江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三数学第二次调研考试试题(含解析)

合集下载

高三数学一轮复习典型题专题训练:函数(含解析)

高三数学一轮复习典型题专题训练:函数(含解析)

高三数学一轮复习典型题专题训练函 数一、填空题1、(南京市、镇江市2019届高三上学期期中考试)函数()27log 43y x x =-+的定义域为_____________2、(南京市2019届高三9月学情调研)若函数f (x )=a +12x -1 是奇函数,则实数a 的值为 ▲3、(苏州市2019届高三上学期期中调研)函数()lg(2)2f x x x =-++的定义域是 ▲ .4、(无锡市2019届高三上学期期中考试)已知8a =2,log a x =3a ,则实数x =5、(徐州市2019届高三上学期期中质量抽测)已知奇函数()y f x =是R 上的单调函数,若函数2()()()g x f x f a x =+-只有一个零点,则实数a 的值为 ▲ .6、(盐城市2019届高三第一学期期中考试)已知函数21()()(1)2xf x x m e x m x =+--+在R 上单调递增,则实数m 的取值集合为 .7、(扬州市2019届高三上学期期中调研)已知函数()f x 为偶函数,且x >0时,32()f x x x =+,则(1)f -= .8、(常州市武进区2019届高三上学期期中考试)已知函数()(1)()f x x px q =-+为偶函数,且在(0,)+∞单调递减,则(3)0f x -<的解集为 ▲9、(常州市2019届高三上学期期末)函数1ln y x =-的定义域为________.10、(海安市2019届高三上学期期末)已知函数f (x )=⎩⎪⎨⎪⎧3x -4,x <0,log 2x ,x >0,若关于x 的不等式f (x )>a 的解集为(a 2,+∞),则实数a 的所有可能值之和为 .11、(南京市、盐城市2019届高三上学期期末)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln2)的值为 ▲ .12、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末) 函数有3个不同的零点,则实数a 的取值范围为____13、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知,a b ∈R ,函数()(2)()f x x ax b =-+为偶函数,且在(0,)+∞上是减函数,则关于x 的不等式(2)0f x ->的解集为 .14、(苏州市2019届高三上学期期末)设函数220()20x x x f x x x ⎧-+≥=⎨-<⎩,,,若方程()3f x kx -=有三个相异的实根,则实数k 的取值范围是 .15、(南京市2018高三9月学情调研)已知函数f (x )=⎩⎨⎧2x 2,x ≤0,-3|x -1|+3,x >0.若存在唯一的整数x ,使得f (x )-a x >0成立,则实数a 的取值范围为 ▲ .16、(苏州市2018高三上期初调研)已知函数()()0af x x a x=+>,当[]1,3x ∈时,函数()f x 的值域为A ,若[]8,16A ⊆,则a 的值是 .17、(镇江市2018届高三第一次模拟(期末)考试)已知k 为常数,函数⎪⎩⎪⎨⎧>≤-+=0ln 0,12)(x x x x x x f ,若关于x 的方程2)(+=kx x f 有且只有4个不同的解,则实数k 的取值集合为18、(苏锡常镇四市2019届高三教学情况调查(一))已知函数2log (3)0()210x x x f x x -≤⎧=⎨->⎩,,,若1(1)2f a -=,则实数a = . 19、(盐城市2019届高三第三次模拟)若函数)1lg()1lg()(ax x x f +++=是偶函数,则实数a 的值_____.20、(江苏省2019年百校大联考)已知函数2,1(),1x x x f x x x ⎧-≥=⎨<⎩ ,则不等式2()f x f x ⎛⎫< ⎪⎝⎭的解集是 .21、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月)) 已知函数()()()2|||2|(0)f x x a x a x a a =+-++<.若(1)(2)(3)f f f +++…(672)0f +=,则满足()2019f x =的x 的值为 ▲ .22、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)定义在R 上的奇函数()f x 满足(4)()f x f x +=,且在区间[)24,上,223()434x x f x x x -<⎧=⎨-<⎩≤≤,,,,则函数5()log y f x x =-| |的零点的个数为 ▲ .23、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月)) 已知函数2()23f x x x a =-+,2()1g x x =-.若对任意[]103x ∈,,总存在[]223x ∈,,使得 12()()f x g x ≤成立,则实数a 的值为 ▲ .二、解答题1、(南京市、镇江市2019届高三上学期期中)已知k R ∈,函数2()(1)2f x x k x k =+-=-(1)解关于x 的不等式()2f x <(2)对任意(1,2),()1x f x ∈-≥恒成立,求实数k 的取值范围2、(南京市、镇江市2019届高三上学期期中)已知函数4()log log (0a f x x x a =+>且a ≠1)为增函数。

江苏省泰州、南通、扬州、苏北四市七市2019届高三第一次调研测试数学试题(含附加题)

江苏省泰州、南通、扬州、苏北四市七市2019届高三第一次调研测试数学试题(含附加题)

2019届泰州、南通、扬州、苏北四市高三数学第一次调研测试数学学科参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共计70分. 1. 已知集合{}13=A ,,{}01=B ,,则集合AB = ▲ .【答案】{}013,,【解析】注意集合中元素的互异姓2. 已知复数2i 3i 1iz --=(i 为虚数单位),则复数z 的模为 ▲ .【答案【解析】23(1)2i 33i =1i 11i i i i z i i -----+==--,31i z i -+===-3. 某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为 ▲ . 【答案】3 【解析】22031541055350x ⨯+⨯+⨯+⨯==4. 如图是一个算法流程图,则输出的b 的值为 ▲ .【答案】7【解析】当0,1a b ==时,1,3a b == 当1,3a b == 时,5,5a b ==(第4题)当5,5a b ==时,21,7a b ==5. 有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参 加一个,则这两位同学参加不同兴趣小组的概率为 ▲ . 【答案】23【解析】62333p ==⨯6. 已知正四棱柱的底面边长是3 cm ,侧面的对角线长是, 则这个正四棱柱的体积为 ▲ cm 3. 【答案】54【解析】6h == ,9654V =⨯=【应该改成体对角线比较好的哦,难道考查考生审题能力】 7. 若实数x y ,满足2+3x y x ≤≤,则x y +的最小值为 ▲ .【答案】6-【解析】2333x y x x x +≤++≤+,23,3x x x ≤+≥- ,min ()3x y +≤8. 在平面直角坐标系xOy 中,已知抛物线22(0)=>y px p 的准线为l ,直线l 与双曲线2214x y -=的两条渐近线分别交于A ,B 两点,AB =p 的值为 ▲ .【答案】【解析】双曲线渐近线方程,2x y =± ,根据双曲线对称性可知,24PAB =⨯=解之得p =9. 在平面直角坐标系xOy 中,已知直线3y x t =+与曲线()sin cos y a x b x a b t =+∈R ,,相切于点()01,,则()a b t +的值为 ▲ .。

