高中数学选修2-1 2.2.1椭圆及其标准方程公开课教学设计

合集下载

人教版高中数学选修(2-1)-2.2《椭圆及其标准方程(第2课时)》教学设计

人教版高中数学选修(2-1)-2.2《椭圆及其标准方程(第2课时)》教学设计

2.2.1 椭圆及其标准方程(第二课时)(杨军君)一、教学目标(一)学习目标1.掌握椭圆的定义与标准方程;2.会求椭圆的标准方程.(二)学习重点用待定系数法与定义法求椭圆方程(三)学习难点掌握求椭圆方程的基本方法.二、教学设计(一)预习任务设计1.预习任务(1)读一读:阅读教材第38页至第40页.(2)想一想:如何求椭圆的标准方程?(3)写一写:椭圆的一般方程: .2.预习自测(1)已知6,1a c ==,则椭圆的标准方程为( ) A.2213635x y += B.2213635y x += C.221365x y += D.以上都不对 【解题过程】由于条件中只给出,a c 的值,椭圆的焦点位置不确定,有两种可能性,故答案为D.【思路点拨】求椭圆方程时,要先定型后定量.【答案】D(2)已知椭圆的方程为222116x y m+=,焦点在x 轴上,则m 的取值范围是( ) A.44m -≤≤ B.44m -<<C.4m >或4m <-D.04m <<【解题过程】由条件可知:216m <可得:44m -<<.【思路点拨】把握椭圆方程的结构特征解题.【答案】B(3)若ABC ∆的两个顶点坐标为(4,0),(4,0)A B -,ABC ∆的周长为18,则顶点C 的轨迹方程为( ) A.221259x y += B.221(0)259y x y +=≠ C.221(0)169x y y +=≠ D.221(0)259x y y +=≠ 【解题过程】由条件可知:||||10||CA CB AB +=>,故点C 的轨迹是以,A B 为焦点,210a =的椭圆.考虑到,,A B C 三点构成三角形,故0y ≠.【思路点拨】利用椭圆的定义解题.【答案】D(4)已知椭圆的方程是2221(5)25x y a a +=>,它的两个焦点分别为12,F F ,且12||8F F =,弦AB 过1F ,则2ABF ∆的周长为( )A.10B.20C.D.【解题过程】2251641a =+=.由椭圆的定义得:2ABF ∆的周长为:221212||||||(||||)(||||)4AB AF BF AF AF BF BF a ++=+++==.【思路点拨】利用椭圆定义求解即可.【答案】D(二)课堂设计1.知识回顾(1)椭圆的定义;(2)椭圆的标准方程.2.新知讲解。

