴士车A休息了0.6小时,结果巴士车B1.85小时后与A车在途中相遇.已知B车平均每小时行驶92千米,A车平均每小时行多少千米?第二部分强化训练4.动物园里的狮子和老虎的数量相差14只,狮子的数量比老虎的2倍还多2只,则动物园里的狮子和老虎各有多少只?5.一盒巧克力平均分给几个小朋友,如果每人分6颗,那么还剩下14颗;如果每人分8颗,那么正好分完.一共有多少小朋友?这盒巧克力有多少颗?6.甲乙两人相距若干米,如果两人相对而行,2分钟可以相遇;如果两人同时同向而行,甲在乙后,6分钟可以追上乙.如果乙每分钟走60米,那么甲每分钟走多少米?7.暑假里小诗和小琪从学校出发骑车去电影院看电影.已知小诗骑车速度为每分钟220米,小琪为每分钟280米.小诗出发6分针后小琪去追赶,结果两人同时达到电影院,小琪骑了多少分钟?如果小诗19:00出发,电影19:30开始,那么他们两人能否在电影院开映前进入电影院?8.甲、乙两地相距1500米,有两人分别从甲、乙两地同时相向出发,10分钟后相遇,如果两人各自提速20%,仍从甲、乙两地同时相向出发,则出发后多少秒后相遇?9.在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟?10.甲、乙二人分别从A、B两地同时出发匀速相向而行,出发后8小时两人相遇.若两人每小时都多走2千米,则出发后6小时两人就相遇在距离AB中点3千米的地方.已知甲比乙行得快.甲原来每小时行多少千米?【典型应用2】几何应用应用2:几何题目的实质是以形化数,现阶段我们应该掌握基础图形的面积公式、周长公式和体积公式。

数形结合求最值

数形结合求最值

数形结合求最值作者:李维奇来源:《考试·高考理科版》2011年第05期关键词数形结合斜率截距距离求最值是数学中一个重要专题,而解析几何中的一些概念和公式也被广泛运用于此,方法简洁实用。

如:斜率、截距、点与点的距离公式、点到直线的距离公式,以及直线与直线的位置关系、直线与圆的位置关系等。

一、斜率模式当x1≠x2时,斜率k=y1-y2x1-x2,因此,对于分式的形式,视情况可以将其转化为斜率的形式。

例1 如果实数x,y满足(x-2)2+y2=3,求yx的最大值。

解:条件中的方程在解析几何中表示圆,而yx=y-0x-0,即表示圆上的点与原点的连线的斜率,如图1,易得此斜率的最值应是该直线与圆相切时取得,易得最大值为3。

如果利用选修教材中的圆的参数方程,即x=3cosθ+2y=3sinθ,就有如下变式:变式11 求函数y=3sin x3cos x+2的值域。

可变形为y=3sin x-03cos x+2-0,也可变形为y=3sin x3cos x-(-2)。

若将sin x与cos x的关系表示出来,即可得如下变式:变式12 求函数y=3•1-x23x+2的最大值。

可设x=cosθ,则有y=3sinθ3cosθ+2,即转化为变式11,但与之相区别的是θ∈[0,π],这是后者所没有要求的。

其几何意义就不能完全用图1来表示,而是个半圆。

变式2 求函数y=2sin x-12sin x+1的值域。

函数变形为y=sin x-12sin x+12,即表示点(sin x,sin x)与点C-12,12的连线的斜率,如图2,由于sin x∈[-1,1],可得点(sin x,sin x)是线段AB上的动点,易得经过点C的直线l1,l2的斜率分别为3和13,可知原函数的值域为(-SymboleB@ ,13]∪[3,+SymboleB@ )。

变式3 求函数y=x2+1x-1的值域。

y=x2-(-1)x-1,表示点(x,x2)与点(1,-1)的连线的斜率,而点(x,x2)是抛物线y=x2上的动点(x≠1),如图3,直线l1与l2是抛物线的切线,设切点为(x0,x02),则由导数知,斜率为2x0,则切线方程为y-x02=2x0(x-x0),将点(1,-1)代入,得x0=1±2,直线l1与l2的斜率即为2±22,因此原函数的值域为(-SymboleB@ ,2-22]∪[2+22,+SymboleB@ )。

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题(含解析)