2019年江苏泰州、南通、扬州、徐州、淮安、连云港、宿迁七市高三一模数学试卷-学生用卷

2019年江苏泰州、南通、扬州、徐州、淮安、连云港、宿迁七市高三一模数学试卷-学生用卷

2019年江苏泰州、南通、扬州、徐州、淮安、连云港、宿迁七市高三一模数学试卷-学生用卷一、选择题(本大题共14小题,每小题5分,共70分)1、【来源】 2019年江苏南通高三一模第1题5分已知集合A={1,3},B={0,1},则集合A∪B=.2、【来源】 2019年江苏南通高三一模第2题5分−3i(i为虚数单位),则复数z的模为.已知复数z=2i1−i3、【来源】 2019年江苏南通高三一模第3题5分某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为.4、【来源】 2019年江苏南通高三一模第4题5分如图是一个算法流程图,则输出的b的值为.5、【来源】 2019年江苏南通高三一模第5题5分有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6、【来源】 2019年江苏南通高三一模第6题5分2017~2018学年江苏连云港高三上学期期末理科第8题5分2019~2020学年江苏泰州海陵区江苏省泰州中学高三上学期期中文科第10题5分2018年江苏徐州高三一模第8题5分2018~2019学年江苏苏州姑苏区苏州第三中学高二下学期期中理科第11题5分已知正四棱柱的底面边长为3cm,侧面的对角线长是3√5cm,则这个正四棱柱的体积是cm3.7、【来源】 2019年江苏南通高三一模第7题5分若实数x,y满足x⩽y⩽2x+3,则xy的最小值为.8、【来源】 2019年江苏南通高三一模第8题5分在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线x24−y2=1的两条渐近线分别交于A,B两点,AB=√6,则p的值为.9、【来源】 2019年江苏南通高三一模第9题5分在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=asin⁡x+bcos⁡x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为.10、【来源】 2019年江苏南通高三一模第10题5分已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列②数列{a n a n+1}是等比数列;③数列{1a n}是等比数列;④数列{lg a n2}是等比数列.其中正确的命题有个.11、【来源】 2019年江苏南通高三一模第11题5分已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x⩽1时,f(x)=x3−ax+1,则实数a的值为.12、【来源】 2019年江苏南通高三一模第12题5分在平面四边形ABCD中,AB=1,DA=DB,AB→⋅AC→=3,AC→⋅AD→=2,则|AC→+2AD→|的最小值为.13、【来源】 2019年江苏南通高三一模第13题5分2018~2019学年5月江苏扬州广陵区江苏省扬州中学高一下学期月考第16题在平面直角坐标系xOy中,圆O:x+y2=1,圆C:(x−4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围.14、【来源】 2019年江苏南通高三一模第14题5分已知函数f(x)=(2x+a)(|x−a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+⋯+f(672)= 0,则满足f(x)=2019的x的值为.二、解答题(本大题共6小题,共90分)15、【来源】 2019年江苏南通高三一模第15题14分2018~2019学年3月贵州贵阳云岩区贵阳第二中学高二下学期月考文科第19题12分如图,在四棱锥P−ABCD中,M ,N分别为棱PA ,PD的中点.已知侧面PAD⊥底面ABCD ,底面ABCD是矩形,DA=DP .(1) MN//平面PBC.(2) MD⊥平面PAB .16、【来源】 2019年江苏南通高三一模第16题14分2019~2020学年10月江苏苏州工业园区西安交通大学苏州附属中学高三上学期月考第16题14分2018~2019学年2月湖北武汉江岸区武汉市第六中学高一下学期月考第19题12分2018~2019学年3月江苏南京鼓楼区南京市宁海中学高一下学期月考第17题14分在△ABC中,a,b,c分别为角A,B,C所对边的长,acos⁡B=√2bcos⁡A,cos⁡A=√33.(1) 求角B的值.(2) 若a=√6,求△ABC的面积.17、【来源】 2019年江苏南通高三一模第17题14分2019~2020学年甘肃兰州高二上学期期末理科(联片办学)第22题12分如图,在平面直角坐标系xOy中,椭圆x 2a2+y2b2=1(a>b>0)的左焦点F,右顶点为A,上顶点为B.(1) 已知椭圆的离心率为12,线段AF的中点的横坐标为√22,求椭圆的标准方程.(2) 已知△ABF外接圆的圆心在直线y=−x上,求椭圆的离心率e的值.18、【来源】 2019年江苏南通高三一模第18题16分如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为2√3m和4m,上部是.圆心为O的劣弧CD,∠COD=2π3(1) 求图1中拱门最高点到地面的距离.(2) 现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为ℎ,试用θ的函数表示ℎ,并求出ℎ的最大值.19、【来源】 2019年江苏南通高三一模第19题16分已知函数f(x)=a x +ln⁡x(a ∈R).(1) 讨论f(x)的单调性.(2) 设f(x)的导函数为f ′(x),若f(x)有两个不相同的零点x 1,x 2.① 求实数a 的取值范围.② 证明:x 1f ′(x 1)+x 2f ′(x 2)>2ln⁡a +2.20、【来源】 2019年江苏南通高三一模第20题16分已知等差数列{a n }满足a 4=4,前8项和S 8=36.(1) 求数列{a n }的通项公式.(2) 若数列{b n }满足∑(b k a 2n+1−2k )+2a n n k=1=3(2n −1),(n ∈N ∗).① 证明:{b n }为等比数列.② 求集合{(m,p)|a m b m =3a p b p ,m,p ∈N ∗}.三、选做题(本题包括21、22、23三小题,请选定其中两题作答.).[选修4-2:矩阵与变换]21、【来源】 2019年江苏南通高三一模第21题10分已知矩阵M =[ac bd ],N =[10012],且(MN)−1=[14002],求矩阵M .[选修4-4:坐标系与参数方程]22、【来源】 2019年江苏南通高三一模第22题10分在平面直角坐标系xOy 中,曲线C 的参数方程是{x =t y =t 2 (t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程是ρsin⁡(θ−π4)=√2.求: (1) 直线l 的直角坐标方程.(2) 直线l 被曲线C 截得的线段长.[选修4-5:不等式选讲]23、【来源】 2019年江苏南通高三一模第23题10分已知实数a,b,c满足a2+b2+c2⩽1,求证:1a2+1+1b2+1+1c2+1⩾94.四、必做题(第22、23题,每小题10分,共计20分)24、【来源】 2019年江苏南通高三一模第24题10分“回文数”是指从左到右与从右到左都一样的正整数,如22,121,3553等,显然2位“回文数”共9个:11,22,33,⋯,99,现从9个不同2位“回文数”中任取1个乘以4,其结果为X,从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1) 求X为“回文数”的概率.(2) 设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).25、【来源】 2019年江苏南通高三一模第25题10分设集合B是集合A n={1,2,3,⋯,3n−2,3n−1,3n},n∈N∗的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1) 集合A1的“和谐子集”的个数.(2) 集合A n的“和谐子集”的个数.1 、【答案】{0,1,3};2 、【答案】√5;3 、【答案】3;4 、【答案】7;5 、【答案】23;6 、【答案】54;7 、【答案】−6;8 、【答案】2√6;9 、【答案】4;10 、【答案】3;11 、【答案】2;12 、【答案】2√5;13 、【答案】−4<m<43;14 、【答案】337;15 、【答案】 (1) 证明见解析.;(2) 证明见解析.;16 、【答案】 (1) π4.;(2) 6+3√24.;17 、【答案】 (1) x28+y26=1.;(2) √22.;18 、【答案】 (1) 拱门最高点到地面的距离为5m.;(2) ℎ={4sin⁡θ+2√3cos⁡θ,0⩽θ⩽π62+2√3sin⁡(θ+π6),π6<θ⩽π2;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为(2+2√3)m.;19 、【答案】 (1) 当a⩽0时,f(x)在(0,+∞)为增函数;当a>0时,f(x)在(a,+∞)上为增函数;在(0,a)上为减函数.;(2)① a 的取值范围是(0,1e). ② 证明见解析.;20 、【答案】 (1) an =n . ;(2)① 数列{b n }是首项为1,公比为2的等比数列. ② {(6,8)}; 21 、【答案】 [4001]. ;22 、【答案】 (1) x −y +2=0. ;(2) 3√2.;23 、【答案】 证明见解析. ;24 、【答案】 (1) 概率P =29. ;(2) 随机变量ξ的概率分布为: 随机变量ξ的数学期望为:E(ξ)=79. ;25 、【答案】 (1) 4. ;(2) 23×2n+13×23n(n∈N∗).;。

【精品试题】【市级联考】江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考

【精品试题】【市级联考】江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考

2019届高三第二次调研测试一、填空题:本大题共14小题,每小题5分,共计70分.1.已知集合,.若,则实数a的值为____.【答案】4【解析】【分析】由确定a值即可【详解】∵,∴a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.复数(为虚数单位)的实部为____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求【详解】故实部为故答案为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故该学校的行政人员人数是735,故答案为 35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【答案】【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2人参加植树活动,有6种,甲、乙两人中恰有1人被选中有4种,∴所求概率为,故答案为.【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.函数的定义域为___.【答案】【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.将函数的图象向左平移个单位长度得到的图象,则的值为___.【答案】【解析】【分析】先由平移得f(x)的解析式,再将代入解析式求值即可【详解】f(x)=2sin3(x+=2sin(3x+,则故答案为【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.在平面直角坐标系中,已知双曲线的右顶点到渐近线的距离为,则b的值为___.【答案】2【解析】【分析】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,可得b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C 120°,sinB 2 sinA,且△ABC的面积为,则AB的长为____.【答案】【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△ABC,解得a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△ABC,解得a.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣2cos120°=28,解得c,即AB=故答案为【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA 2 m,PB 3 m,PC4 m,则球O的表面积为____m2.【答案】【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA 2 m,PB 3 m,PC 4 m,∴2R=则球O的表面积S=4πR2=29π故答案为【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O 的半径,是解答本题的关键,是基础题11.定义在R上的奇函数满足,且在区间上,则函数的零点的个数为___.【答案】5【解析】【分析】由图分析画出与在同一个坐标系的图像,即可求解【详解】由题知函数的周期为4,又函数为奇函数,∴,即故f(x)关于(2,0)中心对称,又g(x)=为偶函数,则画出f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于的不等式( a,b,c R ) 的解集为{ x | 3 < x < 4},则的最小值为___.【答案】【解析】【分析】由不等式解集知a<0,由根与系数的关系知,将b,c分别用a 表示代入,利用基本不等式求最小值即可【详解】由不等式解集知a<0,由根与系数的关系知则,当且仅当-24a=即取等故答案为【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆上,且,点P(31),,设的中点M的横坐标为x0,则x0的所有值为____.【答案】【解析】【分析】设AB中点为M由弦长公式,求出M的轨迹方程;由得,将向量坐标化得到的方程组,求解即可求出【详解】设AB中点为M由勾股三角形知OM=,即,又则,即∴, ②,将联立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合,从集合中取出个不同元素,其和记为;从集合中取出个不同元素,其和记为.若,则的最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取S由得到令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式得取等条件不成立,则检验t=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则,由基本不等式当且仅当m=t=22时取等,∵t为奇数,∴的最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为43,所以的最大值为44故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.在平面直角坐标系中,设向量 , ,其中.(1)若∥,求的值; (2)若,求的值.【答案】(1);(2)【解析】 【分析】(1)由向量共线的坐标表示可求进而求出,(2)由,求得将展开即可代入求解【详解】(1)因为∥, 所以,所以.因为,所以.于是 解得.(2)因为,所以,又,故.因为,所以,又,解得.因此,.【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题 16.如图所示,在直三棱柱ABC A 1B 1C 1中,侧面BCC 1B 1为正方形,A 1B 1⊥B 1C 1.设A 1C 与AC 1交于点D ,B 1C 与BC 1交于点E .求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB ABB1 A1,DE ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.又因为BC1BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C A1B1C,所以BC1⊥平面A1B1C.【点睛】本题考查线面平行的证明,线面垂直的判定,熟记判断定理,准确推理是关键,是基础题.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD 和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH .(1)求屋顶面积S关于的函数关系式;(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?【答案】(1);(2)当为时该别墅总造价最低【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以,得△FBC的面积,从而得到屋顶面积;(2)别墅总造价为=令,求导求最值即可【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM ABCD,得FH⊥HM.在Rt△FHM中,HM 5,,所以.因此△FBC的面积为.从而屋顶面积.所以S关于的函数关系式为().(2)在Rt△FHM中,,所以主体高度为.所以别墅总造价为记,,所以,令,得,又,所以.列表:所以当时,有最小值.答:当为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S表示为函数是关键,求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1:,椭圆C2:,C2与C1的长轴长之比为∶1,离心率相同.(1)求椭圆C2的标准方程;(2)设点为椭圆C2上一点.①射线与椭圆C1依次交于点,求证:为定值;②过点作两条斜率分别为的直线,且直线与椭圆C1均有且只有一个公共点,求证:为定值.【答案】(1);(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆a=,离心率,由得b即可;(2)①当直线OP斜率不存在时,得当直线OP斜率存在时,设直线OP的方程为,与椭圆联立,同理,推得从而可求;②设,直线的方程为即,记,则的方程为,代入椭圆C1的方程得,由,得,再将代入得,同理,得到关于为根的方程,由韦达定理及点P在椭圆上化简即可求得为定值【详解】(1)设椭圆C2的焦距为2c,由题意,,,,解得,因此椭圆C2的标准方程为。