选修2-1教案2.2.1椭圆及其标准方程、几何性质

选修2-1教案2.2.1椭圆及其标准方程、几何性质

2.2.1圆及其标准方程教学要求:从具体情境中抽象出椭圆的模型,掌握椭圆的定义,标准方程 教学重点:椭圆的定义和标准方程 教学难点:椭圆标准方程的推导 教学过程:一、新课导入:取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?(学生动手,观察结果)思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的长度保持不变,即笔尖到两个定点的距离之和等于常数. 二、讲授新课:1. 定义椭圆:把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.2.椭圆标准方程的推导:以经过椭圆两焦点12,F F 的直线为x 轴,线段12F F 的垂直平分线为y 轴,建立直角坐标系xOy .设(,)M x y 是椭圆上任意一点,椭圆的焦距为()20c c >,那么焦点12,F F 的坐标分别为(),0c -,(),0c ,又设M 与12,F F 的距离之和等于2a ,根据椭圆的定义,则有122MF MF a +=,用两点间的距离公式代入,画简后的222221x y a a c+=-,此时引入222b ac =-要讲清楚. 即椭圆的标准方程是()222210x y a b a b+=>>. 根据对称性,若焦点在y 轴上,则椭圆的标准方程是()222210x y a b b a+=>>.两个焦点坐标()()12,0,,0F c F c -.通过椭圆的定义及推导,给学生强调两个基本的等式:122MF MF a +=和222b c a +=3. 例1 写出适合下列条件的椭圆的标准方程:⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==(教师引导——学生回答) 例2 已知椭圆两个焦点的坐标分别是()()2,0,2,0-,并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程.(教师分析——学生演板——教师点评) 三、巩固练习:1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点(3,P -;⑵焦点坐标分别为()()0,4,0,4-,5a =; ⑶10,4a c a c +=-=. 2. 作业:40P 第2题.2.2椭圆及其标准方程教学要求:掌握点的轨迹的求法,坐标法的基本思想和应用. 教学重点:求点的轨迹方程,坐标法的基本思想和应用. 教学难点:求点的轨迹方程,坐标法的基本思想和应用. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.关于椭圆的两个基本等式. 二、讲授新课:1. 例1 设点,A B 的坐标分别为()()5,0,5,0-,.直线,AM BM 相交于点M ,且它们的斜率之积是49-,求点M 的轨迹方程. 求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式. (教师引导——示范书写)2. 练习:1.点,A B 的坐标是()()1,0,1,0-,直线,AM BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的商是2,点M 的轨迹是什么? (教师分析——学生演板——教师点评)2.求到定点()2,0A 与到定直线8x =的距离之比为2的动点的轨迹方程. (教师分析——学生演板——教师点评)3. 例2 在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程.(教师引导——示范书写) 4. 练习: 1.47P 第7题.2.已知三角形ABC 的一边长为6,周长为16,求顶点A 的轨迹方程. 5.知识小结:①注意求哪个点的轨迹,设哪个点的坐标,然后找出含有点相关等式.②相关点法:寻求点M 的坐标,x y 与中间00,x y 的关系,然后消去00,x y ,得到点M 的轨迹方程. 三、作业: 40P 第4题 精讲精练第8练.2.2椭圆的简单几何性质教学要求:根据椭圆的方程研究曲线的几何性质,并正确地画出它的图形;根据几何条件求出曲线方程,并利用曲线的方程研究它的性质,画图. 教学重点:通过几何性质求椭圆方程并画图. 教学难点:通过几何性质求椭圆方程并画图. 教学过程: 一、复习:1.椭圆的定义,椭圆的焦点坐标,焦距.2.椭圆的标准方程. 二、讲授新课:1.范围——变量,x y 的取值范围,亦即曲线的取值范围:横坐标a x a -<<;纵坐标b x b -<<.方法:①观察图像法; ②代数方法.2.对称性——既是轴对称图形,关于x 轴对称,也关于y 轴对称;又是中心对称图形. 方法:①观察图像法; ②定义法.3.顶点:椭圆的长轴122A A a =,椭圆的短轴122B B b =,椭圆与四个对称轴的交点叫做椭圆的顶点,()()()()1212,0,,0,,0,,0A a A aB b B b --.4.离心率:刻画椭圆的扁平程度.把椭圆的焦点与长轴长的比c a 称为离心率.记ce a=. 可以理解为在椭圆的长轴长不变的前提下,两个焦点离开中心的程度.5.例题例4 求椭圆221625400x y +=的长轴和短轴的长,离心率,焦点和定点坐标. 提示:将一般方程化为标准方程. (学生回答——老师书写)练习:求椭圆22416x y +=和椭圆22981x y +=的长轴和短轴长,离心率,焦点坐标,定点坐标.(学生演板——教师点评)例5 点(),M x y 与定点()4,0F 的距离和它到直线25:4l x =的距离之比是常数45,求点M 的轨迹.(教师分析——示范书写)三、课堂练习:①比较下列每组椭圆的形状,哪一个更圆,哪一个更扁?⑴22936x y +=与2211612x y += ⑵22936x y +=与221610x y +=(学生口答,并说明原因)②求适合下列条件的椭圆的标准方程.⑴经过点()(,P Q -⑵长轴长是短轴长的3倍,且经过点()3,0P ⑶焦距是8,离心率等于0.8 (学生演板,教师点评) ③作业:47P 第4题.。

人教版高中数学选修2-1 2.2.1 椭圆及其标准方程(第二课时)公开课教学课件 (共21张PPT)

人教版高中数学选修2-1 2.2.1 椭圆及其标准方程(第二课时)公开课教学课件 (共21张PPT)

AF1 AF2 BF1 BF2 2a 仍然成立.
【说明】由本题可知,△AF1B的周长为4a, △AF1F2,△BF1F2的周长等于2a+2c.
y A
.
F1
O
. F
2
x
B
当堂检测: 1.两焦点的坐标分别是(-4,0)、(4,0),椭圆上一点
P到两焦点距离之和等于10,求椭圆的标准方程
解:设 M(x,y),P(x0,y0),则 y0 x x 0 ,y . 2 ∵ P(x0,y0) 在圆 x2 + y2 = 4 上, ∴ x02 + y02 = 4
2 x y2 1 . x2 +4 y2 = 4 即 4
y
.P .M
O
D
x
将 x0 x ,y0 2 y 代入