高中数学数形结合思想经典例题一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0)D .(0,1)3.函数f (x )=ln|x +cos x |的图象为( )4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .256.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.128.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1D .0<x 1x 2<19.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF →=( ) A.89 B.109 C.259D.26912.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( )A.15B.25C.12D .113.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3D .214.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________.17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,C ,D 四点,则|AB |+|CD |=________.19.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x≤0,ln (x +1),x>0.若|f (x )|≥ax ,则a 的取值范围是______.20.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m ,x 2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b有三个不同的根,则m 的取值范围是________.高中数学数形结合思想经典例题解析一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,log 2x ,x>0,下列结论正确的是( )A .函数f (x )为奇函数B .f (f (14))=19C .函数f (x )的图象关于直线y =x 对称D .函数f (x )在R 上是增函数【答案】 B【解析】 作出函数f (x )的图象,如图所示,可知A ,C ,D 均错.f (f (14))=3log 214=3-2=19,故B 正确.2.已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ) A .(-∞,-1)∪(0,+∞) B .(-∞,0)∪(1,+∞) C .(-1,0) D .(0,1)【答案】 C【解析】 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点. 又∵f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,解得-32<a <-56.又∵a ∈Z ,∴a =-1.不等式f (x )>1,即-x 2-x >0.解得-1<x <0. 3.函数f (x )=ln|x +cos x |的图象为( )【答案】 A【解析】 因为f (0)=ln|cos0|=0,故排除C ,D ;又f (1)=ln|1+cos1|>ln 1=0,故排 除B ,选A.4.设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x <0的解集为( )A .(-2,0)∩(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)【答案】 D【解析】 由已知条件可以画出函数f (x )的草图,如图所示.由函数f (x )为奇函数可化简不等式f (x )-f (-x )x <0为2f (x )x <0.若x >0,则需有f (x )<0,结合图象可知0<x <2;若x <0,则需有f (x )>0,结合图象可知-2<x <0.综上可知,不等式的解集为(-2,0)∪(0,2).5.实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为( )A.2155B .21C .20D .25【答案】 B【解析】 作出不等式组表示的平面区域,如下图中阴影部分所示.z =|x +2y -4|=|x +2y -4|5·5,即其几何含义为阴影区域内的点到直线x +2y -4=0的距离的5倍.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0,得B 点坐标为(7,9),显然点B 到直线x +2y -4=0的距离最大,此时z max=21.6.已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根, 则实数k 的取值范围是( ) A .(0,12)B .(12,1)C .(1,2)D .(2,+∞)【答案】 B【解析】 在同一坐标系中分别画出函数f (x ),g (x )的图象如图所示,方程f (x )=g (x )有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y =kx 的斜率大于坐标原点与点(2,1)连线的斜率且小于直线y =x -1的斜率时符合题意,故12<k <1.7.若实数x ,y 满足|x -3|≤y ≤1,则z =2x +yx +y 的最小值为( )A.53 B .2 C.35D.12【答案】 A【解析】 依题意,得实数x ,y 满足⎩⎪⎨⎪⎧x +y -3≥0,x -y -3≤0,0≤y≤1,画出可行域如图阴影部分所示,其中A (3,0),C (2,1),z =2+yx 1+y x =1+11+y x ∈[53,2],故选A.8.设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=1 C .x 1x 2>1 D .0<x 1x 2<1【答案】 D【解析】 本题考查函数的性质.在同一坐标系下,画出函数y =10x 与y =|lg(-x )|的图象,结合图象不难看出,它们的两个交点中,其中一个交点横坐标属于(-∞,-1),另一个交点横坐标属于(-1,0),即在x 1,x 2中,其中一个属于(-∞,-1),另一个属于(-1,0),不妨设x 1∈(-∞,-1),x 2∈(-1,0),则有10x 1=|lg(-x 1)|=lg(-x 1),10x 2=|lg(-x 2)|=-lg(-x 2),10x 1-10x 2=lg(-x 1)+lg(-x 2)=lg(x 1x 2)<0,0<x 1x 2<1,故选D. 9.