2018版高中数学人教B版必修五学案:第一单元 1.1-2 余弦定理二 含答案 精品

合集下载

【教育专用】2018高中数学(人教B版)必修五学案:第一章 1.1.2 余弦定理(二) Word版含答案

【教育专用】2018高中数学(人教B版)必修五学案:第一章 1.1.2 余弦定理(二) Word版含答案

1.1.2余弦定理(二)[学习目标] 1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正、余弦定理解决三角形的有关问题.[知识链接]1.以下问题不能用余弦定理求解的是.(1)已知两边和其中一边的对角,解三角形.(2)已知两角和一边,求其他角和边.(3)已知一个三角形的两条边及其夹角,求其他的边和角.(4)已知一个三角形的三条边,解三角形.答案(2)2.利用余弦定理判断三角形的形状,正确的是.(1)在△ABC中,若a2=b2+c2,则△ABC为直角三角形.(2)在△ABC中,若a2<b2+c2,则△ABC为锐角三角形.(3)在△ABC中,若a2>b2+c2,则△ABC为钝角三角形.答案(1)(3)[预习导引]1.正弦定理及其变形(1)asin A=bsin B=csin C=2R(R为△ABC外接圆半径).(2)a=2R sin A,b=2R sin B,c=2R sin C.2.余弦定理及其推论(1)a2=b2+c2-2bc cos A,b2=c2+a2-2ca cos B,c2=a2+b2-2ab cos C.(2)cos A=b2+c2-a22bc,cos B=c2+a2-b22ca,cos C=a2+b2-c22ab.(3)在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.3.三角变换公式(1)cos(α+β)=cos αcos β-sin αsin β.(2)cos(α-β)=cos αcos β+sin αsin β.(3)cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α.要点一 正、余弦定理的综合应用例1 如图所示,在四边形ABCD 中,AD ⊥CD ,AD =10,AB =14,∠BDA =60°,∠BCD =135°,求BC 的长.解 在△ABD 中,AD =10,AB =14,∠BDA =60°,设BD =x ,由余弦定理,得AB 2=AD 2+BD 2-2AD ·BD cos ∠BDA ,∴142=102+x 2-2×10·x cos 60°,即x 2-10x -96=0,解得x 1=16,x 2=-6(舍去),∴BD =16.∵AD ⊥CD ,∠BDA =60°,∴∠CDB =30°.在△BCD 中,由正弦定理:BC sin ∠CDB =BD sin ∠BCD, ∴BC =16sin 30°sin 135°=8 2. 规律方法 余弦定理和正弦定理一样,都是围绕着三角形进行边角互换的.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息.跟踪演练1 在△ABC 中,内角A ,B ,C 的对边长分别为a ,b ,c ,已知a 2-c 2=2b ,且sin A cos C =3cos A sin C ,求b .解 方法一 在△ABC 中,∵sin A cos C =3cos A sin C ,则由正弦定理及余弦定理有:a ·a 2+b 2-c 22ab =3(b 2+c 2-a 22bc)c , 化简并整理得:2(a 2-c 2)=b 2.又由已知a 2-c 2=2b ,∴4b =b 2.解得b =4或b =0(舍).方法二 由余弦定理得:a 2-c 2=b 2-2bc cos A .又a 2-c 2=2b ,b ≠0.所以b =2c cos A +2.①又sin A cos C =3cos A sin C ,∴sin A cos C +cos A sin C =4cos A sin C ,sin(A +C )=4cos A sin C ,即sin B =4cos A sin C ,由正弦定理得sin B =b csin C ,故b =4c cos A . ② 由①②解得b =4.要点二 利用正、余弦定理证明三角形中的恒等式例2 在△ABC 中,有:(1)a =b cos C +c cos B ;(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A ;这三个关系式也称为射影定理,请给出证明.证明 方法一 (1)设△ABC 外接圆半径为R ,由正弦定理得b =2R sin B ,c =2R sin C ,∴b cos C +c cos B =2R sin B cos C +2R sin C cos B=2R (sin B cos C +cos B sin C )=2R sin(B +C )=2R sin A =a .即a =b cos C +c cos B同理可证(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A .方法二 (1)由余弦定理得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab, ∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a=a . ∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ;(3)c =a cos B +b cos A .规律方法 (1)证明三角恒等式的关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正、余弦定理证明三角形中的恒等式的途径有两种途径:一是把角的关系通过正、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化.跟踪演练2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,求证:cos B cos C =c -b cos A b -c cos A. 证明 方法一 因为左边=a 2+c 2-b 22ac a 2+b 2-c 22ab=b (a 2+c 2-b 2)c (a 2+b 2-c 2), 右边=c -b ·b 2+c 2-a 22bc b -c ·b 2+c 2-a 22bc=b (a 2+c 2-b 2)c (a 2+b 2-c 2), ∴等式成立.方法二 设△ABC 外接圆半径为R ,∵右边=2R sin C -2R sin B ·cos A 2R sin B -2R sin C ·cos A=sin (A +B )-sin B cos A sin (A +C )-sin C cos A =sin A cos B sin A cos C =cos B cos C=左边. ∴等式成立.要点三 利用正、余弦定理判断三角形形状例3 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.解 由(a +b +c )(b +c -a )=3bc ,得b 2+2bc +c 2-a 2=3bc ,即a 2=b 2+c 2-bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12, 又A ∈(0,π),∴A =π3, 又sin A =2sin B cos C ,由正、余弦定理,得a =2b ·a 2+b 2-c 22ab=a 2+b 2-c 2a , ∴b 2=c 2,b =c ,∴△ABC 为等边三角形.规律方法 题中边的大小没有明确给出,而是通过一个关系式来确定的,可以考虑利用正弦定理将边的关系转化为角的关系,也可以利用余弦定理将边、角关系转化为边的关系来判断. 跟踪演练3 在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.解 方法一 根据余弦定理得b 2=a 2+c 2-2ac cos B .∵B =60°,2b =a +c ,∴⎝ ⎛⎭⎪⎫a +c 22=a 2+c 2-2ac cos 60°, 整理得(a -c )2=0,∴a =c .又∵2b =a +c ,∴2b =2a ,即b =a .∴△ABC 是等边三角形.方法二 根据正弦定理,2b =a +c 可转化为2sin B =sin A +sin C .又∵B =60°,∴A +C =120°.∴C =120°-A ,∴2sin 60°=sin A +sin(120°-A ),整理得sin(A +30°)=1,∴A =60°,C =60°.∴△ABC 是等边三角形.1.在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶3,则cos C 的值为( )A.13 B .-23 C.14 D .-14答案 A解析 根据正弦定理, a ∶b ∶c =sin A ∶sin B ∶sin C =3∶2∶3,设a =3k ,b =2k ,c =3k (k >0).则有cos C =9k 2+4k 2-9k 22×3k ×2k=13. 2.在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 ( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形 答案 C解析 ∵2cos B sin A =sin C ,∴2×a 2+c 2-b 22ac×a =c , ∴a =b .故△ABC 为等腰三角形.3.在△ABC 中,若a 2+c 2-b 2=3ac ,则角B 的值为 .答案 π6 解析 根据余弦定理,cos B =a 2+c 2-b 22ac =3ac 2ac =32,又B ∈(0,π),所以B =π6. 4.在△ABC 中,若B =30°,AB =23,AC =2,则满足条件的三角形有几个?解 设BC =a ,AC =b ,AB =c ,由余弦定理,得b 2=a 2+c 2-2ac cos B ,∴22=a 2+(23)2-2a ×23cos 30°,即a 2-6a +8=0,解得a =2或a =4.当a =2时,三边为2,2,23可组成三角形;当a =4时,三边为4,2,23也可组成三角形.∴满足条件的三角形有两个.1.已知两边及其中一边的对角,解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.2.根据所给条件确定三角形的形状,主要有两种途径(1)化边为角,并利用三角恒等变形进行化简;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.。

2018版高中数学人教B版必修五:第一单元 1.1.2 余弦定理(二)

2018版高中数学人教B版必修五:第一单元 1.1.2 余弦定理(二)

