初二数学专题练习最短距离问题
初二数学最短路径练习题及答案

初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。
该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。
对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。
本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。
练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。
要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。
解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。
将A、B、C、D顶点分别标记为1、2、3、4。
村庄A到村庄B的距离为5,即A-5-B。
村庄A到村庄C的距离为3,即A-3-C。
村庄B到村庄C的距离为2,即B-2-C。
村庄B到村庄D的距离为6,即B-6-D。
村庄C到村庄D的距离为4,即C-4-D。
2. 接下来,我们使用迪杰斯特拉算法求解最短路径。
a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。
b) 然后,我们选择距离最短的顶点,并将其标记为已访问。
c) 然后,我们更新与该顶点相邻的顶点的距离。
如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。
d) 重复上述步骤,直到找到最短路径为止。
3. 经过计算,最短路径为A-3-C-4-D,距离为7。
练习题二:某城市有6个地点,它们之间的交通图如下所示。
请你计算从地点A到地点F的最短路径,并给出最短路径的长度。
解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。
以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。
将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。
地点A到地点B的距离为4,即A-4-B。
最短距离专题(答案部分)

1 / 13
基本应用
1.如图,∠AOB=30°,内有一点 P 且 OP=5,若 M、N 为边 OA、OB 上两动点, 那么△PMN 的周长最小为 5 .
【分析】根据题意画出符合条件的图形,求出 OD=OE=OP,∠DOE=60°,得出等 边三角形 DOE,求出 DE=5,求出△PMN 的周长=DE,即可求出答案. 【解答】解:作 P 关于 OA 的对称点 D,作 P 关于 OB 的对称点 E,连接 DE 交 OA 于 M,交 OB 于 N,连接 PM,PN,则此时△PMN 的周长最小, 连接 OD,OE, ∵P、D 关于 OA 对称,∴OD=OP,PM=DM, 同理 OE=OP,PN=EN,∴OD=OE=OP=5, ∵P、D 关于 OA 对称,∴OA⊥PD, ∵OD=OP,∴∠DOA=∠POA, 同理∠POB=∠EOB,∴∠DOE=2∠AOB2×30°═60°, ∵OD=OE=5,∴△DOE 是等边三角形, ∴DE=5 即△PMN 的周长是 PM+MN+PN=DM+MN+EN=DE=5,
【分析】(1)首先作出∠AOB 角平分线,再作出 MN 的垂直平分线,交点即为 P; (2)先作出 M 点关于 AB 的对称点 G,连接 NG 交 AB 于 Q,则 Q 就是所求. 【解答】解:(1)如图所示:
∴点 P 是所求做的点; (2)由题意,得 ∴点 Q 是所求作的点. 【点评】本题考查了角平分线的性质的运用,线段的垂直平分线的性质的运用, 轴对称最短路径问题的运用,解答时熟练掌握基本作图的方法是关键.
4 / 13
作 B 点关于 l 的对称点 B′,连接 AB′交E⊥AE,
13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册

13.4轴对称最短路径问题专题练习人教版2024—2025学年八年级上册题型一、两定点一动点作图问题1.如图,A、B是两个居民小区,快递公司准备在公路l上选取点P处建一个服务中心,使P A+PB最短.下面四种选址方案符合要求的是()A.B.C.D.2.如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A.B.C.D.3.如图,直线l是一条公路,A、B是两个村庄.欲在l上的某点处修建一个车站,直接向A、B两地提供乘车服务.现有如下四种建设方案,图中实线表示铺设的行走道路,则铺设道路最短的方案是()A.B.C.D.4.为了促进A,B两小区居民的阅读交流,区政府准备在街道l上设立一个读书亭C,使其分别到A,B两小区的距离之和最小,则下列作法正确的是()A.B.C.D.5.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点题型二、两定点一动点求线段和最小值1.如图,在△ABC中,∠ABC=60°,AD⊥BC于D点,AB=12,.若点E、F分别是线段AD、线段AB上的动点,则BE+EF的最小值是()A.6B.12C.D.2.