考点18 函数y=Asin(ωx+φ)的图像-2020年领军高考数学一轮必刷题(江苏版)(原卷版)

考点18 函数y=Asin(ωx+φ)的图像-2020年领军高考数学一轮必刷题(江苏版)(原卷版)

考点18 函数y=Asin(ωx+φ)的图像1.(江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测)将函数的图象向右平移个单位得到函数的图象,则以函数与的图象的相邻三个交点为顶点的三角形的面积为________________.2.(江苏省镇江市2019届高三上学期期中考试)将函数的图像向左平移()个单位弧,所得函数图象关于直线对称,则=_______.3.(江苏省南通市2019届高考数学模拟)在平面直角坐标系xOy中,将函数的图象向右平移个单位得到的图象,则的值为______4.(江苏省扬州树人学校2019届高三模拟考试四)若将函数()的图象向左平移个单位所得到的图象关于原点对称,则__________.8.(江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第三次调研考试数学试题)如图,有一壁画,最高点处离地面6 m,最低点处离地面3.5 m.若从离地高2 m的处观赏它,则离墙____m 时,视角最大.9.(江苏省七市2019届(南通、泰州、扬州、徐州、淮安、宿迁、连云港)高三第二次调研考试)将函数的图象向左平移个单位长度得到的图象,则的值为___.10.(江苏省如东中学2019届高三年级第二次学情测试)若,则________. 11.(盐城市2019届高三年级第一学期期中模拟考试)已知函数的图像的一个最高点为,其图像的相邻两个对称中心之间的距离为,则=_________.12.(江苏省常州市2018届高三上学期武进区高中数学期中试卷)如图为函数图象的一部分,其中点是图象的一个最高点,点是与点相邻的图象与轴的一个交点.(1)求函数的解析式;(2)若将函数的图象沿轴向右平移个单位,再把所得图象上每一点的横坐标都变为原来的(纵坐标不变),得到函数的图象,求函数的解析式及单调递增区间.13.(江苏省苏州市2019届高三高考模拟最后一卷)如图为一块边长为2km的等边三角形地块ABC,为响应国家号召,现对这块地进行绿化改造,计划从BC的中点D出发引出两条成60°角的线段DE和DF,与AB和AC围成四边形区域AEDF,在该区域内种上草坪,其余区域修建成停车场,设∠BDE= .(1)当α=60°时,求绿化面积;Sα的取值范围.(2)试求地块的绿化面积()14.(江苏省南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟考试)为解决城市的拥堵问题,某城市准备对现有的一条穿城公路MON进行分流,已知穿城公路MON自西向东到达城市中心后转向ON方向,已知∠ON上设一出口B,假设高架道路L在AB部分为直线段,且要求市中心O与AB的距离为10km.(1)求两站点A,B之间的距离;(2)公路MO段上距离市中心O30km处有一古建筑群C,为保护古建筑群,设立一个以C为圆心,5km 为半径的圆形保护区.因考虑未来道路AB的扩建,则如何在古建筑群和市中心O之间设计出入口A,才能使高架道路及其延伸段不经过保护区?15.(江苏省扬州市2018-2019学年度第一学期期末检测试题)为了美化环境,某公园欲将一块空地规划建成休闲草坪,休闲草坪的形状为如图所示的四边形ABCD.其中AB=3百米,AD=百米,且△BCD是以D为直角顶点的等腰直角三角形.拟修建两条小路AC,BD(路的宽度忽略不计),设∠BAD=,(,).(1)当cos=时,求小路AC的长度;(2)当草坪ABCD的面积最大时,求此时小路BD的长度.16.(江苏省如东中学2019届高三年级第二次学情测试)梯形顶点在以为直径的圆上,米.(1)如图1,若电热丝由这三部分组成,在上每米可辐射1单位热量,在上每米可辐射2单位热量,请设计的长度,使得电热丝的总热量最大,并求总热量的最大值;(2)如图2,若电热丝由弧和弦这三部分组成,在弧上每米可辐射1单位热量,在弦上每米可辐射2单位热量,请设计的长度,使得电热丝辐射的总热量最大.17.(江苏省南京市六校联合体2019届高三12月联考)如图,某公园内有一个以O为圆心,半径为5百米,圆心角为的扇形人工湖OAB,OM、ON是分别由OA、OB延伸而成的两条观光道.为便于游客观光,公园的主管部门准备在公园内增建三条观光道,其中一条与相切点F,且与OM、ON分别相交于C、D,另两条是分别和湖岸OA、OB垂直的FG、FH (垂足均不与O重合).(1) 求新增观光道FG、FH长度之和的最大值;(2) 在观光道ON段上距离O为15百米的E处的道路两侧各有一个大型娱乐场,为了不影响娱乐场平时的正常开放,要求新增观光道CD的延长线不能进入以E为圆心,2.5百米为半径的圆形E的区域内.则点D应选择在O与E之间的什么位置?请说明理由.18.(江苏省清江中学2019届高三第二次教学质量调研)如图为某大河的一段支流,岸线近似满足∥宽度为7圆为河中的一个半径为2的小岛,小镇位于岸线上,且满足岸线现计划建造一条自小镇经小岛至对岸的通道(图中粗线部分折线段,在右侧),为保护小岛,段设计成与圆相切,设(1)试将通道的长表示成的函数,并指出其定义域.(2)求通道的最短长.19.(江苏省苏锡常镇2018届高三3月教学情况调研一)如图,某景区内有一半圆形花圃,其直径为,是圆心,且.在上有一座观赏亭,其中.计划在上再建一座观赏亭,记.(1)当时,求的大小;(2)当越大,游客在观赏亭处的观赏效果越佳,求游客在观赏亭处的观赏效果最佳时,角的正弦值.。