证明三角形中的恒等式
思考
前面我们用正弦定理化简过acos B=bcos A,当时是把边化成
了角;现在我们学了余弦定理,你能不能用余弦定理把角化
成边? 答案
a2+c2-b2 b2+c2-a2 由余弦定理得 a 2ac =b 2bc , 去分母得 a2+c2-b2=b2+c2-a2,化简得 a=b.
梳理
解答
反思与感悟
(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相
互转化,经过化简变形,充分暴露边、角关系,继而作出判断.
(2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2 =2bccos A,
b2+c2=(b+c)2-2bc等等.
跟踪训练 3
在△ABC中,若 B= 60°, 2b = a + c,试判断△ABC 的
引申探究
例1条件不变,用正弦定理求c. 解答
反思与感悟
相对于用正弦定理解此类题,用余弦定理不必考虑三角形解的个数, 解出几个是几个.
跟踪训练 1 在△ABC 中,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,若 A = π ,a= 3,b=1,则c等于 答案 解析 3
A.1 C. 3-1 B.2 D. 3
形状. 解答
当堂训练
1.在△ABC中,若b2=a2+c2+ac,则B等于 A.60°
答案
解析
B.45°或135° D.30°

C.120°
∵b2 = a2 + c2 - 2accos B = a2 + c2 + ac , 1 ∴cos B=-2, ∵0°<B<180°, ∴B=120°.
1 2 3
这三个关系式也称为射影定理,请给出证明.

新高中人教B版数学必修五课时作业:1.1.2余弦定理(2)(含答案)

新高中人教B版数学必修五课时作业:1.1.2余弦定理(2)(含答案)

余弦定理(二)课时目标 1.娴熟掌握正弦定理、余弦定理.2.会用正、余弦定理解三角形的相关问题.1.正弦定理及其变形a b c(1)sin A=sin B=sin C= ______.(2)a= ________, b= ________,c= ________.(3)sin A = ______, sin B = ______, sin C= ____________________________________.(4)sin A ∶ sin B ∶ sin C= ________.2.余弦定理及其推论2(1)a = ________________.(2)cos A = ________________.(3)在△ ABC 中, c2= a2+ b2? C 为 ________; c2>a2+ b2? C 为 ________; c2<a2+ b2? C 为 ________.3.在△ ABC 中,边 a、b、 c 所对的角分别为 A 、B 、 C,则有:(1)A +B + C= ____,A+B= __________. 2(2)sin(A + B) = ________,cos(A + B) =________, tan(A + B) =________.(3)sin A + B= ________, cos A+B= __________.22一、选择题1.已知 a、b、 c 为△ ABC 的三边长,若知足(a+ b- c)(a+ b+ c)= ab,则∠ C 的大小为()A. 60°B.90°C. 120 °D.150°2.在△ ABC 中,若 2cos Bsin A = sin C,则△ ABC 的形状必定是 ()A.等腰直角三角形 B .直角三角形C.等腰三角形 D .等边三角形3.在△ ABC 中,已知 sin A ∶ sin B ∶ sin C= 3∶ 5∶ 7,则这个三角形的最小外角为() A. 30°B.60°C. 90°D. 120 °4.△ ABC 的三边分别为a, b,c 且知足 b2= ac,2b= a+ c,则此三角形是 ()A.等腰三角形 B .直角三角形C.等腰直角三角形 D .等边三角形5.在△ ABC中,角A ,B ,C 所对的边长分别为a,b,c,若C= 120 °,c=2a,则 () A. a>bB. a<bC. a= bD. a 与b 的大小关系不可以确立6.假如将直角三角形的三边增添相同的长度,则新三角形的形状是()A.锐角三角形 B .直角三角形C.钝角三角形 D .由增添的长度确立二、填空题7.在△ ABC 中,边 a,b 的长是方程x2- 5x+2= 0 的两个根, C= 60°,则边 c=________. 8.设2a+ 1, a,2a- 1 为钝角三角形的三边,那么 a 的取值范围是________.ABC的周长是________.9.已知△ABC的面积为23, BC = 5,A =60°,则△10.在△ ABC 中, A = 60°, b= 1, S△ABC=3,则△ ABC 外接圆的面积是 ________.三、解答题22-a- b.11.在△ ABC 中,求证: 2 =sin Cc3→ →12.在△ ABC 中, a, b,c 分别是角 A ,B , C 的对边的长, cos B=,且 AB ·BC=- 21.5(1)求△ ABC 的面积;(2)若 a= 7,求角 C.能力提高13.已知△ ABC 中, AB = 1, BC= 2,则角 C 的取值范围是 ()πB . 0<C<πA. 0<C≤2 6π ππ πC.6<C< 2D.6<C≤314.△ ABC 中,内角 A 、 B、 C 的对边分别为23a、 b、 c,已知 b = ac 且 cos B= .4 11(1)求tan A+tan C的值;→ →3(2)设 BA ·BC=,求 a+ c 的值.21.解斜三角形的常有种类及解法在三角形的 6 个元素中要已知三个(起码有一边 )才能求解,常有种类及其解法见下表:应用已知条件一般解法定理一边和两角( 如 a, B ,C)两边和夹角( 如 a, b, C)正弦由 A +B + C= 180°,求角 A ;由正弦定理求出 b 与 c.在有解定理时只有一解 .余弦由余弦定理求第三边c;由正弦定理求出小边所对的角;再定理由 A +B + C= 180°求出另一角.在有解时只有一解.正弦定理三边余弦由余弦定理求出角 A 、B ;再利用 A + B+ C=180°,求出角(a,b, c)定理 C.在有解时只有一解 .正弦定理由正弦定理求出角 B;由 A +B + C= 180°,求出角 C;再利两边和此中一边的对c.可有两解、一解或无解 .余弦用正弦定理或余弦定理求角如 (a, b, A)定理2.依据所给条件确立三角形的形状,主要有两种门路(1)化边为角;(2)化角为边,并常用正弦(余弦 )定理实行边、角变换.1.1.2 余弦定理 (二 )答案知识梳理ab c 1. (1)2R(2)2Rsin A 2Rsin B2Rsin C (3) 2R 2R2R2 2(2)b 2+ c 2- a 2 (4)a ∶ b ∶ c 2.(1)b + c -2bccos A 2bc(3)直角钝角 锐角 π CC C3.(1) π-(2)sin C - cos C - tan C (3)cossin2 222作业设计1. C [ ∵ (a + b -c)(a + b +c)=ab ,∴ a 2+ b 2- c 2=- ab ,即 a 2+b 2-c 2=- 1, 2ab 2∴ cos C =- 1,∴∠ C =120°.] 22. C [ ∵ 2cos Bsin A = sin C =sin(A + B) ,∴ sin Acos B - cos Asin B = 0,即 sin(A -B) = 0,∴ A =B.]3.B [∵ a ∶ b ∶c = sin A ∶ sin B ∶ sin C = 3∶5∶ 7,不如设 a = 3, b = 5, c = 7, C 为最大内角,2 2 - 72 1则 cos C = 3 + 5 =- .2×3×5 2∴ C = 120°.∴最小外角为60°.]4.D[ ∵ 2b =a + c ,∴ 4b 2= (a + c)2 ,即 (a - c)2=0.∴ a = c.∴ 2b = a +c = 2a.∴ b =a ,即 a = b = c.]5.A[ 在△ ABC 中,由余弦定理得,c 2= a 2+ b 2- 2abcos 120 °= a 2+ b 2+ ab.∵ c = 2a ,∴ 2a 2= a 2+ b 2+ ab.∴ a 2- b 2= ab>0,∴ a 2>b 2,∴ a>b.]6.A [ 设直角三角形三边长为 222a ,b ,c ,且 a +b = c ,则 (a + x)2+ (b + x)2- (c + x)2=a2+ b2+ 2x2+ 2(a+ b)x - c2- 2cx -x2=2(a+ b- c)x + x2>0,∴ c+x 所对的最大角变成锐角.]7. 19分析由题意: a+ b= 5, ab= 2.由余弦定理得:c2= a2+b2- 2abcos C= a2+ b2- ab= (a+ b)2- 3ab= 52- 3×2=19,∴c= 19.8. 2<a<8分析∵ 2a- 1>0,∴ a>1,最大边为2a+ 1.2222∵三角形为钝角三角形,∴ a + (2a- 1) <(2a+ 1) ,∴a>2,∴ 2<a<8.9. 12分析S△ABC=1AB·AC·sin A =1A B·AC·sin 60 =°23,22∴AB·AC =8, BC 2= AB 2+ AC 2- 2AB·AC·cos A=AB 2+ AC2-AB·AC =(AB + AC) 2-3AB·AC ,∴ (AB + AC) 2= BC 2+ 3AB·AC =49,∴AB +AC = 7,∴△ ABC 的周长为 12.13π10. 3分析S△ABC=1bcsin A =3c=3,24∴ c= 4,由余弦定理:a2= b2+ c2-2bccos A= 12+42- 2×1×4cos 60 °= 13,∴ a=13.a13239∴ 2R=sin A=3=3,2∴ R=39外接圆2=13π3.∴ S=πR 3.sin Acos B - cos Asin B =sin A sin B11.证明右侧=sin C sin C·cos B-sin C·cos A a2+ c2- b2b2+ c2- a2a2+ c2- b2b2+ c2- a2a2- b2=a·2ac -b·2bc=2c2-2c2=c2 =左侧.c c因此a2-b2-.2=sin Cc12.解→ → → →= 21.( 1)∵ AB ·BC =- 21, BA ·BC → → → → BA ·BC = |BA | |BC ·| cos · B = accos B =21.∴ ac =35,∵ cos B = 3,∴ sin B = 4.5 5 1 1 4∴ S △ ABC = acsin B = ×35× = 14.2 2 5(2)ac = 35, a =7,∴ c = 5.由余弦定理得, b 2= a 2+ c 2- 2accos B = 32,∴ b =4 2.由正弦定理:c =bsin C sin B.c sin B = 54 = 2∴ sin C = 4 × 2.b 2 5 ∵ c<b 且 B 为锐角,∴ C 必定是锐角.∴ C = 45°.13.A[方法一 (应用正弦定理 )∵ sin AB C = sin BC A ,∴ sin 1 C = sin 2 A1∴ sin C = 2sin A ,∵ 0<sin A ≤1,1∴ 0<sin C ≤2.∵ AB<BC ,∴ C<A ,∴ C 为锐角,π∴0<C ≤6.方法二(应用数形联合 )如下图,以 B 为圆心,以 1 为半径画圆,则圆上除了直线BC 上的点外,都可作为A 点.从点 C 向圆B 作切线,设切点为 A 1和 A 2,当 A 与 A 1、A 2 重合时,角 C 最大,易知此时: BC = 2,AB = 1,AC ⊥ AB ,∴π,C = 6π∴ 0<C ≤ .]63,得 sin B =1-32= 714.解 (1)由 cos B =444.由 b 2= ac 及正弦定理得 sin 2 B = sin Asin C.11 cos A cos C sin Ccos A + cos Csin A 于是 tan A + tan C = sin A + sin C =sin Asin C = = sin B = 1 = 4 7 2 7 .sin B sin B→ → 3 3(2)由 BA ·BC = 得 ca ·cos B = ,2 2由 cos B = 34,可得 ca = 2,即 b 2= 2.由余弦定理: b 2= a 2+ c 2 -2ac ·cos B ,得 a 2+ c 2= b 2+ 2ac ·cos B = 5,∴ (a + c)2= a 2+ c 2+ 2ac = 5+ 4= 9,∴ a + c = 3.+sin 2 B。

