数据结构与算法

合集下载

数据结构与算法

数据结构与算法

数据结构与算法数据结构与算法是北京大学于2018年02月26日首次在中国大学MOOC开设的慕课课程,是国家精品在线开放课程。

该课程授课教师为张铭、陈斌、卢宗青、刘云淮、赵海燕、宋国杰、黄骏、邹磊、王腾蛟。

据2021年2月中国大学MOOC官网显示,该课程已开课4次。

数据结构与算法课程内容包括数据结构与抽象数据类型、算法特性及分类、算法效率与度量、线性结构、顺序表、链表、栈与队列、栈与递归、递归转非递归、字符串的存储结构、字符串运算的算法实现、字符串的快速模式匹配、二叉树的抽象数据类型、二叉树的搜索、二叉树的存储结构、树与二叉树的等价转换、树的抽象数据类型及树的遍历、树的链式存储结构、树的父指针表示法、树的顺序存储和K叉树、图的概念和抽象数据类型、图的存储结构、图的遍历、内排序、检索等内容。

课程性质:课程背景计算机是现代社会中用于解决问题的重要工具,支撑这个工具高效运转的就是其后的各种系统程序、应用程序。

数据结构,是抽象的表示数据的方式;算法,则是计算的一系列有效、通用的步骤。

算法与数据结构是程序设计中相辅相成的两个方面,是计算机学科的重要基石。

课程定位数据结构与算法是介绍基本数据结构以及相关的经典算法,强调问题-数据-算法的抽象过程,关注数据结构与算法的时间空间效率,培养学生编写出高效程序从而解决实际问题的综合能力的一门课程。

适应对象数据结构与算法适合计算机以及相关理工专业的本科生学习。

对于具有C语言结构化程序设计基础的学生,该课程第0章补充了一些面向对象的基本内容。

课程简介:数据结构与算法围绕着“算法+数据结构=程序”的思路,以问题求解为导向进行学习,运用问题抽象、数据抽象、算法抽象来分析问题,应用适当的数据结构和算法来设计和实现相应的程序。

在求解实际问题方面,该课程会学习到通过权衡时空和其他资源开销,利用数据结构来组织数据、设计高效的算法、完成高质量的程序以满足错综复杂的实际应用需要。

课程所学到的内容会被利用到计算机科学后续的各个课程中,如操作系统、软件工程、数据库概论、编译技术、计算机图形学、人机交互等。

全国计算机二级第1章数据结构与算法

全国计算机二级第1章数据结构与算法

考点1 算法的复杂度【考点精讲】1.算法的基本概念计算机算法为计算机解题的过程实际上是在实施某种算法。

算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。

2.算法复杂度算法复杂度包括时间复杂度和空间复杂度。

名称描述时间复杂度是指执行算法所需要的计算工作量空间复杂度是指执行这个算法所需要的内存空间考点2 逻辑结构和存储结构【考点精讲】1.逻辑结构数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合中的若干关系来表示。

数据的逻辑结构有两个要素:一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间的前后件关系,通常记为R。

一个数据结构可以表示成B=(D,R)其中B表示数据结构。

为了反映D中各数据元素之间的前后件关系,一般用二元组来表示。

例如,如果把一年四季看作一个数据结构,则可表示成B =(D,R)D ={春季,夏季,秋季,冬季}R ={(春季,夏季),(夏季,秋季),(秋季,冬季)}2.存储结构数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。

由于数据元素在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储空间中的各数据元素之间的逻辑关系(即前后件关系),在数据的存储结构中,不仅要存放各数据元素的信息,还需要存放各数据元素之间的前后件关系的信息。

一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接等存储结构。

顺序存储方式主要用于线性的数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元里,结点之间的关系由存储单元的邻接关系来体现。