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E、F点.若点D为BC边的中点,点M为线段EF上一动点,则CM+DM的最小值为()A.21B.7C.6D.3.53.如图,在△ABC中,∠A=90°,AB=6,AC=8,BC=10,CD平分∠BCA交AB于点D,点P,Q分别是CD,AC上的动点,连接AP,PQ,则AP+PQ的最小值是()A.6B.5C.4.8D.44.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值()A.2.4B.4C.5D.4.85.如图,点N在等边△ABC的边BC上,CN=6,射线BD⊥BC,垂足为点B,点P是射线BD上一动点,点M是线段AC上一动点,当MP+NP的值最小时,CM=7,则AC的长为()A.8B.9C.10D.126.如图,已知等边△ABC的边长为4,点D,E分别在边AB,AC上,AE=2BD.以DE为边向右作等边△DEF,则AF+BF的最小值为()A.4B.4C.4D.47.数形结合是重要的数学思想,借助图形,求解的最小值为.8.如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知线段AB=4,DE=2,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.9.如图,A,B两个小镇在河流CD的同侧,到河的距离分别为AC=6千米,BD=14千米,且CD=15千米,现要在河边建一自来水厂,同时向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流CD上选择水厂的位置M,使铺设水管的费用最省,并求出总费用是多少?题型三、两定点一动点求周长最小值1.如图,在△ABC中,直线m是线段BC的垂直平分线,点P是直线m上的一个动点.若AB=7,AC=4,BC=5,则△APC周长的最小值是()A.12B.11C.9D.72.如图,在△ABC中,AB=AC,BC=4,面积是12,AC的垂直平分线EF分别交AB,AC边于点E,F.若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.8B.3C.6D.43.如图,在直角坐标系中,点A,B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A,B,C三点不在同一条直线上,当△ABC的周长最小时点C的坐标是()A.(0,3)B.(0,2)C.(0,1)D.(0,0)4.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5,D、E、F分别是AB、BC、AC边上的动点,则△DEF的周长的最小值是()A.2.5B.3.5C.4.8D.65.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC 外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若BC=5,∠CAB=30°,点P是直线DE 上的一个动点,则△PBC周长的最小值为()A.15B.17C.18D.206.如图,在平面直角坐标系中,点P的坐标为(2,3),P A⊥x轴,PB⊥y轴,C是OA的中点,D是OB上的一点,当△PCD的周长最小时,点D的坐标是()A.(0,1)B.C.D.(0,2)7.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为______8.如图,点A(1,﹣1),B(2,﹣3)(1)点A关于x轴的对称点的坐标为.(2)若点P为坐标轴上一点,当△APB的周长最小时,点P的坐标为.三、一定点二动点线段或周长问题1.如图,在五边形中,∠BAE=140°,∠B=∠E=90°,在边BC,DE上分别找一点M,N,连接AM,AN,MN,则当△AMN的周长最小时,求∠AMN+∠ANM的值是()A.100°B.140°C.120°D.80°2.如图,∠AOB=30°,P是∠AOB内的一个定点,OP=12cm,C,D分别是OA,OB上的动点,连接CP,DP,CD,则△CPD周长的最小值为.3.如图,∠AOB=20°,M,N分别为OA,OB上的点,OM=ON=3,P,Q分别为OA,OB上的动点,则MQ+PQ+PN的最小值为.四、一定点二动点角度问题1.如图,在四边形ABCD中,∠C=40°,∠B=∠D =90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为()A.100°B.90°C.70°D.80°2,如图,∠MON=45°,P为∠MON内一点,A 为OM上一点,B为ON上一点,当△P AB的周长取最小值时,∠APB的度数为()A.45°B.90°C.100°D.135°3.如图,点P为∠AOB内一点,点M,N分别是射线OA,OB上一点,当△PMN的周长最小时,∠OPM=50°,则∠AOB的度数是()A.55°B.50°C.40°D.45°4.已知点P在∠MON内.如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.(1)若∠MON=50°,求∠GOH的度数;(2)如图2,若OP=6,当△P AB的周长最小值为6时,求∠MON的度数.