2018版高中数学人教B版必修五学案第一单元 章末复习课 Word版含答案

2018版高中数学人教B版必修五学案第一单元 章末复习课 Word版含答案

学习目标.整合知识结构,梳理知识网络,进一步巩固、深化所学知识.能灵活、熟练运用正弦、余弦定理解三角形.
.能解决三角形与三角变换的综合问题及实际问题.
知识点一正弦定理及其推论
设△的外接圆半径为,则
()===.
()=,=,=.
()=,=,=.
()在△中,>⇔⇔.
知识点二余弦定理及其推论
.=,=,=.
.=;=;=.
.在△中,=+⇔为;>+⇔为;<+⇔为.
知识点三三角形面积公式
() ===;
()===.
类型一利用正弦、余弦定理解三角形
例如图,在△中,==,=,点在边上,∠=°,求的长度.
反思与感悟解三角形的一般方法:
()已知两角和一边,如已知、和,由++=π求,由正弦定理求、.
()已知两边和这两边的夹角,如已知、和,应先用余弦定理求,再应用正弦定理先求较短边所对的角,然后利用++=π,求另一角.
()已知两边和其中一边的对角,如已知、和,应先用正弦定理求,由++=π求,再由正弦定理或余弦定理求,要注意解可能有多种情况.
()已知三边、、,可应用余弦定理求、、.
跟踪训练
如图,在△中,∠=,=,点在边上,=,∠=.。