2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷和答案

2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷和答案

2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B=.2.(5分)已知复数(i为虚数单位),则复数z的模为.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为.4.(5分)如图是一个算法流程图,则输出的b的值为.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是cm3.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有个.11.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为.12.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为.13.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E (ξ).25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.2019年江苏省泰州市、南通市、扬州市、苏北四市七市高考数学一模试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={1,3},B={0,1},则集合A∪B={0,1,3}.【解答】解:根据题意,集合A={1,3},B={0,1},则A∪B={0,1,3};故答案为:{0,1,3}.2.(5分)已知复数(i为虚数单位),则复数z的模为.【解答】解:=,则复数z的模为.故答案为:.3.(5分)某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:则平均每人参加活动的次数为3.【解答】解:根据题意,计算这组数据的平均数为:=×(20×2+15×3+10×4+5×5)=3.故答案为:3.4.(5分)如图是一个算法流程图,则输出的b的值为7.【解答】解:模拟程序的运行,可得a=0,b=1满足条件a<15,执行循环体,a=1,b=3满足条件a<15,执行循环体,a=5,b=5满足条件a<15,执行循环体,a=21,b=7此时,不满足条件a<15,退出循环,输出b的值为7.故答案为:7.5.(5分)有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加不同兴趣小组的概率为.【解答】解:有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,基本事件总数n=3×3=9,这两位同学参加不同兴趣小组包含的基本事件个数m=3×2=6,则这两位同学参加不同兴趣小组的概率为p==.故答案为:.6.(5分)已知正四棱柱的底面边长为3cm,侧面的对角线长是3cm,则这个正四棱柱的体积是54cm3.【解答】解:设正四棱柱的高为h,∵正四棱柱的底面边长为3cm,侧面的对角线长是3cm,∴=3,解得h=6(cm),∴这个正四棱柱的体积V=Sh=3×3×6=54(cm3).故答案为:54.7.(5分)若实数x,y满足x≤y≤2x+3,则x+y的最小值为﹣6.【解答】解:画出实数x,y满足x≤y≤2x+3的平面区域,如图示:由,解得A(﹣3,﹣3),由z=x+y得:y=﹣x+z,显然直线过A时z最小,z的最小值是﹣6,故答案为:﹣6.8.(5分)在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线为l,直线l与双曲线的两条渐近线分别交于A,B两点,,则p的值为.【解答】解:抛物线y2=2px(p>0)的准线为l:x=﹣,双曲线的两条渐近线方程为y=±x,可得A(﹣,﹣),B((﹣,),|AB|==,可得p=2.故答案为:2.9.(5分)在平面直角坐标系xOy中,已知直线y=3x+t与曲线y=a sin x+b cos x(a,b,t∈R)相切于点(0,1),则(a+b)t的值为4.【解答】解:根据题意得,t=1y′=a cos x﹣b sin x∴k=a cos0﹣b sin0=a∴a=3,b cos0=1∴a=3,b=1故答案为4.10.(5分)已知数列{a n}是等比数列,有下列四个命题:①数列{|a n|}是等比数列;②数列{a n a n+1}是等比数列;③数列是等比数列;④数列{lga n2}是等比数列.其中正确的命题有3个.【解答】解:由{a n}是等比数列可得=q(q为常数,q≠0),①==|q|为常数,故是等比数列;②==q2为常数,故是等比数列;③==常数,故是等比数列;④数列a n=1是等比数列,但是lga n2=0不是等比数列;故答案为:311.(5分)已知函数f(x)是定义在R上的奇函数,且f(x+2)=f(x).当0<x≤1时,f(x)=x3﹣ax+1,则实数a的值为2.【解答】解:∵f(x)是定义在R上的奇函数,且f(x+2)=f(x).∴当x=﹣1时,f(﹣1+2)=f(﹣1)=f(1),即﹣f(1)=f(1),则f(1)=0,∵当0<x≤1时,f(x)=x3﹣ax+1.∴f(1)=1﹣a+1=0,得a=2,故答案为:212.(5分)在平面四边形ABCD中,AB=1,DA=DB,=3,=2,则|的最小值为2.【解答】解:如图,以A为原点,建立平面直角坐标系,则A(0,0),B(1,0),因为DA=DB,可设D(,m),因为•=3,AB=1,所以可设C(3,n),又•=2,所以+mn=2,即mn=,+2=(4,n+2m)|+2|==≥=2,当且仅当n=2m,即n=1,m=时,等号成立.故答案为:213.(5分)在平面直角坐标系xOy中,圆O:x2+y2=1,圆C:(x﹣4)2+y2=4.若存在过点P(m,0)的直线l,l被两圆截得的弦长相等,则实数m的取值范围﹣4<m.【解答】解:显然直线l有斜率,设直线l:y=k(x﹣m),即kx﹣y﹣km=0,依题意得1﹣()2=4﹣()2>0有解,即,∴13﹣8m>0且3m2+8m﹣16<0解得﹣4<m<,故答案为:﹣4<m.14.(5分)已知函数f(x)=(2x+a)(|x﹣a|+|x+2a|)(a<0).若f(1)+f(2)+f(3)+…+f(672)=0,则满足f(x)=2019的x的值为337.【解答】解:注意到:,又因为:,,因此.所以,函数f(x)关于点对称,所以,解得:a=﹣673,f(x)=(2x﹣673)(|x+673|+|x﹣2×673|)=2019,显然有:0<2x﹣673<2019,即,所以,f(x)=(2x﹣673)(x+673+2×673﹣x)=2019,2x﹣673=1,解得:x=337.故答案为:337.二、解答题:本大题共6小题,共计90分.15.(14分)如图,在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点.已知侧面P AD ⊥底面ABCD,底面ABCD是矩形,DA=DP.求证:(1)MN∥平面PBC;(2)MD⊥平面P AB.【解答】证明:(1)在四棱锥P﹣ABCD中,M,N分别为棱P A,PD的中点,所以MN∥AD.……………………2分又底面ABCD是矩形,所以BC∥AD,所以MN∥BC.…………………………………………………………………4分又BC⊂平面PBC,MN⊄平面PBC,所以MN∥平面PBC.…………………………………………………………6分(2)因为底面ABCD是矩形,所以AB⊥AD.又侧面P AD⊥底面ABCD,侧面P AD∩底面ABCD=AD,AB⊂底面ABCD,所以AB⊥侧面P AD.……………………………………………………………8分又MD⊂侧面P AD,所以AB⊥MD.………………………………………………………………10分因为DA=DP,又M为AP的中点,从而MD⊥P A.………………………………………………………………12分又P A,AB在平面P AB内,P A∩AB=A,所以MD⊥平面P AB.…………………………………………………………14分16.(14分)在△ABC中,a,b,c分别为角A,B,C所对边的长,,.(1)求角B的值;(2)若,求△ABC的面积.【解答】(本题满分为14分)解:(1)在△ABC中,因为,0<A<π,所以.………………………………………………………2分因为,由正弦定理,得.所以cos B=sin B.…………………………………………………………………4分若cos B=0,则sin B=0,与sin2B+cos2B=1矛盾,故cos B≠0.于是.又因为0<B<π,所以.…………………………………………………………………………7分(2)因为,,由(1)及正弦定理,得,所以.………………………………………………………………………9分又sin C=sin(π﹣A﹣B)=sin(A+B)=sin A cos B+cos A sin B=.……………………………………………12分所以△ABC的面积为.……14分17.(14分)如图,在平面直角坐标系xOy中,椭圆(a>b>0)的左焦点为F,右顶点为A,上顶点为B.(1)已知椭圆的离心率为,线段AF中点的横坐标为,求椭圆的标准方程;(2)已知△ABF外接圆的圆心在直线y=﹣x上,求椭圆的离心率e的值.【解答】解:(1)因为椭圆(a>b>0)的离心率为,所以,则a=2c.因为线段AF中点的横坐标为,所以.所以,则a2=8,b2=a2﹣c2=6.所以椭圆的标准方程为.…………………………………………………4分(2)因为A(a,0),F(﹣c,0),所以线段AF的中垂线方程为:.又因为△ABF外接圆的圆心C在直线y=﹣x上,所以. (6)分因为A(a,0),B(0,b),所以线段AB的中垂线方程为:.由C在线段AB的中垂线上,得,整理得,b(a﹣c)+b2=ac,…………………………………………………………10分即(b﹣c)(a+b)=0.因为a+b>0,所以b=c.……………………………………………………………12分所以椭圆的离心率.…………………………………………14分18.(16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD,AB,AD的长分别为和4m,上部是圆心为O的劣弧CD,.(1)求图1中拱门最高点到地面的距离;(2)现欲以B点为支点将拱门放倒,放倒过程中矩形ABCD所在的平面始终与地面垂直,如图2、图3、图4所示.设BC与地面水平线l所成的角为θ.记拱门上的点到地面的最大距离为h,试用θ的函数表示h,并求出h的最大值.【解答】解:(1)如图,过O作与地面垂直的直线交AB,CD于点O1,O2,交劣弧CD 于点P,O1P的长即为拱门最高点到地面的距离.在Rt△O 2OC中,,,所以OO2=1,圆的半径R=OC=2.所以O1P=R+OO1=R+O1O2﹣OO2=5.答:拱门最高点到地面的距离为5m.…………………4分(2)在拱门放倒过程中,过点O作与地面垂直的直线与“拱门外框上沿”相交于点P.当点P在劣弧CD上时,拱门上的点到地面的最大距离h等于圆O的半径长与圆心O到地面距离之和;当点P在线段AD上时,拱门上的点到地面的最大距离h等于点D到地面的距离.由(1)知,在Rt△OO1B中,.以B为坐标原点,直线l为x轴,建立如图所示的坐标系.(2.1)当点P在劣弧CD上时,.由,,由三角函数定义,得O,则.…………………………………………………………8分所以当即时,h取得最大值.……………………………………………………10分(2.2)当点P在线段AD上时,.设∠CBD=φ,在Rt△BCD中,,.由∠DBx=θ+φ,得.所以=.……………………………………14分又当时,.所以在上递增.所以当时,h取得最大值5.因为,所以h的最大值为.答:;艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m.……………………………………………16分19.(16分)已知函数.(1)讨论f(x)的单调性;(2)设f(x)的导函数为f'(x),若f(x)有两个不相同的零点x1,x2.①求实数a的取值范围;②证明:x1f'(x1)+x2f'(x2)>2lna+2.【解答】解:(1)f(x)的定义域为(0,+∞),且.(i)当a≤0时,f'(x)>0成立,所以f(x)在(0,+∞)为增函数;………2分(ii)当a>0时,①当x>a时,f'(x)>0,所以f(x)在(a,+∞)上为增函数;②当0<x<a时,f'(x)<0,所以f(x)在(0,a)上为减函数.………4分(2)①由(1)知,当a≤0时,f(x)至多一个零点,不合题意;当a>0时,f(x)的最小值为f(a),依题意知f(a)=1+lna<0,解得.……………………………………6分一方面,由于1>a,f(1)=a>0,f(x)在(a,+∞)为增函数,且函数f(x)的图象在(a,1)上不间断.所以f(x)在(a,+∞)上有唯一的一个零点.另一方面,因为,所以,,令,当时,,所以又f(a)<0,f(x)在(0,a)为减函数,且函数f(x)的图象在(a2,a)上不间断.所以f(x)在(0,a)有唯一的一个零点.综上,实数a的取值范围是.……………………………………………10分②证明:设.又则p=2+ln(x1x2).………………………………………12分下面证明.不妨设x1<x2,由①知0<x1<a<x2.要证,即证.因为,f(x)在(0,a)上为减函数,所以只要证.又f(x1)=f(x2)=0,即证.……………………………………14分设函数.所以,所以F(x)在(a,+∞)为增函数.所以F(x2)>F(a)=0,所以成立.从而成立.所以p=2+ln(x1x2)>2lna+2,即x1f'(x1)+x2f'(x2)>2lna+2成立.…16分20.(16分)已知等差数列{a n}满足a4=4,前8项和S8=36.(1)求数列{a n}的通项公式;(2)若数列{b n}满足.①证明:{b n}为等比数列;②求集合.【解答】解:(1)设等差数列{a n}的公差为d.因为等差数列{a n}满足a4=4,前8项和S8=36,所以,解得所以数列{a n}的通项公式为a n=n.(2)①设数列{b n}前n项的和为B n.由(1)及得,由③﹣④得3(2n﹣1)﹣3(2n﹣1﹣1)=(b1a2n﹣1+b2a2n﹣3+…+b n﹣1a3+b n a1+2n)﹣(b1a2n+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=[b1(a2n﹣3+2)+b2(a2n﹣5+2)+…+b n﹣1(a1+2)+b n a1+2n]﹣3﹣(b1a2n﹣3+b2a2n﹣5+…+b n﹣1a1+2n﹣2)=2(b1+b2+…+b n﹣1)+b n+2=2(B n﹣b n)+b n+2.所以3•2n﹣1=2B n﹣b n+2(n≥2,n∈N*),又3(21﹣1)=b1a1+2,所以b1=1,满足上式.所以当n≥2时,由⑤﹣⑥得,.=,所以,,所以数列{b n}是首项为1,公比为2的等比数列.②由,得,即.记,由①得,,所以,所以c n≥c n+1(当且仅当n=1时等号成立).由,得c m=3c p>c p,所以m<p;设t=p﹣m(m,p,t∈N*),由,得.当t=1时,m=﹣3,不合题意;当t=2时,m=6,此时p=8符合题意;当t=3时,,不合题意;当t=4时,,不合题意.下面证明当t≥4,t∈N*时,.不妨设f(x)=2x﹣3x﹣3(x≥4),f'(x)=2x ln2﹣3>0,所以f(x)在[4,+∞)上单调增函数,所以f(x)≥f(4)=1>0,所以当t≥4,t∈N*时,,不合题意.综上,所求集合={(6,8)}.【选做题】本题包括21、22、C23三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4-2:矩阵与变换](本小题满分0分)21.已知矩阵,,且,求矩阵M.【解答】解:由题意,,则.……………………………………4分因为,则.……………………………………………………6分所以矩阵.………………………………………………10分[选修4-4:坐标系与参数方程](本小题满分0分)22.在平面直角坐标系xOy中,曲线C的参数方程是(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程是ρsin(θ﹣)=.求:(1)直线l的直角坐标方程;(2)直线l被曲线C截得的线段长.【解答】解:(1)直线l的极坐标方程是ρsin(θ﹣)=.转换为直角坐标方程为:x﹣y+2=0;(2)曲线C的参数方程是(t为参数):转换为直角坐标方程为:x2=y.由,得x2﹣x﹣2=0,所以直线l与曲线C的交点A(﹣1,1),B(2,4).所以直线l被曲线C截得的线段长为.[选修4-5:不等式选讲](本小题满分0分)23.已知实数a,b,c满足a2+b2+c2≤1,求证:.【解答】证明:由柯西不等式,得, (5)分所以.…………………………10分【必做题】第22、23题,每小题0分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.24.“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).【解答】解:(1)记“X是‘回文数’”为事件A.9个不同2位“回文数”乘以4的值依次为:44,88,132,176,220,264,308,352,396.其中“回文数”有:44,88.所以,事件A的概率.……………………………………………………3分(2)根据条件知,随机变量ξ的所有可能取值为0,1,2.由(1)得.…………………………………………………………………5分设“Y是‘回文数’”为事件B,则事件A,B相互独立.根据已知条件得,.;;……………………………………………………8分所以,随机变量ξ的概率分布为所以,随机变量ξ的数学期望为:. (10)分25.设集合B是集合A n={1,2,3,……,3n﹣2,3n﹣1,3n},n∈N*的子集.记B中所有元素的和为S(规定:B为空集时,S=0).若S为3的整数倍,则称B为A n的“和谐子集”.求:(1)集合A1的“和谐子集”的个数;(2)集合A n的“和谐子集”的个数.【解答】解:(1)由题意有:A1=,则集合A1的“和谐子集”为:∅,,,共4个,故答案为:4;(2)记A n的“和谐子集”的个数等于a n,即A n有a n个所有元素的和为3的整数倍的子集,另记A n有b n个所有元素的和为3的整数倍余1的子集,有c n个所有元素的和为3的整数倍余2的子集,易知:a1=4,b1=2,c1=2,集合A n+1={1,2,3,……,3n﹣2,3n﹣1,3n,3n+1,3n+2,3n+3}的“和谐子集”有以下4种情况,(考查新增元素3n+1,3n+2,3n+3)①集合集合A n={1,2,3,……,3n﹣2,3n﹣1,3n}的“和谐子集”共a n个,②仅含一个元素3(n+1)的“和谐子集”共a n个,同时含两个元素3n+1,3n+2的“和谐子集”共a n个,同时含三个元素3n+1,3n+2,3(n+1)的“和谐子集”共a n个,③仅含一个元素3n+1的“和谐子集”共c n个,同时含两个元素3n+1,3n+3的“和谐子集”共c n个,④仅含一个元素3n+2的“和谐子集”共b n个,同时含两个元素3n+2,3n+3的“和谐子集”共b n个,所以集合A n+1的“和谐子集”共有a n+1=4a n+2b n+2c n,同理:b n+1=4b n+2a n+2c n,c n+1=4c n+2a n+2c n,所以a n+1﹣b n+1=2(a n﹣b n),所以数列是以a1﹣b1=2为首项,2为公比的等比数列,求得:a n=b n+2n,同理a n=c n+2n,又a n+b n+c n=23n,解得:a n =+(n∈N*)故答案为:+(n∈N*)第21页(共21页)。