五、二定点二动点1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,在四边形ABCD中,∠B=90°,AB∥CD,BC=3,DC=4,点E在BC上,且BE=1,F,G为边AB上的两个动点,且FG=1,则四边形DGFE的周长的最小值为.3.如图,锐角∠MON内有一定点A,连结AO,点B、C分别为OM、ON边上的动点,连结AB、BC、CA,设∠MON=α(0°<α<90°),当AB+BC+CA取得最小值时,则∠BAC=.(用含α的代数式表示)4.如图,在平面直角坐标系中,O为原点,点A,C,E的坐标分别为(0,4),(8,0),(8,2),点P,Q是OC边上的两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐标为()A.(2,0)B.(3,0)C.(4,0)D.(5,0)5.已知B,C是平面直角坐标系中与x轴平行且距离x轴1个单位长度的直线上的两个动点(点B在点C左侧),且BC=2,若有点A(0,5)和点D(3,3),则当AB+BC+CD的值最小时,点C的坐标为.6.如图,在平面直角坐标系中,已知点A(0,1),B(4,0),C(m+2,2),D(m,2),当四边形ABCD的周长最小时,m的值是()A.B.C.1D.7.如图,在△ABC中,AB=AC,∠A=90°,点D,E是边AB上的两个定点,点M,N分别是边AC,BC上的两个动点.当四边形DEMN的周长最小时,∠DNM+∠EMN的大小是()A.45°B.90°C.75°D.135°8.如图,∠MON=α,α<30°,点A为ON上一定点,点C为ON上一动点,B,D为OM上两动点,当AB+BC+CD最小时,∠BCD+∠ABC=()A.5αB.6αC.90°﹣αD.180°﹣α9.如图,直线l 1,l 2表示一条河的两岸,且l 1∥l 2.现要在这条河上建一座桥(桥与河的两岸相互垂直),使得从村庄A 经桥过河到村庄B 的路程最短,应该选择路线( )A .B .C .D .10.如图,直线l 1、l 2表示一条河的两岸,且l 1∥l 2,现要在这条河上建一座桥,使得村庄A 经桥过河到村庄B 的路程最短,现两位同学提供了两种设计方案,下列说法正确的是( )方案一:①将点A 向上平移d 得到A ';②连接A 'B 交l 1于点M ;③过点M 作MN ⊥l 1,交l 2于点N ,MN 即桥的位置.方案二:①连接AB 交l 1于点M ;②过点M 作MN ⊥l 1,交l 2于点N .MN 即桥的位置.A .唯方案一可行B .唯方案二可行C .方案一、二均可行D .方案一、二均不可行六、线段差的最大值1.如图,在正方形ABCD 中,AB =8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM =6.P为对角线BD上一点,则PM﹣PN的最大值为()A.2B.3C.D.2.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|P A﹣PB|的最大值为.七、多条线段和的最小值1.如图所示,已知A、B、C、D,请在图中找出一点P,使P A+PB+PC+PD最小.2.如图,在平面直角坐标系中,点E在原点,点D(0,2),点F(1,0),线段DE和EF构成一个“L”形,另有点A(﹣1,5),点B(﹣1,﹣1),点C(6,﹣1),连AD,BE,CF.若将这个“L”形沿y轴上下平移,当AD+DE+BE 的值最小时,E点坐标为;若将这个“L”形沿x轴左右平移,当AD+DE+EF+CF的值最小时,E点坐标为.。
初二数学最短距离练习题

初二数学最短距离练习题在初中数学中,最短距离是一个经常出现的概念。
掌握最短距离的求解方法是解决许多几何问题的关键。
本文将介绍一些初二数学最短距离的练习题,帮助同学们更好地理解和应用这一概念。
1. 假设有一个直角三角形,斜边长为10厘米,一条直角边长为6厘米。
求另一条直角边的长度以及最短距离。
解答:根据勾股定理,已知斜边和一直角边的长度,可以求得另一直角边的长度。
设另一直角边的长度为x,则根据勾股定理有:x² + 6² = 10²化简得:x² = 100 - 36 = 64因此,x = 8。
最短距离可以通过两种方法求解。
一种方法是将直角三角形平移到一个坐标平面中,直角顶点对应坐标原点,然后计算另一直角边上的一个点到原点的距离。
另一种方法是利用最短距离的性质,即最短距离是两个点连线的长度。
根据这个性质,可以直接计算斜边和另一直角边的距离,即最短距离。
在这个问题中,最短距离即为直角边长为6厘米的线段长度,因此最短距离为6厘米。
2. 已知一个矩形的长为8厘米,宽为6厘米。
矩形的一角上有一个风筝,风筝的顶点与矩形对角线的交点距离矩形两边的长度分别为3厘米和4厘米。
求风筝到离它最近的矩形边的距离。
解答:首先,通过勾股定理求解矩形对角线的长度。
设对角线的长度为x,则有:x² = 8² + 6² = 64 + 36 = 100因此,x = 10。
由于矩形的一角上有一个风筝,题目要求求解风筝到离它最近的矩形边的距离。
根据最短距离的性质,可以发现离风筝最近的矩形边的长度为3厘米,即风筝到离它最近的矩形边的距离为3厘米。
3. 一个底边为6厘米,高为8厘米的等腰梯形经旋转得到一个圆锥。
求该圆锥的最短距离。
解答:首先,我们需要明确圆锥的最短距离是指圆锥的顶点到圆锥底面上某一点的距离。
在本题中,该点可以是梯形的底边中点。