链式存储结构就是在每个结点中至少包含一个指针域,用指针来体现数据元素之间逻辑上的联系。

考点3 线性结构和非线性结构【考点精讲】根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。

如果一个非空的数据结构满足下列两个条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。

数据结构和算法的关联与区别

数据结构和算法的关联与区别

数据结构和算法的关联与区别数据结构和算法是计算机科学中两个非常重要的概念,它们之间有着密切的关联,同时又有着明显的区别。

本文将从数据结构和算法的定义、特点、作用以及在实际应用中的关联和区别等方面进行探讨。

一、数据结构和算法的定义数据结构是指数据元素之间的关系以及对这些关系的操作规则的集合。

它主要研究数据的逻辑结构和物理结构,旨在为数据的组织、存储和管理提供便利。

数据结构可以分为线性结构(如数组、链表)、树形结构(如二叉树、堆)、图形结构(如邻接表、邻接矩阵)等多种类型。

算法是解决特定问题或执行特定任务的一系列有限步骤的有序集合。

它是对问题求解方法的精确描述,包括输入、输出、有限性、确定性和有效性等特点。

算法的设计目标是使得问题能够被高效地解决,通常通过时间复杂度和空间复杂度来评估算法的优劣。

二、数据结构和算法的特点数据结构的特点包括抽象性、逻辑性、物理性、动态性和高效性。

数据结构的抽象性指的是它与具体实现无关,只关注数据元素之间的关系;逻辑性指的是数据结构的逻辑结构应该与实际问题相吻合;物理性指的是数据结构在计算机中的具体存储方式;动态性指的是数据结构可以根据需要进行动态调整;高效性指的是数据结构应该能够高效地支持各种操作。

算法的特点包括输入、输出、有限性、确定性和有效性。

算法的输入是指算法开始执行时所接受的数据;输出是指算法执行完毕后所得到的结果;有限性指的是算法必须在有限步骤内结束;确定性指的是算法的每一步骤必须明确且无歧义;有效性指的是算法必须能够在有限时间内解决问题。

三、数据结构和算法的作用数据结构和算法是计算机科学的基础,它们在计算机程序设计和软件开发中起着至关重要的作用。

数据结构的作用是为程序提供高效的数据组织和存储方式,使得程序能够更快速、更方便地对数据进行操作和管理。

算法的作用是为程序提供高效的问题解决方法,使得程序能够在较短的时间内得到正确的结果。

四、数据结构和算法的关联数据结构和算法之间存在着密切的关联,数据结构为算法提供了基础支持,而算法则是对数据结构进行操作和处理的方法。

计算机科学第5章 数据结构与算法

计算机科学第5章 数据结构与算法
开始 开始 开始 处理步骤1 处理步骤1 处理步骤1
处理步骤2
符合条件
分支条件 不符合条件 符合条件 进入循环
循环条件 不符合条件 循环结束

分支1
分支2
循环体
处理步骤N
处理步骤N
处理步骤N
结束
(a)顺序结构
结束
(b)分支结构
结束
(c)循环结构
图 5-3 算法基本结构示意图
5.1 数据结构概述
5.1.2 算法
在大多数情况下,时间和空间因素可以进行相应转换,具体选择时可根
据实际需要和成本因素确定选择什么策略。 另外,需要提醒一点,不是时间复杂度高,算法的数学复杂程序就高。
使用更高级的数学方法,能够以更少的时间和空间代价获取处理结果。
这时,用于算法执行的时间虽然少了,但是用于算法设计的时间会大大 增加。如果设计出的程序有足够多的使用率,代价总体上是值得的。
5.1 数据结构概述
5.1.2 算法
用计算机解决一个复杂的实际问题,大体需要如下的步骤。 (1)将实际问题数学化,即把实际问题抽象为一个带有一般性的数学 问题。这一步要引入一些数学概念,精确地阐述数学问题,弄清问题的 已知条件、所要求的结果、以及在已知条件和所要求的结果之间存在着 的隐式或显式的联系。 (2)对于确定的数学问题,设计其求解的方法,即所谓的算法设计。 这一步要建立问题的求解模型,即确定问题的数据模型并在此模型上定 义一组运算,然后借助于对这组运算的调用和控制,从已知数据出发导 向所要求的结果,形成算法并用自然语言来表述。这种语言还不是程序 设计语言,不能被计算机所接受。 (3)用计算机上的一种程序设计语言来表达已设计好的算法。换句话 说,将非形式自然语言表达的算法转变为一种程序设计语言表达的算法。 这一步叫程序设计或程序编制。 (4)在计算机上编辑、调试和测试编制好的程序,直到输出所要求的 结果。