点M的轨迹是一个椭圆 .
(2) a b 0 ; (3) a c 0 .
y
F1
o
F2
M
x
(4)椭圆方程的鉴别:
形如 mx ny 1 的式子要表示椭圆,
2 2
当且仅当 m 0, n 0, 且 m n ;
(5)椭圆焦点位置的判断:标准方程中,x2, y2谁的分母大,
则焦点在其对应的坐标轴上.
变式:已知圆x 2 y 2 9, 从这个圆上任意一点P向x轴作 垂线段PP ' ,点M 在PP ' 上,并且PM 2MP ', 求点M的轨迹。
y P
M
o P’ x
x 2 y 1 9
2
例3 如图,设点A,B的坐标分别为(-5,0),(5,0)。
直线AM,BM相交于点M,且它们的斜率之积是 -4/9 点M的轨迹方程。 y

高中数学《椭圆及其标准方程》精品公开课教案设计

高中数学《椭圆及其标准方程》精品公开课教案设计

椭圆及其标准方程(第1课时)一、内容和内容解析内容:椭圆的定义及其标准方程的推导.内容解析:本节是高中数学人教A版选修2-1第二章第2节《椭圆》第1课时内容.在此之前学习了曲线与方程以及圆的方程,初步具备了解析几何的思想和用坐标法研究曲线问题的经验.另外,椭圆的学习为后面研究双曲线、抛物线提供了基本模式,是本节和本章的重点内容.故本节课的学习有着示范性的作用.教学中应当引起充分重视.椭圆的定义,较为抽象,用细绳画椭圆的方法将椭圆定义具体化.这对学生提出了较高的思维能力要求,这也是新课程标准中的数学核心素养要求之一.教学中应当引起充分重视.二、目标和目标解析目标:(1)用细绳画椭圆的方法将椭圆的定义具体化,加强对椭圆定义与图形的理解,在这过程中培养学生的思维能力.(2)在椭圆方程的推导过程中,会根据椭圆的图形特征,选择合理建系方法,理解椭圆标准方程之“标准”所在;会根据式子的结构特征,选择合适的化简方法,提高运算能力.(3)理解椭圆标准方程的特征及参数a,b,c的几何意义,能根据条件利用椭圆定义法或方程的待定系数法,求出椭圆的标准方程.目标解析:(1)对椭圆的认识,先从直观感受再到理性认识,这与历史上对椭圆的研究历程是一致的.但椭圆的定义是发生式定义,较为抽象,故借助细绳画椭圆的方法可以将定义具体化,所画图像确实与印象中的椭圆是一致的.细绳画椭圆的方法既有利于对椭圆定义的理解,还有助于对椭圆对称性的理解与分析,在这过程中培养学生的思维能力.(2)通过类比圆方程最简洁形式时,圆与坐标系的对称关系,可以找到怎样根据椭圆的图形特征建立坐标系,使得椭圆方程更简洁,并能找到各参数对应的几何意义,从而也就能更好地说明椭圆标准方程之“标准”所在.另外,在化简过程中,到底是直接两边平方还是移项后再平方,可以通过分析得到初步判断,移项后两边平方只剩下一个根号和一次式,形式更简单.但直接两边平方,利用式子对称的结构特征进行运算的话,其实也不难.所以可以借此机会与学生强调,化简方程时利用式子的结构特征可以简化运算,提高运算能力.提升方程化简能力是提高数学运算能力的落脚点,这也是数学核心素养要求之一.(3)椭圆标准方程时建立在特定坐标系下的对应方程,此时参数a,b,c 都有对应的几何意义.那么反过来,利用参数的几何意义及椭圆的定义,就可以快速地求出椭圆的标准方程.也可以利用方程的思想,采用待定系数法求出椭圆的标准方程.三、教学问题诊断分析1.教学问题一:怎样将生活中对椭圆的认识与椭圆的定义联系起来,这是本节课的第一个教学问题.这不仅是本节课的重点,也是教学难点.解决方案:从历史角度看,对椭圆的认识,先是借圆柱圆锥的斜截面边缘来定义,再上升到从点运动的轨迹来重新定义.但椭圆的定义是发生式定义,较为抽象,借助细绳画椭圆的方法可以将定义具体化,所画图像确实与印象中的椭圆是一致的,从而将生活中对椭圆的认识与椭圆定义联系起来.2.教学问题二:如何建立坐标系并理解椭圆标准方程之“标准”的意义,是第二个教学问题.其实任何一种建系方法都是可以求出对应的椭圆方程,但不同建系方法求得的方程复杂程度不同.怎么建立坐标系才能使得方程更简洁?解决方案:可以类比圆方程最简洁的形式所对应的坐标系——圆心在原点,圆关于F F所x轴、y轴、原点对称.根据细绳画椭圆的过程,可以得到椭圆关于两定点12在直线对称,关于线段F F的中垂线对称,且两对称轴的交点是椭圆对称中心,12从而确定了坐标系的建立方法.且经过换元,方程形式最简洁,还能找到参数a,b,c的几何意义,这就是标准之所在.32a,是第三个教学问题.学生目前化简方程能力是比较弱的,对于含根号的式子进行化简,常用两边平方法.到底是直接两边平方还是移项后两边平方更简便?解决方案:师生共同分析式子的结构特征,先选用移项后两边平方法进行化简,学生尝试化简,教师板书化简过程;然后教师再利用式子的结构特征进行直接两边平方进行化简,让学生感悟到利用好式子对称的结构特征,其实直接两边平方也可以快速化简的,还能提高学生的化简方程的能力.四、教学策略分析本节课的教学目标与教学问题为我们选择教学策略提供了启示.在教学设计中,采取问题引导方式来组织课堂教学.问题的设置给学生留有充分的思考空间,让学生围绕问题主线,通过自主探究达到突出教学重点,突破教学难点.在教学过程中,重视椭圆定义的理解,让学生体会到对椭圆的直观认识上升到理性认识,从直观几何到解析几何的变化.经历从形到数,再从数到形的过程,理解数形结合是解析几何的重要思想.同时,方程化简是提高数学运算能力的落脚点.因此,本节课的教学是实施数学具体内容的教学与核心素养教学有机结合的尝试.基于上述分析,本节课的教学重点定为:理解椭圆的定义,推导椭圆的标准方程.教学难点:理解椭圆的定义及如何化简椭圆方程.教学准备:教师为每个小组准备一张白色卡纸,一条细绳;学生自备铅笔. 教学流程:。