2018版高中数学人教B版必修五学案:第一单元 §1-2 应

2018版高中数学人教B版必修五学案:第一单元 §1-2 应

学习目标 1.会用正弦、余弦定理解决生产实践中有关不可到达点距离的测量问题.2.培养提出问题、正确分析问题、独立解决问题的能力.知识点一常用角思考试画出“北偏东60°”和“南偏西45°”的示意图.梳理在解决实际问题时常会遇到一些有关角的术语,请查阅资料后填空:(1)方向角指北或指南方向线与目标方向所成的小于________度的角.(2)仰角与俯角与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平线________时叫仰角,目标视线在水平线________时叫俯角.(如下图所示)(3)张角由C点看AB的张角指的是角________.知识点二测量方案思考1如图是北京故宫的角楼,设线段AB表示角楼的高度,在宫墙外护城河畔的马路边,选位置C,设CC′为测量仪器的高,过点C′的水平面与AB相交于点B′,由测点C′对角楼进行测量,你认为通过测量的数据能求出角楼的高度吗?思考2如图,如果移动测量仪CC′到DD′(测量仪高度不变),想想看,我们能测得哪些数据,使问题得以解决?梳理测量某个量的方法有很多,但是在实际背景下,有些方法可能没法实施,比如直接测量某楼高.这个时候就需要设计方案绕开障碍间接地达到目的.设计测量方案的基本任务是把目标量转化为可测量的量,并尽可能提高精确度.一般来说,基线越长,精确度越高.类型一测量两个不能到达点之间的距离问题例1如图,为测量河对岸A、B两点的距离,在河的这边测出CD的长为32km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,求A、B两点间的距离.反思与感悟测量两个不可到达的点之间的距离,一般是把求距离问题转化为应用余弦定理求三角形的边长问题,然后把求未知的另外边长问题转化为只有一点不能到达的两点距离测量问题,运用正弦定理解决.跟踪训练1要测量河对岸两地A、B之间的距离,在岸边选取相距1003米的C、D两点,并测得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面内),求A、B两地的距离.类型二求高度命题角度1测量仰角(俯角)求高度例2如图所示,D,C,B在地平面同一直线上,DC=10 m,从D,C两地测得A点的仰角分别为30°和45°,则A点离地面的高AB等于()A.10 m B.5 3 mC.5(3-1) m D.5(3+1) m反思与感悟利用正弦、余弦定理来解决实际问题时,要从所给的实际背景中,进行加工、提炼,抓住本质,抽象出数学模型,使之转化为解三角形问题.跟踪训练2江岸边有一炮台C高30 m,江中有两条船B,A,船与炮台底部D在同一直线上,由炮台顶部测得俯角分别为45°和30°,则两条船相距________ m.命题角度2测量方位角求高度例3如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.反思与感悟此类问题特点:底部不可到达,且涉及与地面垂直的平面,观测者两次观测点所在直线不经过“目标物”,解决办法是把目标高度转化为地平面内某量,从而把空间问题转化为平面内解三角形问题.跟踪训练3如图,为测得河对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东15°方向走10 m到位置D,测得∠BDC=45°,则塔AB 的高是()A.10 m B.10 2 mC.10 3 m D.10 6 m1.如图,在河岸AC上测量河的宽度BC,测量下列四组数据,较适宜的是()A.a,c,αB.b,c,αC.c,a,βD.b,α,γ2.如图,某人向正东方向走了x千米,然后向右转120°,再朝新方向走了3千米,结果他离出发点恰好13千米,那么x的值是________.3.甲、乙两楼相距20 m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是________m,________m.4.如图所示,设A、B两点在河的两岸,一测量者在A的同侧,在A所在的河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°,则A、B两点的距离为________m.1.运用正弦定理就能测量“一个可到达点与一个不可到达点间的距离”,而测量“两个不可到达点间的距离”要综合运用正弦定理和余弦定理.测量“一个可到达点与一个不可到达点间的距离”是测量“两个不可到达点间的距离”的基础,这两类测量距离的题型间既有联系又有区别.2.正弦、余弦定理在实际测量中的应用的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图;(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解;(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.答案精析问题导学 知识点一 思考梳理 (1)90 (2)上方 下方 (3)ACB 知识点二思考1 可测得点A 的仰角α的大小.在△AB ′C ′中,三条边的长度都无法测出,因而AB ′无法求得.思考2 如图所示,在点B ′,C ′,D ′构成的三角形中,可以测得∠β和∠γ的大小,又可测得C ′D ′的长,这样,我们就可以根据正弦定理求出边B ′C ′的长,从而在Rt △AB ′C ′中,求出AB ′的长.使问题得到解决. 题型探究 类型一例1 解 在△BCD 中, ∠CBD =180°-30°-105°=45°, 由正弦定理得BC sin 30°=CD sin 45°,则BC =CD sin 30°sin 45°= 64(km).在△ACD 中,∠CAD =180°-60°-60°=60°, ∴△ACD 为正三角形, ∴AC =CD =32(km). 在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos 45° =34+616-2×32×64×22=38, ∴AB =64(km).∴河对岸A 、B 两点间的距离为64km. 跟踪训练1 解 如图在△ACD 中,∠CAD =180°-(120°+30°)=30°,∴AC =CD =1003(米).在△BCD 中,∠CBD =180°-(45°+75°)=60°, 由正弦定理得BC =1003sin 75°sin 60°=200sin 75°(米).在△ABC 中,由余弦定理,得AB 2=(1003)2+(200sin 75°)2-2×1003×200sin 75°cos 75° =1002×(3+4×1-cos 150°2-2×3×sin 150°)=1002×5, ∴AB =1005(米).所以河对岸A 、B 两点间的距离为1005米. 类型二 命题角度1例2 D [方法一 设AB =x m , 则BC =x m. ∴BD =(10+x )m.∴tan ∠ADB =AB DB =x 10+x =33.解得x =5(3+1)m.所以A 点离地面的高AB 等于 5(3+1)m.方法二 ∵∠ACB =45°, ∴∠ACD =135°,∴∠CAD =180°-135°-30°=15°. 由正弦定理,得AC =CD sin ∠CAD ·sin ∠ADC=10sin 15°·sin 30°=206-2∴AB=AC sin 45°=5(3+1)m.]跟踪训练230命题角度2例3100 6解析依题意,∠CAB=30°,AB=600 m,∠CBA=180°-75°=105°,∠CBD=30°,∴∠ACB=180°-30°-105°=45°.由正弦定理,得BC=ABsin∠ACB·sin∠CAB=600sin 45°×sin 30°=3002,∴CD=BC tan∠CBD=3002×tan 30°=1006(m).跟踪训练3 D当堂训练1.D 2.4 3.2034033 4.50 2。

2018版高中数学北师大版必修五学案:第二章 解三角形

2018版高中数学北师大版必修五学案:第二章 解三角形

1.2 余弦定理(二)[学习目标] 1.熟练掌握余弦定理及变形形式,能用余弦定理解三角形.2.能应用余弦定理判断三角形形状.3.能利用正弦、余弦定理解决解三角形的有关问题.知识点一 正弦定理及其变形 1.a sin A =b sin B =c sin C=2R . 2.a =2R sin_A ,b =2R sin_B ,c =2R sin_C . 知识点二 余弦定理及其推论1.a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B , c 2=a 2+b 2-2ab cos_C .2.cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.3.在△ABC 中,c 2=a 2+b 2⇔C 为直角,c 2>a 2+b 2⇔C 为钝角;c 2<a 2+b 2⇔C 为锐角. 知识点三 正弦、余弦定理解决的问题思考 以下问题不能用余弦定理求解的是________.(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角; (2)已知两角和一边,求其他角和边;(3)已知一个三角形的两条边及其夹角,求其他的边和角; (4)已知一个三角形的三条边,解三角形.答案 (2)题型一 利用余弦定理判断三角形的形状例1 在△ABC 中,cos 2B 2=a +c2c ,其中a 、b 、c 分别是角A 、B 、C 的对边,则△ABC 的形状为( ) A .