数据结构与算法

数据结构与算法

数据结构与算法一、引言数据结构和算法是计算机科学的核心领域,它们在软件开发和计算机科学理论研究中起着至关重要的作用。

数据结构是指在计算机中存储、组织和管理数据的方式,而算法则是解决特定问题的具体步骤和方法。

本文将重点讨论数据结构和算法的基本概念、分类以及它们在实际应用中的重要性。

二、数据结构的基本概念1. 数据结构的定义与分类数据结构是一种用来存储和组织数据的方式,它决定了数据的逻辑关系和物理存储方式。

常见的数据结构包括线性结构(如数组、链表)、树形结构(如二叉树、堆)以及图结构等。

不同的数据结构适合解决不同类型的问题,因此选择适当的数据结构对于问题的高效解决至关重要。

2. 常见数据结构及其特点(1)数组:由相同类型元素的集合组成,元素在内存中连续存储,支持随机访问。

(2)链表:由节点组成,每个节点包含数据和指向下一个节点的指针,可以动态分配内存空间。

(3)栈:一种特殊的线性表,具有后进先出(LIFO)的特点。

(4)队列:一种特殊的线性表,具有先进先出(FIFO)的特点。

(5)树:由节点和边组成,具有层次关系,常用于建立多级索引或表示层次结构。

(6)图:由顶点和边组成,用于描述对象间的关系。

三、算法的基本概念1. 算法的定义与特性算法是解决特定问题的有限序列,它是由基本操作组成的一系列步骤。

合理选择算法可以提高程序的效率和性能。

算法具有以下特性:输入、输出、有穷性、确定性、可行性和优化性。

2. 常见算法及其应用领域(1)排序算法:包括冒泡排序、插入排序、选择排序、快速排序等,用于对一组数据进行排序。

(2)查找算法:包括顺序查找、二分查找等,用于在一个有序或无序的数据集合中查找指定元素。

(3)图算法:包括最短路径算法、最小生成树算法等,用于描述和解决图结构相关的问题。

(4)动态规划算法:用于解决具有重叠子问题性质的问题,如背包问题等。

(5)贪心算法:用于解决优化问题的一类算法,每步选择都采取的是当前最优策略。

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法现代计算机科学中常用的数据结构和算法非常多,下面是一些核心且广泛应用于软件开发、数据库系统、操作系统、编译器设计、网络编程、机器学习以及其他计算密集型任务中的数据结构与算法:常用数据结构:1. 数组:线性存储结构,通过索引访问元素,支持随机访问。