人教版数学选修2-1《椭圆及其标准方程》教学设计

人教版数学选修2-1《椭圆及其标准方程》教学设计

人教版数学选修2-1《椭圆及其标准方程》教学设计
教材:普通高中课程标准实验教科书选修2-1
章节:第二章 2.2.1 椭圆及其标准方程(第一课时)
面向学生:高二年级
普通高中课程标准实验教科书选修2-1
椭圆及其标准方程(第一课时)
一、教学目标:
1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用. 2.掌握椭圆的定义,会求椭圆的标准方程.
3.培养探索数学的兴趣,培养探索数学的兴趣,提升数学抽象、数学建模、数学运算的数学素养。

二、二、教学重点、难点:
1.重点:椭圆定义的归纳及其标准方程的推导。

2.难点:椭圆标准方程的推导。

三、三、教学过程设计。

高中数学选修2-1精品教案2:2.2.1 椭圆及其标准方程教学设计

高中数学选修2-1精品教案2:2.2.1 椭圆及其标准方程教学设计




二.新课讲解
1.通过老师演示椭圆的画法让学生总结概括椭圆的定义并板书
椭圆定义:
我们把平面内与两个定点F1、F2的距离的和等于常数(大于∣F1F2∣)的点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫椭圆的焦距.
说明:①可用椭圆演示模板向学生展示椭圆图形的画法;②要求学生注意常数要大于 的条件,同时让学生明确常数小于或等于∣F1F2∣时,轨迹为无轨迹或一条线段.。
注:椭圆的标准方程:
形式一:
说明:此方程表示的椭圆焦点在x轴上,焦点是 、 ,其中 。
形式二:
说明:①此方程表示的椭圆焦点在y轴上,焦点是 、 ,其中 。
②两种形式中,总有 ;
③两种形式中,椭圆焦点始终在长轴上;
④ 始终满足 。
三.பைடு நூலகம்习领会
师生共同解答下列各例:
【例1】求适合下列条件的椭圆的标准方程:
(1) ,焦点在 轴上;
(2) ,焦点在 轴上;
(3) ;
(4)焦点是 , 。
【例2】填空
(1)平面内到两定点 , 距离之和等于8的动点轨迹方程是;
(2)平面内到两定点 , 距离之和等于10的动点轨迹方程是;
(3)若点 是椭圆 上的一点(不在 轴上), 是它的焦点。则 的周长是; 的最大值是。若 , 是 的中点,则 。
练习反馈
学生作课本第42页练习1,2、3
课堂
小结
椭圆的方程及标准方程的推导
作业布置
课本第49页习题2.2 组第1、2题
练习调配
精讲精练P22随堂练习、P24随堂练习
教学内容
2.2.1 椭圆及其标准方程
三维目标
过程与方法
通过椭圆概念的讲解和椭圆标准方程的推导,让学生更加熟悉求曲 线方程的方 法,培养学生的转化能力和数形结合能力。