【市级联考】江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次调研考试(含听力)

【市级联考】江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次调研考试(含听力)

2019届南通市高三第二次调研联考英语试卷注意事项考生在答题前请认真阅读本注意事项及各题答题要求考试时间120分钟。

考试结束后,只要将答题纸交回。

1.本试卷共14页,包含第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分。

2.答题前,请您务必将自己的姓名、学校、考试号用书写黑色字迹的0.5毫米签字笔填写在答题纸上,并用2B铅笔把答题纸上考试号对应数字框涂黑,如需改动,请用橡皮擦干净后,再正确涂写。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、考试证号与你本人的是否相符。

4.答题时,必须用书写黑色字迹的0.5毫米签字笔写在答题纸上的指定位置,在其它位置作答一律无效。

第I卷 (三部分,共85分)第一部分听力(共两节,满分20分)第一节听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.【此处有音频,请去附件查看】What color is the sofa?A. Brown.B. White.C. Blue.【答案】B【解析】【分析】M: We need a new sofa. This one is starting to sink in the middle and it looks shabby.W: Yes. White wasn’t a good choice of color. The next one should be darker. Brown or blue maybe. 【详解】此题为听力题,解析略。

2.【此处有音频,请去附件查看】What meal are the speakers about to eat?A. Breakfast.B. LunchC. Dinner.【答案】C【解析】【分析】M: When will the pizza be ready? I haven’t eaten since this morning. What about you?W: I skipped breakfast, but I had a pretty big lunch, so you can have most of the pizza.【详解】此题为听力题,解析略。