直角三角形B .等腰三角形或直角三角形C .等腰直角三角形D .正三角形 答案 A解析 方法一 在△ABC 中,由已知得 1+cos B 2=12+a2c, ∴cos B =a c =a 2+c 2-b22ac,化简得c 2=a 2+b 2. 故△ABC 为直角三角形.方法二 原式化为cos B =a c =sin Asin C ,∴cos B sin C =sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴sin B cos C =0,∵B ∈(0,π),sin B ≠0,∴cos C =0, 又∵C ∈(0,π),∴C =90°, 即△ABC 为直角三角形.反思与感悟 一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪训练1 在△ABC 中,B =60°,b 2=ac ,则三角形一定是( ) A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 答案 B解析 由余弦定理cos B =a 2+c 2-b 22ac,代入得12=a 2+c 2-ac 2ac,∴a 2+c 2-2ac =0, 即(a -c )2=0,∴a =c .又∵B =60°,∴△ABC 是等边三角形. 题型二 正弦、余弦定理的综合应用例2 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos B b =sin C c.(1)证明:sin A sin B =sin C ; (2)若b 2+c 2-a 2=65bc ,求tan B .(1)证明 根据正弦定理,可设a sin A =b sin B =csin C =k (k >0).则a =k sin A ,b =k sin B ,c =k sin C . 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得: sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C ,所以sin A sin B =sin C . (2)解 由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35.所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B=4.反思与感悟 (1)余弦定理和正弦定理一样,都是围绕着三角形进行边角互换.在有关三角形的题目中注意选择是应用正弦定理,还是余弦定理,必要时也可列方程(组)求解.同时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能利用某个定理的信息. (2)解题时,还应注意,当把条件转化为角之间的关系时,还应注意三角恒等变换公式的应用. 跟踪训练2 在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,且b sin A =3a cos B . (1)求角B ;(2)若b =3,sin C =2sin A ,求a ,c 的值. 解 (1)由b sin A =3a cos B 及正弦定理, 得sin B =3cos B ,即tan B =3,因为B 是三角形的内角,所以B =π3.(2)由sin C =2 sin A 及正弦定理得,c =2a . 由余弦定理及b =3,得9=a 2+c 2-2ac cos π3,即9=a 2+4a 2-2a 2,所以a =3,c =2 3. 题型三 利用正弦、余弦定理证明边角恒等式例3 在△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,求证:a 2-b 2c 2=sin (A -B )sin C .证明 在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , b 2=a 2+c 2-2ac cos B ,∴a 2-b 2=b 2-a 2-2bc cos A +2ac cos B , ∴2(a 2-b 2)=2ac cos B -2bc cos A , 即a 2-b 2=ac cos B -bc cos A , ∴a 2-b 2c 2=a cos B -b cos Ac .由正弦定理得a c =sin A sin C ,b c =sin B sin C,∴a 2-b 2c 2=sin A cos B -cos A sin B sin C =sin (A -B )sin C ,故等式成立.反思与感悟 (1)证明三角恒等式,关键是消除等号两端三角函数式的差异.形式上一般有:左⇒右;右⇒左或左⇒中⇐右三种.(2)利用正弦、余弦定理证明三角形中的恒等式的途径有两种:一是把角的关系通过正弦、余弦定理转化为边的关系;二是把边的关系转化为角的关系,一般是通过正弦定理转化. 跟踪训练3 在△ABC 中,若a cos 2C 2+c cos 2A 2=3b2,求证:a +c =2b .解 由题a (1+cos C )+c (1+cos A )=3b , 即a +a ·a 2+b 2-c 22ab +c +c ·b 2+c 2-a 22bc =3b ,∴2ab +a 2+b 2-c 2+2bc +b 2+c 2-a 2=6b 2, 整理得ab +bc =2b 2,同除b 得a +c =2b , 故等式成立.忽略三角形中任意两边之和大于第三边例4 已知钝角三角形的三边BC =a =k ,AC =b =k +2,AB =c =k +4,求k 的取值范围. 错解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0.∴k 2-4k -12<0,解得-2<k <6,① ∵k 为三角形的一边长,∴k >0,② 由①②知0<k <6.错因分析 忽略隐含条件k +k +2>k +4,即k >2. 正解 ∵c >b >a ,且△ABC 为钝角三角形, ∴C 为钝角.由余弦定理得cos C =a 2+b 2-c 22ab =k 2-4k -122k (k +2)<0,∴k 2-4k -12<0,解得-2<k <6,① 由两边之和大于第三边得k +(k +2)>k +4, ∴k >2,② 由①②可知2<k <6.误区警示 在解与三角形的边有关的问题时,一定要注意三角形两边之和大于第三边,两边之差小于第三边.跟踪训练4 若△ABC 为钝角三角形,三边长分别为2,3,x ,则x 的取值范围是( ) A .(1,5) B .(13,5)C .(5,13)D .(1,5)∪(13,5)答案 D解析 (1)若x >3,则x 对角的余弦值22+32-x 22×2×3<0且2+3>x ,解得13<x <5.(2)若x <3,则3对角的余弦值22+x 2-322×2×x <0且x +2>3,解得1<x < 5.故x 的取值范围是(1,5)∪(13,5).1.在△ABC 中,b cos A =a cos B ,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .直角三角形 D .锐角三角形答案 B解析 由题b ·b 2+c 2-a 22bc =a ·a 2+c 2-b 22ac ,整理得a 2=b 2,∴a =b .2.在△ABC 中,sin 2A -sin 2C -sin 2B =sin C sin B ,则A 等于( )A .60°B .45°C .120°D .30°答案 C解析 由正弦定理得a 2-c 2-b 2=bc , 结合余弦定理得cos A =b 2+c 2-a 22bc =-12,又A ∈(0,π),∴A =120°.3.在△ABC 中,A =120°,AB =5,BC =7,则sin Bsin C 的值为( )A.85B.58C.53D.35答案 D解析 由余弦定理BC 2=AB 2+AC 2-2·AB ·AC ·cos A 得72=52+AC 2-2·5·AC ·(-12),∴AC =3或-8(舍).∴sin B sin C =AC AB =35.4.已知锐角三角形的边长分别为1,3,a ,则a 的范围是( ) A .(8,10) B .(22,10) C .(22,10) D .(10,8) 答案 B解析 只需让3和a 所对的边均为锐角即可.故⎩⎪⎨⎪⎧12+32-a 22·1·3>0,12+a 2-322·1·a>0,1+3>a ,1+a >3,解得22<a <10.5.在△ABC 中,若b =1,c =3,C =2π3,则a =________.答案 1解析 由余弦定理得c 2=a 2+b 2-2ab cos C , ∴a 2+1+a =3,即a 2+a -2=0, 解得a =1或a =-2(舍).6.已知△ABC 的三边长分别为2,3,4,则此三角形是________三角形. 答案 钝角解析4所对的角的余弦为22+32-422×2×3=-14<0,故该角为钝角,故该三角形为钝角三角形.1.判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.2.解决综合问题时应考虑以下两点(1)正弦定理、余弦定理是解决三角形问题的主要工具,正确选择适合试题特点的公式极为重要,当使用一个定理无法解决问题时,要及时考虑另外一个定理.(2)三角函数中的公式在解决三角形问题时是不可或缺的,应该养成应用三角公式列式化简的习惯.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.。