2. 链表:包括单向链表、双向链表和循环链表,通过指针链接元素,插入删除操作灵活但不支持随机访问。

3. 栈(Stack):后进先出(LIFO)的数据结构,常用于函数调用栈、表达式求值等。

4. 队列(Queue):先进先出(FIFO)的数据结构,适用于处理任务排队、广度优先搜索等问题。

5. 哈希表(Hash Table):基于散列函数实现快速查找,用于实现关联数组、缓存、唯一性检查等功能。

6. 树:如二叉树(包括二叉查找树、AVL树、红黑树)、B树、B+树、Trie树等,用于搜索、排序、文件系统索引等。

7. 图(Graphs):表示节点集合以及节点之间的关系,常见于社交网络分析、路径规划等领域。

8. 堆(Heap):一种特殊的树形数据结构,分为最大堆和最小堆,用于优先队列、堆排序等。

9. 集合与映射(Set & Map):无序不重复元素的集合和键值对结构,提供高效查找、插入和删除操作。

常用算法:1. 排序算法:快速排序、归并排序、冒泡排序、选择排序、插入排序、堆排序等。

2. 搜索算法:线性搜索、二分查找、插值搜索、哈希查找、深度优先搜索(DFS)、广度优先搜索(BFS)等。

3. 图算法:最短路径算法(Dijkstra、Bellman-Ford、Floyd-Warshall),拓扑排序,最小生成树算法(Prim、Kruskal)等。

4. 动态规划:解决具有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列(LCS)等。

5. 贪心算法:在每一步都采取当前看来最优的选择,如霍夫曼编码、活动选择问题等。

6. 回溯算法和分支限界法:用于解决组合优化问题,如八皇后问题、旅行商问题等。

数据结构与算法的联系与区别

数据结构与算法的联系与区别

数据结构与算法的联系与区别数据结构与算法的联系与区别一、数据结构的概念数据结构是指数据对象中元素之间的关系,以及数据元素本身的特点。

它是计算机组织和存储数据的一种方式,直接影响到算法的设计和性能。

1.1 线性数据结构线性数据结构是数据元素之间存在一对一的关系,例如:数组、链表、栈和队列等。

这些数据结构在存储和访问数据时具有一定的规律性。

1.2 非线性数据结构非线性数据结构是数据元素之间存在一对多或多对多的关系,例如:树和图等。

这些数据结构的存储和访问方式相对复杂,需要特殊的算法来处理。

二、算法的概念算法是解决特定问题求解步骤的描述,在计算机中表现为指令的有限序列。

算法通过操作数据结构来实现对数据的操作,并得到预期的结果。

2.1 算法的特性算法具有以下特性:●输入:算法具有输入,可以是零个或多个输入。

●输出:算法至少有一个输出。

●有穷性:算法在有限的步骤内必须终止。

●确定性:算法中每一步的执行必须具有唯一确定的效果。

●可行性:算法的每一步都必须是可行的,即能够通过执行有限次数完成。

三、数据结构与算法的联系数据结构和算法紧密相关,它们互为补充,相互依赖。

3.1 数据结构对算法的影响不同的数据结构适用于不同种类的问题和算法。

选择合适的数据结构能够有效地提高算法的效率。

3.2 算法对数据结构的选择算法的设计基于特定的问题和已有的数据结构。

在算法设计过程中,根据问题的特点选择合适的数据结构是至关重要的。

四、数据结构与算法的区别数据结构和算法虽然有联系,但也存在一些明显的区别。

4.1 抽象层次不同数据结构是对数据的组织和存储方式的抽象,而算法是对解决问题的步骤和过程的抽象。

4.2 解决问题的角度不同数据结构关注如何组织和存储数据,而算法关注如何通过操作数据得出结果。

4.3 面向不同的目标数据结构的目标是提供高效的存储和访问数据的方式,而算法的目标是寻求有效的解决问题的方法。

附件:本文档未涉及任何附件。

法律名词及注释:无。

数据结构与算法

数据结构与算法

数据结构与算法第一节数据结构及算法概述一、数据结构图、四类基本结构的示意图【要点】 1 .数据元素是数据的基本单位。

2 .数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

3 .4类基本的规律结构:集合、线性结构、树形结构和网状结构。

4 .4种数据存储方式:挨次、链式、索引和散列。

【例题•单选题】(2022年义省信用社聘请考试真题)下列说法不正确的是()OA.数据元素是数据的基本单位B.数据项是数据中不行分割的最小标志单位 C.数据可由若干个数据元素构成D.数据项可由若干个数据元素构成『正确答案』D『答案解析』数据元素是数据的基本单位,在计算机程序中通常被作为一个整体进 行考虑和处理。

一个数据元素可由若干个数据项组成。

数据项是不行分割的、含有独立 意义的最小数据单位。

因此D 选项不正确。

二、算法O ——O ——O ——O ——O ⑹树型结构⑹线性结构 (d)图形结构算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每条指令表示一个或多个操作。

算法的特性:有穷性、确定性、可行性、输入和输出。

【要点】评价算法优劣标准:正确性、可读性、健壮性、高效率与低存储量需求。

其次节线性表线性表是n (n≥0)个数据元素al, a2,…,an组成的有限序列,n=0时称为空表。

非空的线性表,有以下特征:L有且仅有一个开头结点al,没有直接前趋,有且仅有一个直接后继a2。

2.有且仅有一个终结结点an,没有直接后继,有且仅有一个直接前趋a-。

3.其余的内部结点ai (2WiWnT)都有且仅有一个直接前趋a-和一个直接后继3i+ι o线性表的链式存储包括单链表、循环链表和双链表。

head 头结点百结点尾结点【留意】与单链表的插入和删除操作不同的是,在双链表中插入和删除须同时修改两个方向上的指针。

第三节栈和队列一、栈栈是一种“特别的”线性表,这种线性表中的插入和删除运算限定在表的某一端进行。

不含任何数据元素的栈称为空栈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与算法
version 1.0
SpadesQ, Sun Yat-sen University
目录
数据结构与算法 (1)
线性表 (2)
移动小球 (2)
哈希 (3)
简单魔板广度优先搜索 (3)
魔板(广度) (4)
二叉树 (5)
给前后序求多少种二叉树 (5)
二叉树重建:前中->广度遍历序列 (6)
图 (7)
DFS简单的马周游 (7)
脱离地牢 (10)
拓扑排序:奖金 (12)
sicily 1326 Apple Tree, 建树,求两结点最近公共祖先。

(13)
DP线性规划背包问题 (14)
采药 (14)
开心的金明 (15)
线性表
移动小球
数组要上万,否则时间>1sec
哈希
简单魔板广度优先搜索
魔板(广度)
二叉树
给前后序求多少种二叉树
二叉树重建:前中->广度遍历序列
DFS简单的马周游
飞越原野最短时间过地图,广度优先搜索.
脱离地牢
拓扑排序:奖金
商人的宣传:有向图矩阵乘法O(n^3*logL);直接迭代也行,O(n*m*L)
sicily 1326 Apple Tree, 建树,求两结点最近公共祖先。

DP线性规划背包问题
采药
开心的金明。

相关文档
最新文档