江苏省南通、泰州、扬州等七市2019届高三第三次调研考试数学试题及答案

江苏省南通、泰州、扬州等七市2019届高三第三次调研考试数学试题及答案

南通市2019届高三第三次调研测试1. 已知集合{1023}U =-,,,,{03}A =,,则U A =ð ▲ .2. 已知复数i 13i a z +=+(i 是虚数单位)是纯虚数,则实数a 的值为 ▲ .3. 右图是一个算法流程图.若输出y 的值为4,则输入x 的值为 ▲ . 4. 已知一组数据6,6,9,x ,y 的平均数是8,且90xy =,则该组数据的方差为 ▲ .5. 一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为 ▲ .6. 已知函数2220()20x x x f x x x x ⎧-=⎨--<⎩,≥,,, 则不等式()()f x f x >-的解集为 ▲ .7. 已知{}n a 是等比数列,前n 项和为n S .若324a a -=,416a =,则3S 的值为 ▲ .8. 在平面直角坐标系xOy 中,双曲线22221y x a b-=(00a b >>,)的右准线与两条渐近线分别交于A ,B 两点.若△AOB 的面积为4ab ,则该双曲线的离心率为 ▲ .9. 已知直角梯形ABCD 中,AB ∥CD ,AB ⊥BC ,AB =3 cm ,BC =1 cm ,CD =2 cm .将此直角梯形绕AB 边所在的直线旋转一周,由此形成的几何体的体积为 ▲ cm 3.10.在平面直角坐标系xOy 中,若曲线sin 2y x =与1tan 8y x =在()2ππ,上交点的横坐标为α,则sin 2α的值为 ▲ .11.如图,正六边形ABCDEF 中,若AD AC AEλμ=+(λμ∈,R ),则λμ+的值为 ▲ .12.如图,有一壁画,最高点A 处离地面6 m ,最低点B 处离地面3.5 m .若从离地高2 m 的C 处观赏它,则离墙 ▲ m 时,视角θ最大.13.已知函数2()23f x x x a =-+,2()1g x x =-.若对任意[]103x ∈,,总存在[]223x ∈,,使得12()()f x g x ≤成立,则实数a 的值为 ▲ .(第3题)(第11题)(第12题)14.在平面四边形ABCD 中,90BAD ∠=︒, 2AB =,1AD =.若43AB AC B A B C C A C B ⋅+⋅=⋅, 则12CB CD+的最小值为 ▲ .15.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长,(sin sin )()(sin sin )a A B c b B C -=-+.(1)求角C 的值;(2)若4a b =,求sin B 的值.16.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,平面BPC ⊥平面DPC ,BP BC =,E ,F 分别是PC ,AD 的中点. 求证:(1)BE ⊥CD ; (2)EF ∥平面P AB .17.如图,在平面直角坐标系xOy 中,已知椭圆22221y x C a b+=:(0a b >>)的上顶点为(0A ,圆2224a O x y +=:经过点()01M ,. (1)求椭圆C 的方程;(2)过点M 作直线1l 交椭圆C 于P ,Q 两点,过点M 作直线1l 的垂线2l 交圆O 于另一点N .若△PQN 的面积为3,求直线1l 的斜率.18.南通风筝是江苏传统手工艺品之一.现用一张长2 m ,宽1.5 m 的长方形牛皮纸ABCD 裁剪风筝面,裁剪方法如下:分别在边AB ,AD 上取点E ,F ,将三角形AEF 沿直线EF 翻折到A EF '处,点A '落在牛皮纸上,沿A E ',A F '裁剪并展开,得到风筝面AEA F ',如图1.(1)若点E 恰好与点B 重合,且点A '在BD 上,如图2,求风筝面ABA F '的面积; (2)当风筝面AEA F '2时,求点A '到AB 距离的最大值.(第16题)(第17题)(图1)C(图2)(E )C19.已知数列{}n a 满足11(2)(21)n n n n na a a a ---=-(2n ≥),1n nb n a =-(n *∈N ).(1)若1=3a ,证明:{}n b 是等比数列;(2)若存在k *∈N ,使得1k a ,11k a +,21k a +成等差数列.① 求数列{}n a 的通项公式;② 证明:111ln ln(1)22n n n a n a ++>+-.20.已知函数2()1ln ax f x x=+(0a ≠),e 是自然对数的底数. (1)当0a >时,求()f x 的单调增区间;(2)若对任意的12x ≥,1()2e b f x -≥(b ∈R ),求b a 的最大值;(3)若()f x 的极大值为2-,求不等式()e 0x f x +<的解集.21.A .[选修4-2:矩阵与变换]已知a b c d ∈,,,R ,矩阵20a b -⎡⎤=⎢⎥⎣⎦A 的逆矩阵111c d -⎡⎤=⎢⎥⎣⎦A .若曲线C 在矩阵A 对应的变换作用下得到曲线21y x =+,求曲线C 的方程. B .[选修4-4:坐标系与参数方程]在直角坐标平面内,以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A ,B 的极坐标分别为()π42,,()5π4,,曲线C 的方程为r ρ=(0r >).(1)求直线AB 的直角坐标方程;(2)若直线AB 和曲线C 有且只有一个公共点,求r 的值. C .[选修4-5:不等式选讲]已知a ∈R ,若关于x 的方程2410x x a a ++-+=有实根,求a 的取值范围.22.现有一款智能学习APP ,学习内容包含文章学习和视频学习两类,且这两类学习互不影响.已知该APP 积分规则如下:每阅读一篇文章积1分,每日上限积5分;观看视频累计3分钟 积2分,每日上限积6分.经过抽样统计发现,文章学习积分的概率分布表如表1所示,视频 学习积分的概率分布表如表2所示.(1)现随机抽取1人了解学习情况,求其每日学习积分不低于9分的概率;(2)现随机抽取3人了解学习情况,设积分不低于9分的人数为ξ,求ξ的概率分布及数学期望.23.设202(1)i nn i i n P C =-=∑,212(1)j nn jj njQ C =-⋅=∑. (1)求222P Q -的值;(2)化简n n nP Q -.表1表2南通市2019届高三第三次调研测参考答案1、 {12}-,2、3-3、1-4、1455、126、(20)(2)-+∞,,7、14 8、2 9、73π 10、 11、43 1213、13- 1415、(1)π3C =.(2)sin B =.16、略17、(1)椭圆C 的方程为22143y x +=. (2)若1l 的斜率为0,则PQ ,2MN =, 所以△PQN 的面,不合题意,所以直线1l 的斜率不为0. 设直线1l 的方程为1y kx =+, 由221431y x y kx ⎧+=⎪⎨⎪=+⎩,消y ,得22(34)880k x kx ++-=, 设()11P x y ,,()22Q x y ,,则1x,2x所以PQ12x -=直线2l 的方程为11y x k =-+,即0x ky k +-=,所以.MN == 所以△PQN 的面积12S PQ MN =⋅132==,解得12k =±,即直线1l 的斜率为12±. 18、(1)方法一:建立直角坐标系四边形ABA F '的面积为24m 3.方法二:设ABF θ∠=,则2ABA θ'∠=.在直角△ABD 中,3tan 24AD AB θ==, 所以22tan 341tan θθ=-, 解得1tan 3θ=或tan 3θ=-(舍去).所以2tan 3AF AB θ==. 所以△ABF 的面积为21222m 233⨯⨯=,所以四边形ABA F '的面积为24m 3.(2)方法一:建立如图所示的直角坐标系. 设AE a =,AF b =,()00A x y ',,则直线EF 的方程为0bx ay ab +-=,因为点A ,A '关于直线EF 对称,所以0000022y ax b bx ay ab ⎧=⎪⎪⎨⎪+-=⎪⎩,,解得20222a b y a b =+. 因为四边形AEA F '所以ab =,所以033y a a=+. 因为02a <≤,302b <≤,2a ≤. 设33()f a a a =+2a ≤.49()1f a a '=-= 令()0f a '=,得a =a =(舍去). 列表如下:当a ()f a所以0y 的最大值为32,此时点A '在CD上,a =1b =. 答:点A '到AB 距离的最大值为3m 2.方法二:设AE a =,AEF θ∠=,则tan AF a θ=.因为四边形AEA F '的面AE AF ⋅2tan a θ=tan θ.过点A '作AB 的垂线A T ',垂足为T ,则s i n 2s i n 2s i n2A T A E AE a θθθ''=⋅=⋅=A 'ABCDFET2224322sincos 2tan 33sin cos tan 11a a a a a a aθθθθθθ=⋅=⋅=⋅=++++.因为02AE <≤,302AF <≤,2a ≤. (下同方法一)19、(1)由11(2)(21)n n n n na a a a ---=-,得1122n n n a a -=+-,得()11121n n n n a a -⎡⎤-=--⎢⎥⎣⎦,即12n n b b -=因为1=3a ,所以11121=03b a =--≠,所以12n n bb -=(2n ≥),所以{}n b 是以1b 为首项,2为公比等比数列.(2)① 设111a λ-=,由(1)知,12n n b b -=, 所以21121222n n n n b b b b ---====,即112n nn a λ--=⋅,所以112k k k a λ-=⋅+.因为1ka ,11k a +,21k a +成等差数列,则11(2)(22)2(21)k k k k k k λλλ-+⋅++⋅++=⋅++,所以120k λ-⋅=,所以0λ=,所以1n n a =,即1n a n=.