2018版高中数学人教B版必修五教师用书:第1章 1-1-2

2018版高中数学人教B版必修五教师用书:第1章 1-1-2

1.1.2 余弦定理1.掌握余弦定理及其推论.(重点)2.掌握正、余弦定理的综合应用.(难点)3.能应用余弦定理判断三角形的形状.(易错点)基础·初探]教材整理1 余弦定理阅读教材P6中间1.1.2余弦定理~P7第15行,完成下列问题.1.三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍,即a2=b2+c2-2bc cos_A,b2=a2+c2-2ac cos_B,c2=a2+b2-2ab cos_C.2.应用余弦定理我们可以解决两类解三角形问题.(1)已知三边,求三角.(2)已知两边和它们的夹角,求第三边和其他两个角.1.以下说法正确的有________.(填序号)①在三角形中,已知两边及一边的对角,可用正弦定理解三角形,但不能用余弦定理去解;②余弦定理揭示了任意三角形边角之间的关系,因此,它适应于任何三角形;③利用余弦定理,可解决已知三角形三边求角问题;④在三角形中,勾股定理是余弦定理的一个特例.【解析】①错误.由正、余弦定理的特征可知在三角形中,已知两边及一边的对角,既可以用正弦定理,也可以用余弦定理求解.②正确.余弦定理反映了任意三角形的边角关系,它适合于任何三角形.③正确.结合余弦定理公式及三角函数知识可知正确.④正确.余弦定理可以看作勾股定理的推广.【答案】②③④2.在△ABC中,已知a=4,b=6,C=120°,则边c=________.【解析】根据余弦定理c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219.【答案】219教材整理2 余弦定理的变形阅读教材P7例1上面倒数第三自然段~P8,完成下列问题.1.余弦定理的变形:cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.2.利用余弦定理的变形判定角:在△ABC中,c2=a2+b2⇔C为直角;c2>a2+b2⇔C为钝角;c2<a2+b2⇔C为锐角.1.在△ABC中,a=1,b=3,c=2,则∠B=________.【解析】cos B=c2+a2-b22ac=4+1-34=12,∠B=60°.【答案】60°2.在△ABC中,若a2=b2+bc+c2,则∠A=________. 【解析】∵a2=b2+bc+c2,∴b2+c2-a2=-bc,∴cos A=b2+c2-a22bc=-bc2bc=-12,又∵0°<∠A<180°,∴∠A=120°.【答案】 120°小组合作型]a . 【精彩点拨】 解答本题可先由正弦定理求出角C ,然后再求其他的边和角.也可以由余弦定理列出关于边长a 的方程,首先求出边长a ,再由正弦定理求角A ,角C .【自主解答】 法一:由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6. 当a =3时,∠A =30°, ∴∠C =120°.当a =6时,由正弦定理sin A =a sin Bb =6×123=1.∴∠A =90°,∴∠C =60°.法二:由b <c ,∠B =30°,b >c sin 30°=33×12=332知本题有两解. 由正弦定理sin C =c sin B b =33×123=32,∴∠C =60°或120°,当∠C =60°时,∠A =90°, 由勾股定理a =b 2+c 2=32+(33)2=6, 当∠C =120°时,∠A =30°,△ABC 为等腰三角形, ∴a =3.已知三角形的两边与一角解三角形,必须先判断该角是给出两边中一边的对角,还是给出两边的夹角.若是给出两边的夹角,可以由余弦定理求第三边;若是给出两边中一边的对角,可以应用余弦定理建立一元二次方程,解方程求出第三边(也可以两次应用正弦定理求出第三边).再练一题]1.在△ABC 中,边a ,b 的长是方程x 2-5x +2=0的两个根,∠C =60°,求边c .【导学号:18082003】【解】 由题意:a +b =5,ab =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab =52-3×2=19, ∴c =19.【精彩点拨】 (1)如何判断哪个角是最大角? (2)求sin C 能否应用余弦定理? 【自主解答】 ∵a >c >b , ∴∠A 为最大角, 由余弦定理的推论,得:cos A =b 2+c 2-a 22bc =32+52-722×3×5=-12,∴∠A =120°, ∴sin A =sin 120°=32. 由正弦定理a sin A =csin C ,得: sin C =c sin A a =5×327=5314, ∴最大角∠A 为120°,sin C =5314.1.本题已知的是三条边,根据大边对大角,找到最大角是解题的关键.2.已知三边解三角形的方法:先用余弦定理求出一个角,再用正弦定理或余弦定理求出另一角,最后用三角形的内角和定理求第三角.再练一题]2.在△ABC 中,a 2-c 2+b 2=ab ,求角C . 【解】 ∵c 2=a 2+b 2-2ab cos C , ∴a 2-c 2+b 2=2ab cos C . ∴ab =2ab cos C .∴cos C =12,∴∠C =60°.探究共研型]sin 2A =sin 2B +sin 2C 成立吗?反之说法正确吗?为什么?【提示】 设△ABC 的外接圆半径为R .由正弦定理的变形,将a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b 2+c 2可得sin 2A =sin 2B +sin 2C .反之将sin A =a 2R ,sin B =b 2R ,sin C =c2R 代入sin 2A =sin 2B +sin 2C 可得a 2=b 2+c 2.因此,这两种说法均正确.探究2 在△ABC 中,若c 2=a 2+b 2,则∠C =π2成立吗?反之若∠C =π2,则c 2=a 2+b 2成立吗?为什么?【提示】 因为c 2=a 2+b 2,所以a 2+b 2-c 2=0,由余弦定理的变形cos C =a 2+b 2-c 22ab =0,即cos C =0,所以∠C =π2,反之若C =π2,则cos C =0,即a 2+b 2-c 22ab=0,所以a 2+b 2-c 2=0,即c 2=a 2+b 2.在△ABC 中,若(a -c ·cos B )·sin B =(b -c ·cos A )·sin A ,判断△ABC 的形状.【精彩点拨】【自主解答】 法一:∵(a -c ·cos B )·sin B =(b -c ·cos A )·sin A , ∴由正、余弦定理可得:⎝ ⎛⎭⎪⎫a -c ·a 2+c 2-b 22ac ·b =⎝ ⎛⎭⎪⎫b -c ·b 2+c 2-a 22bc ·a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2, 即(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2+b 2-c 2=0或a 2=b 2. ∴a 2+b 2=c 2或a =b .故△ABC 为直角三角形或等腰三角形. 法二:根据正弦定理,原等式可化为:(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A , 即sin C cos B sin B =sin C cos A sin A . ∵sin C ≠0,∴sin B cos B =sin A cos A , ∴sin 2B =sin 2A .∴2∠B =2∠A 或2∠B +2∠A =π, 即∠A =∠B 或∠A +∠B =π2. 故△ABC 是等腰三角形或直角三角形.1.判断三角形的形状应围绕三角形的边角关系进行思考,可用正、余弦定理将已知条件转化为边边关系,通过因式分解、配方等方式得出边的相应关系,从而判断三角形的形状,也可利用正、余弦定理将已知条件转化为角与角之间的关系,通过三角变换,得出三角形各内角之间的关系,从而判断三角形形状.2.在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.再练一题]3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B=2c -ab .【导学号:18082004】(1)求sin Csin A 的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.【解】 (1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,(其中R 为△ABC 外接圆半径)所以cos A -2cos C cos B =2c -a b =2sin C -sin Asin B,所以sin B cos A -2sin B cos C =2sin C cos B -sin A cos B , sin A cos B +sin B cos A =2sin B cos C +2sin C cos B , 所以sin(A +B )=2sin(B +C ).又∠A +∠B +∠C =π,所以sin C =2sin A , 所以sin Csin A =2.(2)由(1)知sin C sin A =2,由正弦定理得c a =sin Csin A =2, 即c =2a .又因为△ABC 的周长为5, 所以b =5-3a .由余弦定理得b 2=a 2+c 2-2ac cos B , 即(5-3a )2=a 2+(2a )2-4a 2×14, 解得a =1,a =5(舍去),所以b =5-3×1=2.1.已知a ,b ,c 是△ABC 的三边长,若满足等式(a +b -c )·(a +b +c )=ab ,则角C 的大小为( )A.60°B.90°C.120°D.150°【解析】 由(a +b -c )(a +b +c )=ab ,得(a +b )2-c 2=ab ,∴c 2=a 2+b 2+ab =a 2+b 2-2ab cos C ,∴cos C =-12,∴∠C =120°.【答案】 C2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12【解析】 由三角形边角关系可知,角C 为△ABC 的最小角,则cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32,所以∠C =π6,故选B. 【答案】 B3. 在△ABC 中,若a =2b cos C ,则△ABC 的形状为________. 【解析】 法一:∵a =2b cos C =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a .∴a 2=a 2+b 2-c 2,即b 2=c 2,b =c , ∴△ABC 为等腰三角形.法二:∵a =2b cos C ,∴sin A =2sin B cos C , 而sin A =sin(B +C ) =sin B cos C +cos B sin C , ∴cos B sin C =sin B cos C , 即sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又-180°<∠B -∠C <180°, ∴∠B -∠C =0,即∠B =∠C . ∴△ABC 为等腰三角形. 【答案】 等腰三角形4.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知∠B =∠C,2b =3a ,则cos A =________.【解析】 由∠B =∠C,2b =3a , 可得b =c =32a , 所以cos A =b 2+c 2-a 22bc =34a 2+34a 2-a 22×32a ×32a =13.【答案】 135.在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边c 的长.【导学号:18082005】【解】 5x 2+7x -6=0可化为(5x -3)·(x +2)=0. ∴x 1=35,x 2=-2(舍去). ∴cos C =35. 根据余弦定理, c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16. ∴c =4,即第三边长为4.。