根据梯形的特性,等腰梯形的底边中点到两侧斜边的距离相等,即为高的一半。
初中数学专题复习(轴对称-最短距离问题)

初中数学专题复习(轴对称-最短距离问题)一.轴对称-最短路线问题1.(2020•荆门)在平面直角坐标系中,长为2的线段CD(点D在点C右侧)在x轴上移动,A(0,2),B(0,4),连接AC,BD,则AC+BD的最小值为()A.2B.2C.6D.3解:设C(m,0),∵CD=2,∴D(m+2,0),∵A(0,2),B(0,4),∴AC+BD=+,∴要求AC+BD的最小值,相当于在x轴上找一点P(n,0),使得点P到M(0,2)和N(﹣2,4)的距离和最小,如图1中,作点M关于x轴的对称点Q,连接NQ交x轴于P′,连接MP′,此时P′M+P′N的值最小,∵N(﹣2,4),Q(0,﹣2)P ′M+P′N的最小值=P′N+P′Q=NQ==2,∴AC+BD的最小值为2.故选:B.2.(2020•贵港)如图,动点M在边长为2的正方形ABCD内,且AM⊥BM,P是CD边上的一个动点,E是AD边的中点,则线段PE+PM的最小值为()A.﹣1B.+1C.D.+1解:作点E关于DC的对称点E',设AB的中点为点O,连接OE',交DC于点P,连接PE,如图:∵动点M在边长为2的正方形ABCD内,且AM⊥BM,∴点M在以AB为直径的圆上,OM=AB=1,∵正方形ABCD的边长为2,∴AD=AB=2,∠DAB=90°,∵E是AD的中点,∴DE=AD=×2=1,∵点E与点E'关于DC对称,∴DE'=DE=1,PE=PE',∴AE'=AD+DE'=2+1=3,在Rt△AOE'中,OE'===,∴线段PE+PM的最小值为:PE+PM=PE'+PM=ME'=OE'﹣OM=﹣1.故选:A.3.(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.4.(2020•潍坊)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=4,以点O为圆心,2为半径的圆与OB 交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点.当PC+PD最小时,OP的长为()A.B.C.1D.解:如图,延长CO交⊙O于点E,连接ED,交AO于点P,此时PC+PD的值最小.∵CD⊥OB,∴∠DCB=90°,又∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO∴∵OC=2,OB=4,∴BC=2,∴,解得,CD=;∵CD∥AO,∴=,即=,解得,PO=故选:B.5.(2020•西宁)如图,等腰△ABC的底边BC=20,面积为120,点D在BC边上,且CD=5,直线EF是腰AC 的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为18.解:如图,作AH⊥BC于H,连接AM,∵EF垂直平分线段AC,∴MA=MC,∴DM+MC=AM+MD,∴当A、D、M共线时,DM+MC的值最小,∵等腰△ABC的底边BC=20,面积为120,AH⊥BC,∴BH=CH=10,AH==12,∴DH=CH﹣CD=5,∴AD===13,∴DM+MC的最小值为13,∴△CDM周长的最小值=13+5=18,故答案为18.6.(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为15.解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′作A′H⊥AB于H.∵BA=BA′,∠ABD=∠DBA′=30°,∴∠ABA′=60°,∴△ABA′是等边三角形,∵四边形ABCD是矩形,∴AD=BC=10,在Rt△ABD中,AB==10,∵A′H⊥AB,∴AH=HB=5,∴A′H=AH=15,∵AM+MN=A′M+MN≥A′H,∴AM+MN≥15,∴AM+MN的最小值为15.故答案为15.7.(2020•毕节市)如图,已知正方形ABCD的边长为4,点E是边AB的中点,点P是对角线BD上的动点,则AP+PE的最小值是.解:如图,连接CE交BD于点P,连接AP,∵四边形ABCD是正方形,∴点A与点C关于BD对称,∴AP=CP,∴AP+EP=CP+EP=CE,此时AP+PE的最小值等于CE的长,∵正方形ABCD的边长为4,点E是边AB的中点,∴BC=4,BE=2,∠ABC=90°,∴CE==,∴AP+PE的最小值是,故答案为:.8.(2020•黑龙江)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD方向平移,得到△EFG,连接EC、GC.求EC+GC的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△EGF,∴EG=AB=1,EG∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴EG=CD,EG∥CD,连接ED∴四边形EGCD是平行四边形,∴ED=GC,∴EC+GC的最小值=EC+ED的最小值,∵点E在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点M,连接CM交定直线于E,则CM的长度即为EC+DE的最小值,∵∠EAD=∠ADB=30°,AD=1,∴∠ADM=60°,DH=MH=AD=,∴DM=1,∴DM=CD,∵∠CDM=∠MDG+∠CDB=90°+30°=120°,∴∠M=∠DCM=30°,∴CM=2×CD=.