② 要证111ln ln(1)22n n n a n a ++>+-,即证111()ln 2n n n a a n +++>,即证1112ln 1n n n n ++>+.设1n t n +=,则111111t t t n n t t -+=-+=-+,且1t >,从而只需证,当1t >时,12ln t t t ->. 设1()2ln f x x x x=--(1x >),则22121()1(1)0f x x x x '=+-=->,所以()f x 在(1)+∞,上单调递增,所以()(1)0f x f >=,即12l n x x x ->,因为1t >,所以12ln t t t ->,所以,原不等式得证. 20、(1)()f x 的定义域为()()110e e --+∞,,. 由, 222112(1ln )2(ln )2()(1ln )(1ln )ax x ax ax x x f x x x +-⋅+'==++ 令()0f x '>,因为0a >,得12e x ->, 因为112ee -->,()f x 的单调增区间是()12e -+∞,. (2)当0a <时,1(1)02e b f a -=<<,不合题意; 当0a >时,令()0f x '<,得10e x -<<或112e e x --<<, 所以()f x 在区间()10e-,和()112ee--,上单调递减. 因为()1121e e 2--∈,,且()f x 在区间()12e -+∞,上单调递增,所以()f x 在12e x -=处取极小值2e a ,即最小值为2e a . 若12x ∀≥,1()2e bf x -≥,则122e e b a -≥,即e b a ≥.不妨设0b >,则e b b b a ≤. 设()e bb g b =(0b >),则1()e b b g b -'=.当01b <<时,()0g b '>;当1b >时,()0g b '<,所以()g b 在()01,上单调递增;在()1+∞,上单调递减,所以()(1)g b g ≤,即1e ebb ≤,所以b a 的最大值为1e . (3)由(2)知,当0a >时,()f x 无极大值, 当0a <时,()f x 在()10e -,和()112ee--,上单调递增;在()12e -+∞,上单调递减,所以()f x 在12ex -=处取极大值, 所以122(e)2ea f -==-,即e a =-. 设()()e x F x f x =+,即2e ()e 1ln x x F x x=-+, 当()10e x -∈,,1ln 0x +<,所以()0F x >; 当()1e x -∈+∞,,2e (12ln )()e (1ln )x x x F x x +'=-+, 由(2)知,e e x x ≤,又212ln (1ln )x x ++≤, 所以()0F x '≥,且()F x 不恒为零, 所以()F x 在()1e -+∞,上单调递增.不等式()e 0x f x +<,即为()0(1)F x F <=,所以1e 1x -<<, 即不等式的解集为()1e 1-,. 21A 、由题意得,11001-⎡⎤=⎢⎥⎣⎦AA ,即212210101a c ad a c b d b d b ---⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 所以1120a b c d ====,,,,即矩阵1201-⎡⎤=⎢⎥⎣⎦A . 设()P x y ,为曲线C 上的任意一点,在矩阵A 对应的变换作用下变为点()P x y ''',, 则 1201x x y y '-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即2.x x y y y '=-⎧⎨'=⎩,由已知条件可知,()P x y ''',满足21y x =+,整理得:2510x y -+=, 所以曲线C 的方程为2510x y -+=.21B 、(1)分别将()π42A ,,()5π4B ,转化为直角坐标为()04A ,,()22B --,, 所以直线AB 的直角坐标方程为340x y -+=. (2)曲线C 的方程为r ρ=(0r >),其直角坐标方程为222x y r += 又直线AB 和曲线C 有且只有一个公共点,即直线与圆相切, 所以圆心到直线AB=r21C 、因为关于x 的方程2410x x a a ++-+=有实根, 所以164(1)0a a ∆=--+≥,即41a a -+≤ 当1a ≥时,421a -≤,得512a ≤≤; 当01a <<时,1≤4,恒成立,即01a <<; 当0a ≤时,412a -≤,得032a -≤≤, 综上:所求a 的取值范围为3522a -≤≤.22、(1)由题意,获得的积分不低于9分的情形有:因为两类学习互不影响,所以概率111111115926223229P =⨯+⨯+⨯+⨯=,所以每日学习积分不低于9分的概率为59.(2)随机变量ξ的所有可能取值为0,1,2,3.由(1)每个人积分不低于9分的概率为59.()()3464=0=9729P ξ=;()()()21354240=1=C 99729P ξ=;()()()22354300=2=C 99729P ξ=;()()35125=3=9729P ξ=. 所以,随机变量ξ的概率分布列为所以642403001255()01237297297297293E ξ=⨯+⨯+⨯+⨯=.所以,随机变量ξ的数学期望为53.23、(1)由201234444441111153P C C C C C =-+-+=,2123444441234103Q C C C C =-+-+=,所以2220P Q -=.(2)设n n T nP Q =-,则01221232222222221232()()n n n n n n n n n n n n n n n T C C C C C C C C =-+-⋅⋅⋅+--+-+⋅⋅⋅+ 0123222222123nn n n n nn n n n n C C C C C ----=-+-+⋅⋅⋅+ ① 因为222k n k n n C C -=, 所以2212223022222123n n n n n n n n n n n n n n T C C C C C -------=-+-+⋅⋅⋅+0123222222123nn n n n nn n n n n C C C C C ----=-+-+⋅⋅⋅+ ② ①+②得,20T =,即0n n T nP Q =-=,所以0n n nP Q -=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三数学第二次调研考试试题(含解析)一、填空题:本大题共14小题,每小题5分,共计70分.1.a的值为____.【答案】4【解析】【分析】a值即可a=4故答案为4【点睛】本题考查集合的交集,熟记交集的概念与运算是关键,是基础题2.____.【答案】【解析】【分析】由复数运算化简为z=a+bi的形式,则实部可求故实部为【点睛】本题考查复数代数形式的除法运算,熟记运算性质,准确计算是关键,是基础题3.某单位普通职工和行政人员共280人.为了解他们在“学习强国”APP平台上的学习情况,现用分层抽样的方法从所有职员中抽取容量为56的样本.已知从普通职工中抽取的人数为49,则该单位行政人员的人数为____.【答案】35【解析】【分析】由题意可得,抽取的行政人员数为7,再求得抽样的比列,再用7除以此比例,即得该学校的行政人员人数.【详解】由题意可得,抽取的行政人员数为56﹣49=7,抽样的比列为,故答案为 35.【点睛】本题主要考查分层抽样的定义和方法,利用数据计算抽样比例是关键,属于基础题.4.从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为____.【解析】【分析】确定基本事件的个数,即可求出概率.【详解】随机选派2种,甲、乙两人中恰有1种,【点睛】本题考查古典概型,考查概率的计算,确定基本事件的个数是关键,是基础题5.执行如图所示的伪代码,则输出的S的值为____.【答案】30【解析】【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出满足条件S的值,模拟程序的运行即可得解.【详解】模拟程序的运行,可得i=1,S=2满足条件i<7,执行循环体,S=2×1=2,i=3满足条件i<7,执行循环体,S=2× 3=6,i=5满足条件i<7,执行循环体,S=6×5=30,i=7此时,不满足条件i<7,退出循环,输出S的值为30.故答案为30【点睛】本题考查流程图,根据流程图写程序的运行结果,是算法这一模块重要的题型,其处理方法是:①分析流程图,②建立数学模型,③解模,确定何时结束流程是关键,是基础题6.___.【解析】【分析】由4x﹣16≥0即可求得函数的定义域.【详解】∵4x﹣16≥0,∴4x≥16,∴x≥2,故答案为[2,+∞).【点睛】本题考查函数定义域及其求法,重点考查指数函数的性质的应用,属于基础题.7.___.【解析】【分析】先由平移得f(x)【详解】=2sin(3x+【点睛】本题考查图像平移,考查三角函数值求解,熟记平移原则,准确计算是关键,是基础题8.的右顶点b的值为___.【答案】2【解析】【分析】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,根据点到直线的距离公式,求出b,即可求出结果.【详解】右顶点为A( 2,0 ),一条渐近线为bx﹣2y=0,b=2故答案为2【点睛】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,熟记双曲线基本概念,准确计算点线距是关键,是基础题9.在△ABC中,已知C 120°,sinB 2 sinA,且△ABC的面积为则AB的长为____.【解析】【分析】由sinB=2sinA,利用正弦定理可得:b=2a.