[k12精品]2018高中数学(人教B版)必修五学案:第一章 1.1.2 余弦定理(一) Word版含答案

[k12精品]2018高中数学(人教B版)必修五学案:第一章 1.1.2 余弦定理(一) Word版含答案

1.1.2 余弦定理(一)[学习目标] 1.理解余弦定理的证明.2.初步运用余弦定理及其变形形式解三角形.[知识链接]1. 以下问题可以使用正弦定理求解的是 .(1)已知两边和其中一边的对角,求另一边的对角,进而可求其他的边和角. (2)已知两角和一边,求其他角和边.(3)已知一个三角形的两条边及其夹角,求其他的边和角. (4)已知一个三角形的三条边,解三角形. 答案 (1)(2)2.如图所示,在直角坐标系中,若A (0,0),B (c,0),C (b cos A ,b sin A ).利用两点间距离公式表示出|BC |,化简后会得出怎样的结论?解 a 2=|BC |2=(b cos A -c )2+(b sin A -0)2 =b 2(sin 2A +cos 2A )-2bc cos A +c 2 =b 2+c 2-2bc cos A . 得出a 2=b 2+c 2-2bc cos A . [预习导引] 1.余弦定理三角形任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦的积的两倍.即 a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 2.余弦定理的变形 cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.要点一 已知两边及一角解三角形例1 已知△ABC ,根据下列条件解三角形: (1)b =3,c =33,B =30°; (2)a =3,b =2,B =45°.解 (1)方法一 由余弦定理b 2=a 2+c 2-2ac cos B , 得32=a 2+(33)2-2a ×33×cos 30°, ∴a 2-9a +18=0,得a =3或6.当a =3时,由于b =3,∴A =B =30°,∴C =120°. 当a =6时,由正弦定理得sin A =a sin Bb =6×123=1.∴A =90°,∴C =60°.方法二 由正弦定理得sin C =c sin B b =33×123=32,由b <c ,∴C =60°或120°,当C =60°时,A =90°,由勾股定理a =b 2+c 2=32+(33)2=6,当C =120°时,A =30°,△ABC 为等腰三角形. ∴a =b =3.(2)由余弦定理知b 2=a 2+c 2-2ac cos B . ∴2=3+c 2-23·22c .即c 2-6c +1=0,解得c =6+22或c =6-22, 当c =6+22时,由余弦定理,得cos A =b 2+c 2-a 22bc =2+(6+22)2-32×2×6+22=12.∵0°<A <180°,∴A =60°,∴C =75°.当c =6-22时,由余弦定理,得cos A =b 2+c 2-a 22bc =2+(6-22)2-32×2×6-22=-12.∵0°<A <180°,∴A =120°,C =15°. 故c =6+22,A =60°,C =75°或c =6-22,A =120°,C =15°. 规律方法 已知两边及一角解三角形有以下两种情况:(1)若已知角是其中一边的对角,有两种解法,一种方法是利用正弦定理先求角,再求边;另一种方法是用余弦定理列出关于另一边的一元二次方程求解.(2)若已知角是两边的夹角,则直接运用余弦定理求出另外一边,然后根据边角关系利用正弦定理求解或者直接利用余弦定理求角.跟踪演练1 在△ABC 中,已知a =5,b =3,角C 的余弦值是方程5x 2+7x -6=0的根,求第三边长c .解 5x 2+7x -6=0可化为(5x -3)(x +2)=0. ∴x 1=35,x 2=-2(舍去).∴cos C =35.根据余弦定理,c 2=a 2+b 2-2ab cos C =52+32-2×5×3×35=16.∴c =4,即第三边长为4.要点二 已知三边或三边关系解三角形例2 (1)已知△ABC 的三边长为a =23,b =22,c =6+2,求△ABC 的各角度数. (2)已知三角形ABC 的三边长为a =3,b =4,c =37,求△ABC 的最大内角. 解 (1)由余弦定理得:cos A =b 2+c 2-a 22bc =(22)2+(6+2)2-(23)22×22×(6+2)=12,∴A =60°.cos B =a 2+c 2-b 22ac =(23)2+(6+2)2-(22)22×23×(6+2)=22,∴B =45°,∴C =180°-A -B =75°.(2)∵c >a ,c >b ,∴角C 最大.由余弦定理, 得c 2=a 2+b 2-2ab cos C , 即37=9+16-24cos C , ∴cos C =-12,∵0°<C <180°, ∴C =120°.∴△ABC 的最大内角为120°.规律方法 (1)已知三角形三边求角时,可先利用余弦定理求角,再用正弦定理求解,在用正弦定理求解时,要根据边的大小确定角的大小,防止产生增解或漏解.(2)若已知三角形三边的比例关系,常根据比例的性质引入k ,从而转化为已知三边解三角形. 跟踪演练2 在△ABC 中,已知BC =7,AC =8,AB =9,试求AC 边上的中线长. 解 由余弦定理和条件,得cos A =AB 2+AC 2-BC 22·AB ·AC =92+82-722×9×8=23,设中线长为x ,由余弦定理,得 x 2=(AC 2)2+AB 2-2·AC2·AB cos A=42+92-2×4×9×23=49,∴x =7.所以所求AC 边上的中线长为7. 要点三 三角形形状的判断例3 在△ABC 中,已知cos 2 A 2=b +c2c ,判断△ABC 的形状.解 方法一 在△ABC 中,由已知cos 2 A2=b +c2c,得1+cos A 2=b +c2c , ∴cos A =b c .根据余弦定理,得b 2+c 2-a 22bc =bc .∴b 2+c 2-a 2=2b 2,即a 2+b 2=c 2. ∴△ABC 是直角三角形.方法二 在△ABC 中,设其外接圆半径为R ,由正弦定理,b =2R sin B ,c =2R sin C , 由cos 2 A 2=b +c 2c 知,cos A =bc .∴cos A =sin Bsin C ,即sin B =sin C cos A .∵B =π-(A +C ), ∴sin(A +C )=sin C cos A , ∴sin A cos C =0.∵A ,C 都是△ABC 的内角, ∴A ≠0,A ≠π.∴cos C =0,∴C =π2.∴△ABC 是直角三角形.规律方法 (1)方法一是用余弦定理将等式转化为边之间的关系式,方法二是借助于正弦定理,将已知等式转化为角的三角函数关系式.这两种方法是判断三角形形状的常用手段. (2)一般地,如果遇到的式子含角的余弦或是边的二次式,要考虑用余弦定理;反之,若遇到的式子含角的正弦或是边的一次式,则大多用正弦定理;若是以上特征不明显,则要考虑两个定理都有可能用.跟踪演练3 在△ABC 中,若(a -c cos B )sin B =(b -c cos A )sin A ,判断△ABC 的形状. 解 方法一 由正弦定理及余弦定理知,原等式可化为(a -c ·a 2+c 2-b 22ac )b =(b -c ·b 2+c 2-a 22bc )a ,整理得:(a 2+b 2-c 2)b 2=(a 2+b 2-c 2)a 2,∴a 2+b 2-c 2=0或a 2=b 2,故三角形为等腰三角形或直角三角形.方法二 由正弦定理,原等式可化为(sin A -sin C cos B )sin B =(sin B -sin C cos A )sin A , ∴sin B cos B =sin A cos A ,∴sin 2B =sin 2A ,∴2B =2A 或2B +2A =π,∴A =B 或A +B =π2,故△ABC 为等腰三角形或直角三角形.1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-35,则三角形的另一边长为( )A .52B .213C .16D .4 答案 B解析 设另一边长为x ,则x 2=52+32-2×5×3×(-35)=52,∴x =213.2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B解析 ∵a >b >c ,∴C 为最小角,由余弦定理cos C =a 2+b 2-c 22ab =72+(43)2-(13)22×7×43=32.∴C =π6.3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32 D.78 答案 D解析 设顶角为C ,∵l =5c ,∴a =b =2c , 由余弦定理得:cos C =a 2+b 2-c 22ab =4c 2+4c 2-c 22×2c ×2c =78.4.在△ABC 中,已知A =60°,最大边长和最小边长恰好是方程x 2-7x +11=0的两根,则第三边的长为 . 答案 4解析 设最大边为x 1,最小边为x 2, 则x 1+x 2=7,x 1x 2=11, ∴第三边长=x 21+x 22-2x 1x 2cos A=(x 1+x 2)2-2x 1x 2(1+cos A )=4.5.在△ABC中,sin A∶sin B∶sin C=2∶4∶5,判断三角形的形状.解因为a∶b∶c=sin A∶sin B∶sin C=2∶4∶5,所以可令a=2k,b=4k,c=5k(k>0).c最大,cos C=(2k)2+(4k)2-(5k)22×2k×4k<0,所以C为钝角,从而△ABC为钝角三角形.1.利用余弦定理可以解决两类有关三角形的问题:(1)已知两边和夹角或已知三边能直接利用余弦定理解三角形.(2) 若已知两边和一边的对角,既可以用正弦定理又可以用余弦定理解三角形.2.当所给的条件是边角混合关系时,判断三角形形状的基本思想是:用正弦定理或余弦定理将所给条件统一为角之间的关系或边之间的关系.若统一为角之间的关系,再利用三角恒等变形化简找到角之间的关系;若统一为边之间的关系,再利用代数方法进行恒等变形、化简,找到边之间的关系.3.余弦定理与勾股定理的关系:余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角.