已知函数y =f (x )在(0,1)内的一段图象是如图所示的一段曲线,若0<x 1<x 2<1,则( )A.f (x 1)x 1<f (x 2)x 2B.f (x 1)x 1=f (x 2)x 2C.f (x 1)x 1>f (x 2)x 2D .不能确定【答案】 C【解析】 如图,设曲线上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2)),kOP 1=f (x 1)-0x 1-0=f (x 1)x 1,kOP 2=f (x 2)-0x 2-0=f (x 2)x 2,由于0<x 1<x 2<1,根据斜率与倾斜角之间的关系,显然有kOP 1>kOP 2,即f (x 1)x 1>f (x 2)x 2,故选C. 10.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +2>0,x +m<0,y -m>0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)【答案】 C【解析】 作出不等式组所表示的平面区域,根据题设条件分析求解. 当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此m <0. 如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23. 11.在△AB C 中,|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 的三等分点,则AE →·AF→=( ) A.89 B.109 C.259 D.269【答案】 B【解析】 由|AB →+AC →|=|AB →-AC →|,化简得AB →·AC →=0,又因为AB 和AC 为三角形的两条边,不可能为0,所以AB →与AC →垂直,所以△ABC 为直角三角形.以AC 为x 轴,以AB 为y 轴建立平面直角坐标系,如图所示,则A (0,0),B (0,2),C (1,0),由E ,F 为BC 的三等分点知E (23,23),F (13,43),所以AE →=(23,23),AF →=(13,43),所以AE →·AF →=23×13+23×43=109. 12.设函数f (x )=(x -a )2+(ln x 2-2a )2,其中x >0,a ∈R ,存在x 0使得f (x 0)≤45成立,则实数a的值为( ) A.15 B.25 C.12D .1 【答案】 A【解析】 (x -a )2+(ln x 2-2a )2表示点P (x ,ln x 2)与点Q (a ,2a )距离的平方. 而点P 在曲线g (x )=2ln x 上,点Q (a ,2a )在直线y =2x 上.因为g ′(x )=2x ,且y =2x 表示斜率为2的直线,所以由2x=2,解得x =1.从而曲线g (x )=2ln x 在x =1处的切线方程为y =2(x -1),又直线y =2(x -1)与直线y =2x 平行,且它们间的距离为222+(-1)2=255,如图所示.故|PQ |的最小值为255,即f (x )=(x -a )2+(ln x 2-2a )2的最小值为(255)2=45,当|PQ |最小时,P 点的坐标为(1,0),所以2a -0a -1×2=-1,解得a =15.13.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4FQ →,则|QF |=( ) A.72 B.52 C .3 D .2【答案】 C【解析】 利用FP →=4FQ →转化长度关系,再利用抛物线定义求解. ∵FP →=4FQ →, ∴|FP →|=4|FQ →|. ∴|PQ||PF|=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4. ∴|PQ||PF|=|QQ′||AF|=34.∴|QQ ′|=3. 根据抛物线定义可知|QQ ′|=|QF |=3,故选C.14.已知双曲线C :x 2a 2-4y 2=1(a >0)的右顶点到其一条渐近线的距离等于34,抛物线E :y 2=2px 的焦点与双曲线C 的右焦点重合,则抛物线E 上的动点M 到直线l 1:4x -3y +6=0和l 2:x =-1的距离之和的最小值为( ) A .1 B .2 C .3 D .4【答案】 B【解析】 x 2a 2-4y 2=1的右顶点坐标为(a ,0),一条渐近线为x -2ay =0.由点到直线的距离公式得d =|a|12+4a 2=34,解得a =32或a =-32(舍去),故双曲线的方程为4x 23-4y 2=1.因为c =34+14=1,故双曲线的右焦点为(1,0),即抛物线的焦点为(1,0),所以p =2,x =-1是抛物线的准线,如图,作MA ⊥l 1于点A ,MB ⊥l 2于点B ,设抛物线的焦点为F ,连接MF ,则由抛物线的定义知|MB |=|MF |,当M ,A ,F 三点共线时,距离之和最小,其最小值是点F 到l 1的距离,由点到直线的距离公式可得d 1=|4+6|(-3)2+42=105=2,即距离之和的最小值为2,选B.二、填空题15.已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是__________.【答案】 (0,1)∪(1,4) 【解析】 根据绝对值的意义,y =|x 2-1|x -1=⎩⎪⎨⎪⎧x +1,x>1或x<-1,-x -1,-1≤x<1.在直角坐标系中作出该函数的图象,如下图中实线所示.根据图象可知,当0<k <1或1<k <4时有两个交点.16.已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x .那么,不等式f (x +2)<5的解集是________. 【答案】 (-7,3)【解析】 当x ≥0时,f (x )=x 2-4x <5的解集为[0,5),又f (x )为偶函数,所以f (x )<5的解集为(-5,5).所以f (x +2)<5的解集为(-7,3).17.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,则F (x ,y )=log 2(y +1)+log 12(x +1)的最小值为________. 【答案】 -2【解析】 F (x ,y )=log 2(y +1)+log 12(x +1)=log 2(y +1)-log 2(x +1)=log 2y +1x +1,令k =y +1x +1=y -(-1)x -(-1),则k 表示可行域内(如图所示)的点与P (-1,-1)所在直线的斜率.18.已知直线y =x -2与圆x 2+y 2-4x +3=0及抛物线y 2=8x 的四个交点从上面依次为A ,B ,。