故答案为:.9.(2020•日照)如图,Rt△ABC中,∠C=90°,以AB为边在AB上方作正方形ABDE,过点D作DF⊥CB,交CB的延长线于点F,连接BE.(1)求证:△ABC≌△BDF;(2)P,N分别为AC,BE上的动点,连接AN,PN,若DF=5,AC=9,求AN+PN的最小值.(1)证明:∵Rt△ABC中,∠C=90°,DF⊥CB,∴∠C=∠DFB=90°.∵四边形ABDE是正方形,∴BD=AB,∠DBA=90°,∵∠DBF+∠ABC=90°,∠CAB+∠ABC=90°,∴∠DBF=∠CAB,∴△ABC≌△BDF(AAS);(2)解:∵△ABC≌△BDF,∴DF=BC=5,BF=AC=9,∴FC=BF+BC=9+5=14.如图,连接DN,∵BE是正方形顶点A与顶点D的对称轴,∴AN=DN.如使得AN+PN最小,只需D、N、P在一条直线上,由于点P、N分别是AC和BE上的动点,作DP1⊥AC,交BE于点N1,垂足为P1,所以,AN+PN的最小值等于DP1=FC=14.10.(2019•西藏)如图,在矩形ABCD中,AB=6,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B 两点距离之和PA+PB的最小值为()A.2B.2C.3D.解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=6,AE=2+2=4,∴BE===2,即PA+PB的最小值为2.故选:A.11.(2019•聊城)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB 的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.12.(2019•黑龙江)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△P AB=S△PCD,则PC+PD的最小值为4.解:如图,作PM⊥AD于M,作点D关于直线PM的对称点E,连接PE,EC.设AM=x.∵四边形ABC都是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵S△P AB=S△PCD,∴×4×x=××4×(6﹣x),∴x=2,∴AM=2,DM=EM=4,在Rt△ECD中,EC==4,∵PM垂直平分线段DE,∴PD=PE,∴PC+PD=PC+PE≥EC,∴PD+PC≥4,∴PD+PC的最小值为4.13.(2019•陕西)如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为2.解:如图所示,以BD为对称轴作N的对称点N',连接PN',延长PN′交BC于M,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.15.(2019•德阳)如图,在四边形ABCD中,BC∥AD,BC=AD,点E为AD的中点,点F为AE的中点,AC⊥CD,连接BE、CE、CF.(1)判断四边形ABCE的形状,并说明理由;(2)如果AB=4,∠D=30°,点P为BE上的动点,求△PAF的周长的最小值.解:(1)四边形ABCE是菱形,理由如下:∵点E是AD的中点,∴AE=AD.∵BC=AD,∴AE=BC.∵BC∥AD,即BC∥AE.∴四边形ABCE是平行四边形∵AC⊥CD,点E是AD的中点,∴CE=AE=DE,∴四边形ABCE是菱形(2)由(I)得,四边形ABCE是菱形.∴AE=EC=AB=4,且点A、C关于BE对称∵点F是AE的中点,AF=AE=2∴当PA+PF最小时,△PAF的周长最小即点P为CF与BE的交点时,△PAF的周长最小,此时△PAF的周长=PA+PF+AF=CF+AF,在Rt△ACD中,点E是AD的中点,则CE=DE,∠ECD=∠D=30°,∠ACE=90°﹣30°=60°.∴△ACE是等边三角形.∴AC=AE=CE=4.∵AF=EF,CF⊥AE∴CF==2△PAF的周长最小=CF+AF=2.。
初二数学专题练习 最短距离问题

初二数学专题练习最短距离问题1.如图3-10,在l上求作一点M,使得AM+BM最小.2.A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)3.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.4.如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值5.如图,在锐角△ABC中,AB=42BAC=45°,∠BAC的平分线交BC 于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值是.6.如图所示,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,)A.3B.26C.3 D67.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC 上移动,则当PA+PD取最小值时,△APD中边AP上的高为8.