(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角.(3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2 余弦定理(二)学习目标 1.熟练掌握余弦定理及其变形形式.2.会用余弦定理解三角形.3.能利用正弦、余弦定理解决有关三角形的恒等式化简、证明及形状判断等问题.知识点一 已知两边及其中一边的对角解三角形思考 在△ABC 中,若B =30°,AB =23,AC =2,可以先用正弦定理b sin B =csin C 求出sin C=32.那么能不能用余弦定理解此三角形?如果能,怎么解?梳理 已知两边及其一边的对角,既可先用正弦定理,也可先用余弦定理,满足条件的三角形个数为0,1,2,具体判断方法如下:设在△ABC 中,已知a ,b 及A 的值.由正弦定理a sin A =b sin B ,可求得sin B =b sin Aa .(1)当A 为钝角时,则B 必为锐角,三角形的解唯一;(2)当A 为直角且a >b 时,三角形的解唯一;(3)当A 为锐角时,如图,以点C 为圆心,以a 为半径作圆,三角形解的个数取决于a 与CD 和b 的大小关系: ①当a <CD 时,无解; ②当a =CD 时,一解;③当CD <a <b 时,则圆与射线AB 有两个交点,此时B 为锐角或钝角,此时B 的值有两个. ④当a ≥b 时,一解.(4)如果a >b ,则有A >B ,所以B 为锐角,此时B 的值唯一.知识点二 判断三角形的形状思考1 三角形的形状类别很多,按边可分为等腰三角形,等边三角形,其他;按角可分为钝角三角形,直角三角形,锐角三角形.在判断三角形的形状时是不是要一个一个去判定?思考2 △ABC 中,sin 2A =sin 2B .则A ,B 一定相等吗?梳理 判断三角形形状,首先看最大角是钝角、直角还是锐角;其次看是否有相等的边(或角).在转化条件时要注意等价.知识点三 证明三角形中的恒等式思考 前面我们用正弦定理化简过a cos B =b cos A ,当时是把边化成了角;现在我们学了余弦定理,你能不能用余弦定理把角化成边?梳理 证明三角恒等式的关键是借助正、余弦定理进行边角互化减小等式两边的差异.类型一 利用余弦定理解已知两边及一边对角的三角形 例1 已知在△ABC 中,a =8,b =7,B =60°,求c . 引申探究例1条件不变,用正弦定理求c .反思与感悟 相对于用正弦定理解此类题,用余弦定理不必考虑三角形解的个数,解出几个是几个.跟踪训练1 在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若A =π3,a =3,b =1,则c 等于( )A.1 B.2 C.3-1 D. 3类型二利用正弦、余弦定理证明三角形中的恒等式例2在△ABC中,有(1)a=b cos C+c cos B;(2)b=c cos A+a cos C;(3)c=a cos B+b cos A,这三个关系式也称为射影定理,请给出证明.反思与感悟证明三角形中边角混合关系恒等式,可以考虑两种途径:一是把角的关系通过正弦、余弦定理转化为边的关系,正弦借助正弦定理转化,余弦借助余弦定理转化;二是通过正弦定理把边的关系转化为角的关系.跟踪训练2在△ABC中,a、b、c分别是角A、B、C的对边,求证:cos Bcos C=c-b cos A b-c cos A.类型三利用正弦、余弦定理判断三角形形状例3在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sin A=2sin B cos C,试判断△ABC的形状.引申探究将本例中的条件(a+b+c)(b+c-a)=3bc改为(b2+c2-a2)2=b3c+c3b-a2bc,其余条件不变,试判断△ABC的形状.反思与感悟(1)判断三角形形状,往往利用正弦定理、余弦定理将边、角关系相互转化,经过化简变形,充分暴露边、角关系,继而作出判断.(2)在余弦定理中,注意整体思想的运用,如:b2+c2-a2=2bc cos A,b2+c2=(b+c)2-2bc 等等.跟踪训练3在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.1.在△ABC中,若b2=a2+c2+ac,则B等于()A.60°B.45°或135°C.120°D.30°2.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形3.在△ABC中,若B=30°,AB=23,AC=2,则满足条件的三角形有几个?1.已知两边及其中一边的对角解三角形,一般情况下,利用正弦定理求出另一边所对的角,再求其他的边或角,要注意进行讨论.如果采用余弦定理来解,只需解一个一元二次方程,即可求出边来,比较两种方法,采用余弦定理较简单.2.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.3.在余弦定理中,每一个等式均含有四个量,利用方程的观点,可以知三求一.4.利用余弦定理求三角形的边长时容易出现增解,原因是余弦定理中涉及的是边长的平方,通常转化为一元二次方程求正实数.因此解题时需特别注意三角形三边长度所应满足的基本条件.答案精析问题导学 知识点一思考 能.在余弦定理b 2=a 2+c 2-2ac cos B 中,已知三个量AC =b ,AB =c ,cos B ,代入后得到关于a 的一元二次方程,解此方程即可. 知识点二思考1 不需要.如果所知条件方便求角,只需判断最大的角是钝角,直角,锐角;如果方便求边,假设最大边为c ,可用a 2+b 2-c 2来判断cos C 的正负.而判断边或角是否相等则一目了然,不需多说. 思考2 ∵A ,B ∈(0,π), ∴2A,2B ∈(0,2π), ∴2A =2B 或2A =π-2B , 即A =B 或A +B =π2.知识点三思考 由余弦定理得a a 2+c 2-b 22ac=b b 2+c 2-a 22bc ,去分母得a 2+c 2-b 2=b 2+c 2-a 2,化简得a =b .题型探究 类型一例1 解 由余弦定理 b 2=a 2+c 2-2ac cos B ,得72=82+c 2-2×8×c cos 60°, 整理得c 2-8c +15=0, 解得c =3或c =5. 引申探究解 由正弦定理,得a sin A =c sin C =b sin B=7sin 60°=1433, ∴sin A =a 1433=437,∴cos A =±1-sin 2A=±1-⎝⎛⎭⎫4372=±17.∴sin C =sin [π-(A +B )] =sin(A +B )=sin A cos B +cos A sin B =437·12±17·32, ∴sin C =5314或sin C =3314.当sin C =5314时,c =1433·sin C =5;当sin C =3314时,c =1433·sin C =3.跟踪训练1 B 类型二例2 证明 方法一 (1)由正弦定理,得 b =2R sin B ,c =2R sin C , ∴b cos C +c cos B=2R sin B cos C +2R sin C cos B =2R (sin B cos C +cos B sin C ) =2R sin(B +C ) =2R sin A =a . 即a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A . 方法二 (1)由余弦定理,得cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab ,∴b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=a 2+b 2-c 22a +a 2+c 2-b 22a =2a 22a =a .∴a =b cos C +c cos B .同理可证(2)b =c cos A +a cos C ; (3)c =a cos B +b cos A .跟踪训练2 证明 方法一 左边=a 2+c 2-b 22ac a 2+b 2-c 22ab =b (a 2+c 2-b 2)c (a 2+b 2-c 2),右边=c -b ·b 2+c 2-a 22bcb -c ·b 2+c 2-a 22bc =b (a 2+c 2-b 2)c (a 2+b 2-c 2), ∴等式成立.方法二 右边=2R sin C -2R sin B cos A2R sin B -2R sin C cos A=sin (A +B )-sin B cos Asin (A +C )-sin C cos A=sin A cos B sin A cos C =cos Bcos C=左边,∴等式成立. 类型三例3 解 由(a +b +c )(b +c -a )=3bc , 得b 2+2bc +c 2-a 2=3bc , 即b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵0<A <π,∴A =π3.又sin A =2sin B cos C . ∴由正弦、余弦定理,得a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a ,∴b 2=c 2,b =c ,∴△ABC 为等边三角形. 引申探究解 由(b 2+c 2-a 2)2=b 3c +c 3b -a 2bc ,得(b 2+c 2-a 2)2=bc (b 2+c 2-a 2), ∴(b 2+c 2-a 2)(b 2+c 2-a 2-bc )=0, ∴b 2+c 2-a 2=0或b 2+c 2-a 2-bc =0, ∴a 2=b 2+c 2或b 2+c 2-a 2=bc , 由a 2=b 2+c 2,得A =90°,由b 2+c 2-a 2=bc ,得cos A =12,又0°<A <180°, ∴A =60°, 由例3知,b =c ,∴△ABC 为等边三角形或等腰直角三角形. 跟踪训练3 解 根据余弦定理, 得b 2=a 2+c 2-2ac cos B . ∵B =60°,2b =a +c , ∴⎝⎛⎭⎫a +c 22=a 2+c 2-2ac cos 60°,整理得(a -c )2=0,∴a =c . 又∵2b =a +c ,∴2b =2c ,即b =c . ∴△ABC 是等边三角形. 当堂训练 1.C 2.C3.满足条件的三角形有两个。

相关文档
最新文档