数形结合的思想

数形结合的思想





2 1
0y ; 0y0四种情况讨论. ,≥0 < , <
解: 由绝 对值 的 定 义 , 方程 可 原
1x 当 ≥0y -, ,≥0时 ,

致有以下三种 :1 ()利用数学式或数 学概念的几何意义.() 2 函数 图象 的
应 用 . 3 高 中 阶段 将 要 学 习 的 解 析 ()
() 当 3 ≥5时 ,= 5 + 2 : , (一 ) (+ ) ,

解 : 函数 J 考虑 =
+ 与 3J =
易, 化繁为简. 化生为熟 , 从而解决问
题 的 目的.
3 此 时 y ̄ 2 5 3 7 . .= x — = .
k 分 别 作 此 两函数 的 图象如 图 3由 . 。
学 素养 和数 学思 维能 力. 运 用 数形 结 合 思 想 解 题 包 括 三 个方面 , 以形助 数 , 以数 助形 , 形 互 数 助. 涉及 数形 结 合思 想 的常见 题 型大
{, 2x5时, 7 当一<<

\ /


l一, 5 . 23I 时 x >
y l
数形结合是数学解 题中常用的 思想方法 , 利用数形结合思想 , 有助
于把握 数 学 问题 的本质 . 如华 罗庚 诚 先 生所 说 :数 缺形 时 少直 观 , 少 数 “ 形
x3 l 2 , ≤一 3 — " - 2时 ,
时难人微. 数形结合百般好 ,隔裂分 家万事休. ”因此 , 我们在解题中要充 分地利用数形结合思想 , 这样做既能 使许多数学问题迎刃而解 , 又能使我 们加深对数学 的理解 , 培养我们的数

数形结合思想在解题中的应用(包含30例子)

数形结合思想在解题中的应用(包含30例子)

数形结合思想在解题中的应用(包含30例子)数形结合思想在解题中的应用(包含30例子)一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

22-+-=214x y如等式()()3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析 例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2.解不等式x x +>2解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222法二、数形结合解法:令,,则不等式的解,就是使的图象y x y x x x yx 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

数形结合巧解绝对值问题

数形结合巧解绝对值问题

和- 3.
42
y - 5 + y + 1 =9.
∵ x + 2 + x - 1 ≥3,y - 5 + y + 1
≥6,
而 x+2 + x-1 + y-5 + y+1
=9,
∴ x + 2 + x - 1 =3,y - 5 + y + 1
=6,
∴- 2≤x ≤1,- 1≤y ≤5,
故 x+y 的最大值与最小值分别为 6
四、解不等式
例 6 不等式 x + 2 + x - 3 >5 的解集


解:由绝对值的几何意义知, x+2 +
x - 3 的最小值为 5,此时 x 在- 2~3 之间(包
括两端点)取值. 若 x + 2 + x - 3 >5 成立,
则 x 必在- 2 的左边或 3 的右边取值 (如图 5
所示),故原不等式的解集为 x <- 2 或 x >3.
图5
五、判断方程解的个数
例 7 方 程 x + 1 + x + 99 + x + 2 =
1996 共有( )个解.
A.4 B. 3
C. 2
D.1
解:当 x 在- 99~- 1 之间(包括这两个端
点)取值时,由绝对值的几何意义知,x + 1 +
x + 99 =98, x + 2 <98. 此时, x + 1 +
一点到表示数 3 和 6 两点的距离的差. 当 P 点
在 3 的左边时,其差恒为-3;当 P 点在 6 的右
边时,其差恒为 3;当 P 点在 3~6 之间(包括这
七、巧用乘法分配律
例8
解方程
1 2018
(x+2688)-
1 2016
(x+
2688)+