可得S△a,b,再利用余弦定理可得AB【详解】在△ABC中,由sinB=2sinA,利用正弦定理可得:b=2a.∴S△.∴b=4.∴c2=b2+a2﹣2bacosC=16+4﹣°=28,解得即【点睛】本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.10.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA 2 m,PB 3 m,PC 4 m,则球O的表面积为____m2.【解析】【分析】由已知中P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,构造以PA,PB,PC为棱的长方体,易求出球O的半径,进而求出球O的表面积.【详解】∵P,A,B,C是球O表面上的四个点,PA,PB,PC两两垂直,则球的直径等于以PA,PB,PC长为棱长的长方体的对角线长∵PA 2 m,PB 3 m,PC 4 m,∴2R则球O的表面积S=4πR2=29π【点睛】本题考查的知识点是球的表面积,及球的内接多面体,其中根据已知条件构造长方体,计算出球O的半径,是解答本题的关键,是基础题11.定义在R___.【答案】5【解析】【分析】4,又函数f(x)关于(2,0)中心对称,又f(x)与g(x)在同一个坐标系的图像如图所示:故交点有5个故答案为5【点睛】本题考查函数与方程,明确函数f(x)的周期性奇偶性,准确画出图像是关键,是基础题12.已知关于,b,) 的解集为{ x | 3 < x < 4}的最小值为___.【解析】【分析】由不等式解集知a<0,将b,c分别用a利用基本不等式求最小值即可【详解】由不等式解集知a<0,,当且仅当-24a=即取等【点睛】本题考查基本不等式的应用,二次不等式解法,根与系数的关系,求得a,b,c的关系是关键,是中档题13.在平面直角坐标系xOy中,已知点A,B在圆P(3,1),M的横坐标为x0,则x0的所有值为____.【解析】【分析】设AB中点为求出M的轨迹方程;【详解】设AB中点为②,立得故答案为【点睛】本题考查圆的轨迹方程,向量的坐标运算,圆的弦长公式,确定AB中点的轨迹是突破点,向量坐标化运算是关键,是中档题14.已知集合中取出个不同元素,其和记为最大值为____.【答案】44【解析】【分析】欲使m,n更大,则所取元素尽可能小,所以从最小开始取到2n-1=t,则m+2n=t+m+1,t为奇数,mt=22附近取值,只有t=21,m=22和t=23,m=20,成立,则问题得解.【详解】欲使m,n更大,则所取元素尽可能小,所以从最小开始取,S=即令2n-1=t,则m+2n=t+m+1,t为奇数,m为整数,则m=t=22时取等,∵t最大值在t=22附近取到,则t=21,m=23(舍);t=21,m=22,成立;t=23,m=21(舍); t=23,m=20,成立;故m+t的最大值为4344故答案为44【点睛】本题考查不等式的应用,数列求和问题,分析转化能力和计算求解能力,是中档题二、解答题:本大题共6小题,共计90分.15.(1)若(2【答案】(1);(2【解析】【分析】(1)由向量共线的坐标表示可求进而求出,(2)由将【详解】(1)因为∥,,所以.解得.(2)因为,所以,,解得【点睛】本题考查两角和的正弦公式,同角三角函数基本关系式,向量共线坐标运算,熟记三角基本公式,准确计算是关键,是中档题16.如图所示,在直三棱柱ABC A1B1C1中,侧面BCC1B1为正方形,A1B1⊥B1C1.设A1C与AC1交于点D,B1C与BC1交于点E.求证:(1)DE∥平面ABB1A1;(2)BC1⊥平面A1B1C.【答案】(1)见解析;(2)见解析【解析】【分析】(1)利用三角形中位线的性质证明DE∥AB,即可证明DE∥平面ABB1A1;(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1,进而BB1⊥A1B1,证得A1B1⊥平面BCC1B1,进而A1B1⊥BC1,又因为侧面BCC1B1为正方形,所以BC1⊥B1C.进一步证明平面BC1⊥平面A1B1C即可.【详解】(1)因为三棱柱ABC A1B1C1为直三棱柱,所以侧面ACC1 A1为平行四边形.又A1C与AC1交于点D,所以D为AC1的中点,同理,E为BC1的中点.所以DE∥AB.又AB平面ABB1 A1,DE平面ABB1 A1,所以DE∥平面ABB1A1.(2)因为三棱柱ABC A1B1C1为直三棱柱,所以BB1⊥平面A1B1C1.又因为A1B1平面A1B1C1,所以BB1⊥A1B1.又A1B1⊥B1C1,BB1,B1C1平面BCC1B1,BB1∩B1C1 B1,所以A1B1⊥平面BCC1B1.又因为BC1平面BCC1B1,所以A1B1⊥BC1.又因为侧面BCC1B1为正方形,所以BC1⊥B1C.又A1B1∩B1C B1,A1B1,B1C 平面A1B1C,所以BC1⊥平面A1B1C.【点睛】本题考查线面平行的证明,线面垂直的判定,熟记判断定理,准确推理是关键,是基础题.17.图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH(1)求屋顶面积S(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m值时,总造价最低?【答案】(1(2【解析】【分析】(1)由题知FH⊥HM,在Rt△FHM中,所以面积;(2)别墅总造价为=令【详解】(1)由题意FH⊥平面ABCD,FM⊥BC,又因为HM 平面ABCD,得FH⊥HM.在Rt△FHM中,HM 5因此△FBC所以S).(2)在Rt△FHM,所以主体高度为记,所以,,得列表:为时该别墅总造价最低.【点睛】本题考查函数的实际应用问题,将空间问题平面化,准确将S求最值要准确,是中档题18.如图所示,在平面直角坐标系xOy中,已知椭圆C1C2:C2与C1(1)求椭圆C2的标准方程;(2C2上一点.C1,且直线C1均有且只有一个为定值.【答案】(1(2)①见解析,②见解析.【解析】【分析】(1)由题所求椭圆b即可;(2)①当直线OP斜率不OP斜率存在时,设直线OP,同理,直线的方程为,记C1P在椭圆上化简即可【详解】(1)设椭圆C2的焦距为2cC2(2)①1°当直线OP斜率不存在时,2°当直线OP斜率存在时,设直线OP的方程为代入椭圆C1的方程,消去y,由题意,同号,所以为定值.,所以直线的方程为代入椭圆C1的方程,消去yC1有且只有一个公共点,k.又点在C2上,所以【点睛】本题考查直线与椭圆的位置关系,定值问题,熟练运用韦达定理,及构建二次方程思想是关键,要求较高的计算能力,是中档题19.已知函数(1时,求函数的极值;(2)设函数的值;(3)是否存在一条直线与函数【答案】(1(2(3)见解析【解析】【分析】(1列极值表,即可求的极值;(2)设切线方程为,从即求(3)假设存在一条直线与函数的图象有两个不同分别写出得整理得消去得,,令构造函数,求导求得,推出矛盾,说明假设不成立,则不存在【详解】(1)的定义域为,令得,或1(2变形得在,,,从而,所以(3)假设存在一条直线与函数的方程为:整理得,消去得,.,由与,得,,则所以为上的单调减函数,所以的切点.【点睛】本题考查导数与函数的单调性与极值,切线问题,转化与化归能力,准确计算是关键,第三问转化为函数与方程的关系是难点,是较难的题目.20.已知数列n项和为S n,n项和为T n,且(1(2(3的所有值.【答案】(1(21为首项,(3)0 【解析】【分析】(1)令n=1,n=2(2①,③n=1 成立,即可3)由(2代入不等式,由适合,讨论,当为奇数时恒成立,和恒成立,通过证明单调减,*),说明上面两个不等式不恒成立,推得矛盾,即可求得只有【详解】(1,因为(2①②④又由(1,1为首项,为公比的等比数列.(3)由(2.,对任意的,当为奇数时,,因为所以,所以(*),时,有,所以,当为奇数时,时,有不符.综上,实数的所有值为0.【点睛】本题考查数列综合问题,由递推关系求数列通项公式,不等式恒成立问题,考查转化化归能力,准确计算是关键,是难题21.【选做题】A.[选修4-2:矩阵与变换](本小题满分10分)已知m是矩阵3的一个特征向量,求矩阵M及另一个特征值.B.[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy t为参数),椭圆C的参数C交于A,B两点,求线段AB的长.C.[选修4-5:不等式选讲](本小题满分10分)已知x,y,z【答案】A B C:见解析【解析】【分析】A由矩阵的运算求解即可;B.与椭圆联立求得坐标,由弦长公式求得AB的长;C.由柯西不等式证明即可【详解】A矩阵的特征多项式,解得矩阵的另一个特征值为B椭圆C由①②联立,解得,.C.由柯西不等式得,,所以当且仅当“”时取等号.【点睛】本题考查矩阵运算,直线的参数方程,弦长公式,柯西不等式证明不等式,熟练掌握矩阵运算,柯西不等式是关键,是基础题【必做题】第22题、第23题,每小题10分,共计20分.22.中,底面是矩形,AB 1,AP AD 2.(1)求直线(2)若点M,N分别在AB,PC M,N的位置.【答案】(1(2)M为AB的中点,N为PC的中点【解析】【分析】(1)由题意知,AB,AD,AP两两垂直.以PCD(2)设PCD,所以确定M,N的位置【详解】(1)由题意知,AB,AD,AP两两垂直.设平面PCD不妨取则.所以平面PCD设直线PB与平面PCD所成角为即直线PB与平面PCD所成角的正弦值为.(21)知,平面PCD的一个法向量为PCD所以M为AB的中点,N为PC的中点.【点睛】本题考查空间向量的应用,求线面角,探索性问题求点位置,熟练掌握空间向量的运算是关键,是基础题23.证明:(1(2【答案】(1)见解析;(2)见解析【解析】【分析】(1可;(2)运用数学归纳法证明即可【详解】(1时,因为,…,(2)①当时,由(1)可知,命题成立;所以即,也就是说,当时命题也成立.【点睛】本题考查数学归纳法证明不等式,基本不等式证明问题,准确计算,严密的推理是关键,是中档题- 21 -。

相关文档
最新文档