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,(1)不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.9.(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N 的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置.(2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短.10.如图,厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个厂的水平距离都是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B 的距离最短.(河的两岸是平行的)①请画出架桥的位置.(不写画法)②求从工厂A经过桥到工厂B的最短路程.11.一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).(1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,求PC +PD 的最小值,并求取得最小值时P 点坐标.12.如图,在直角坐标系中有四个点A (-6,3),B (-2,5),C (0,m ),D (n ,0),当四边形ABCD 周长最短时,则m=________,n=________.13.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为1cm ,2cm ,3cm 的长方体木块的顶点A 处沿表面达到顶点B 处(如图所示),这只14cm B.32cm26cm D.(113cm +14.如图,A ,B 两个工厂位于一段直线形河的异侧,A 厂距离河边AC=5km ,B 厂距离河边BD=1km ,经测量CD=8km ,现准备在河边某处(河宽不计)修一个污水处理厂E . (1)设ED=x ,请用x 的代数式表示AE+BE 的长;(2)为了使两厂的排污管道最短,污水厂E 的位置应怎样来确定此时需要管道多长?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你猜想的最小值为______.()224129x x ++-+。
初二数学专题练习最短距离问题精修订

初二数学专题练习最短距离问题GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-初二数学专题练习最短距离问题1.如图3-10,在l上求作一点M,使得AM+BM最小.2.A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)3.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.4.如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值是.6.如图所示,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3.26C.3 D67.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为8.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,(1)不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.9.(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置.(2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短.10.如图,厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个厂的水平距离都是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短.(河的两岸是平行的)①请画出架桥的位置.(不写画法)②求从工厂A经过桥到工厂B的最短路程.11.一次函数y kx b=+的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.12.如图,在直角坐标系中有四个点A(-6,3),B(-2,5),C(0,m),D(n,0),当四边形ABCD周长最短时,则m=________,n=________.13.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为1cm,2cm,3cm的长方体木块的顶点A处沿表面达到顶点B处(如图所示),这只蚂蚁走的路程是A.14cmB.32cmD.(1cm+14.如图,A,B两个工厂位于一段直线形河的异侧,A厂距离河边AC=5km,B厂距离河边BD=1km,经测量CD=8km,现准备在河边某处(河宽不计)修一个污水处理厂E.(1)设ED=x,请用x的代数式表示AE+BE的长;(2)为了使两厂的排污管道最短,污水厂E的位置应怎样来确定此时需要管道多长?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你猜想的最小值为______.。