运用两点间的距离公式求最值

运用两点间的距离公式求最值

运用两点间的距离公式求最值两点间的距离公式是平面解析几何中最基本的公式.根据题设条件,构设点的坐标,利用两点间的距离公式,数与形相结合,可以使一些代数问题得到直观、形象、简捷、合理的解答.现就两点间的距离公式在求最值中的应用举例说明.一、求函数的最值例1求函数的最小值.分析:本题含有两个根式,切不可把两个无理式的最小值的和作为函数y的最小值,因为这两个根式各自的最小值是在不同的x处取得的.如果从代数的角度考虑,其解答将会比较繁琐,仔细观察式子的结构,改变式子的表示形式:,易联想到两点间的距离公式,从而将代数问题转化为几何问题来解决.解:如图1,在平面直角坐标系内,设点M(2,3),,.则即y≥5(其中等号在M,P,N三点共线时成立),∴.评注:此题若用纯代数知识求解,则比较麻烦,但联想到利用两点间的距离公式,就会茅塞顿开.例2 求函数的最小值.分析:式子中出现了四个根式、两个变量,且根式中皆为平方和的形式,联想两点间的距离公式,则可简化解答过程.解:如图2,表示在平面直角坐标系中的动点到定点,,,的距离之和.而中,,当且仅当点P在线段AD上时等号成立;中,,当且仅当点P在线段BC上时等号成立,所以,当且仅当点P为与的交点时, f(x,y)取得最小值,此时点P的坐标为.二、求距离的平方和的最值例3 已知点,,点满足y=2x,求取得最小值时点P的坐标.分析:利用两点间距离公式将表示为的形式,再消元得一个关于x(或y)的二次函数,最后求值.解:由已知点满足,结合两点间的距离公式,得,当时,取得最小值3,此时点P的坐标为(1,2).评注:对于几何中的平方和的最值问题,常是先由两点间的距离公式建立二元函数,然后通过消元转化为关于x(或y)的函数f(x)(或f(y)),再求解.一般地,对于根式内能化成两个完全平方式之和的问题,均可借助于两点间的距离公式,利用数形结合的思想来解决,这也是这类题型解法的创新之处.以上仅介绍了两点间的距离公式在求最值中的应用,而两点间的距离公式的应用是十分广泛的,随着学习的深入,它在其他方面的应用将会逐渐展现求函数的最值1.已知P(-2, -2), Q(0, 1), R(2, m),若|PR|+|RQ|最小,则m的值为(A)(B)0 (C)-1 (D)-2.已知A(8, 6), B(2, -2),在直线3x-y+2=0上有点P,可使|PA|+|PB|最小,则点P坐标为(A)(2, 0) (B)(-4, -10) (C)(-10, -4) (D)(0, 2)3.已知点A(1, 3), B(5, -2),在x轴上取点P,使||PA|-|PB||最大,则点P坐标为 .4.函数y=的最小值为 .5求函数y=+的最小值.。

线段之和最短问题

线段之和最短问题

四、在圆背景下探求线段和的最小值
9、如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°, B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______
五、在函数背景下探求线段和的最小值
10、一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式; (2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点, 求PC+PD的最小值,并求取得最小值时P点坐标.
延伸3:在两条相交线之外有一个定点P,分别在两条直线上找点B、 C使得PB+BC+CP最短,如何确定B、C的位置? 15、如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、 OB上的动点,求△PQR周长的最小值.
16、如图,在四边形ABCD中,∠BAD=120°,∠B=∠D=90°, AB=1,AD=2,在BC、CD上分别找一点M、N,使得△AMN的周 长最小,则△AMN的最小周长是_______.
13、如图,在锐角△ABC中,AB= 4 2 ,∠BAC=45°, ∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点, 则BM+MN的最小值是____.
延伸2:已知直线L外有一个定点P,在直线L上找两点A、B,使 AB=m,且PA+PB最短。(其中m为定值)
14、如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点, 顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的 中点. (1)若E为边OA上的一个动点,当△CDE的周长最小时, 求点E的坐标; (2)若E、F为边OA上的两个动点,且EF=2, 当四边形CDEF的周长最小时,求点E、F的坐标.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档