初二数学最短问题练习题

初二数学最短问题练习题初中数学最短问题练习题1:小明从家到学校的路程是5公里,他每分钟步行的速度是80米,他需要多久才能到学校?解:首先要将5公里转换成米,1公里等于1000米,所以5公里等于5000米。
然后,我们将5000米除以80米/分钟,得到小明步行到学校所需的时间。
计算得:5000 ÷ 80 = 62.5分钟。
所以,小明需要62.5分钟才能到学校。
题2:一个长方形的长是18厘米,宽是10厘米,要将这个长方形的面积扩大到原来的3倍,长和宽各要扩大多少?解:首先,我们计算出原长方形的面积。
面积等于长乘以宽,所以原长方形的面积是18厘米 × 10厘米 = 180平方厘米。
要将面积扩大到原来的3倍,即变为180平方厘米 × 3 = 540平方厘米。
设扩大后的长为x,宽为y,则有xy = 540。
由于扩大的倍数是相同的,所以可以设x扩大了a倍,y扩大了b倍,于是有18a = x,10b = y。
代入xy = 540得到18a × 10b = 540,化简得ab = 15。
由此我们可以列出因数对ab = 15的所有可能情况:{a=1,b=15},{a=3,b=5},{a=5,b=3},{a=15,b=1}。
根据题意,长和宽需要扩大,所以a,b必须都是大于1的整数。
在这四种情况中,只有{a=3,b=5}满足要求,也就是扩大后的长是18厘米的3倍,即54厘米,宽是10厘米的5倍,即50厘米。
所以,长和宽各要扩大36厘米和40厘米。
题3:某商品原价100元,现在打8折出售,请问现在的售价是多少?解:打8折意味着打折后的价格是原价的80%。
所以,打8折后的售价是100元 × 80% = 80元。
所以,现在的售价是80元。
题4:小明去购物,他买了一件衣服原价是200元,现在打6折出售,又使用了一张价值50元的代金券,请问小明需要支付多少钱?解:首先,将衣服的原价200元打6折,得到打折后的价格为200元 × 60% = 120元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学专题练习最短距离问题
1.如图3-10,在l上求作一点M,使得AM+BM最小.
2.A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)
3.如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.
4.如图,在正方形ABCD中,点E为AB上一定点,
且BE=10,CE=14,P为BD上一动点,求PE+PC最小值
5.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D,M、N分别是AD和AB上的动点,求BM+MN的最小值是.
6.如图所示,正方形ABCD的面积为12,△ABC是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()
A.3.26
C.3 D6
7.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为
8.如图,为了解决A、B、C、D四个小区的缺水问题,市政府准备投资修建一个水厂,
(1)不考虑其他因素,请你画图确定水厂H的位置,使之与四个小区的距离之和最小.
(2)另外,计划把河流EF中的水引入水厂H中,使之到H的距离最短,请你画图确定铺设引水管道的位置,并说明理由.
9.(1)如图1示,∠AOB内有两点M,N,请你确定一点P,使点P到M,N的距离相等,且到OA,OB边的距离也相等,在图上标出它的位置.
(2)某班举行文艺晚会,桌子摆成两直线(如图2中的AO,BO),AO桌面上摆满桔子,BO桌面上摆满糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮他设计一条行走路线,使其所走的路程最短.
10.如图,厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个厂的水平距离都是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短.(河的两岸是平行的)
①请画出架桥的位置.(不写画法)
②求从工厂A经过桥到工厂B的最短路程.
11.一次函数y kx b
=+的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.12.如图,在直角坐标系中有四个点A(-6,3),B(-2,5),C(0,m),D?(n,0),当四边形ABCD周长最短时,则m=________,n=________.
13.蚂蚁搬家都选择最短路线行走,有一只蚂蚁
沿棱长分别为1cm ,2cm ,3cm 的长方体木块的顶点A 处沿表面达到顶点B 处(如图所示),这只蚂蚁走的路程是
A.
B.
D.(1cm +
14.如图,A ,B 两个工厂位于一段直线形河的异侧,A 厂距离河边AC=5km ,B 厂距离河边BD=1km ,经测量CD=8km ,现准备在河边某处(河宽不计)修一个污水处理厂E .
(1)设ED=x ,请用x 的代数式表示AE+BE 的长;
(2)为了使两厂的排污管道最短,污水厂E 的位置应怎样来确定此时需要管道多长?
(3)通过以上的解答,充分展开联想,运用数形结合思想,请你猜想
的最小值为______.。