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

高中数学选修2-1 第二章 第二节《2.2椭圆》全套教案

2.2椭圆课时分配:1.第一课椭圆及其标准方程1个课时2.第二课椭圆的简单几何性质1个课时2.2.1椭圆及其标准方程【教材分析】圆锥曲线被安排在第二章中,以“圆锥曲线与方程”的标题出现,其包含曲线与方程、椭圆、双曲线、抛物线四部分内容。

本节是整个解析几何部分的重要基础知识。

椭圆的定义与初中时学生学习的圆的定义具有相通之处,就是“点动成线”的原理。

通过学习,让学生理解当点运动的规则(遵循的几何关系)发生变化的时候,则画出的曲线的形状也会不同。

高中阶段,在《直线和圆的方程》的学习过程中,学生对坐标法(解析法)思想有了一定程度的认识;在“曲线与方程”和“方程与曲线”的概念中,学生进一步明确了坐标法及其研究曲线的方程的一般步骤。

从本节课开始,又将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好研究方法和研究思想的准备。

它的学习方法对整个这一章具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整章中具有承前启后的作用。

【教学目标】知识与技能目标: 1.准确理解椭圆的定义,明确焦点、焦距的概念,掌握椭圆的标准方程及其推导过程;2.根据条件确定椭圆的标准方程;过程与方法目标: 1.通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义;在探索椭圆标准方程的过程中,培养学生观察、辨析、归纳和抽象概括问题的能力.2.提高运用坐标法解决几何问题的能力和运算求解和数据处理的能力。

情感态度与价值观目标:通过提炼归纳椭圆的定义的过程,让学生学会将问题抽象成数学问题,并透过运动的现象把握事物的本质;通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美。

通过讨论椭圆方程推导的过程中养成学生扎实严谨的科学态度。

教学重点和难点1.重点:体会椭圆的形成过程,感受求曲线方程的基本方法,掌握椭圆的标准方程及其推导方法。

2.难点:椭圆标准方程的推导(尤其是遇到的根式化简的过程与方法)法与学法(一)教法为了使学生更主动地参与到课堂教学中,体现以学生为主体的探究性学习和因材施教的原则,故采用自主探究法。

高中数学《椭圆及其标准方程》精品公开课教案设计

高中数学《椭圆及其标准方程》精品公开课教案设计

椭圆及其标准方程(第一课时)一、教学内容解析:本节课是《普通高中课程标准实验教科书·数学》选修2-1第二章第二节第一课时,主要学习椭圆的定义和标准方程.在必修2学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.这一节课是在学完圆及其标准方程的基础上,将研究曲线的方法拓展到椭圆,是继续学习椭圆的几何性质的基础;椭圆的学习为后面研究双曲线、抛物线提供了基本模式和理论基础.因此这节课有承前启后的作用.另外本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、类比思想、化归思想等.因此,教学时应重视体现数学的思想方法及价值. 基于以上分析确定了本节课的教学重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;教学难点:椭圆标准方程的推导与化简.二、教学目标设置:1.借助动手实验让学生画出圆、椭圆、线段,找到它们三者之间的联系,为后面研究椭圆做准备。

2.通过播放圆的研究过程的微课,让学生回忆起研究圆的基本流程,从而让学生学会类比圆的研究过程研究椭圆。

3. 通过类比圆的标准方程的推导,小组合作给出椭圆标准方程的推导过程,巩固用坐标化的方法求动点的轨迹方程,同时体会含有两个根式的化简思路。

4. 通过经历椭圆标准方程的推导, 对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识,同时增强学生战胜困难的意志品质,并体会数学的简洁美、对称美。

以上教学目标结合了教学实际,将知识与能力、过程与方法、情感态度价值观的三维目标融入各个教学环节.三、学生学情分析:本节课是在学生已学习了圆的定义及其标准方程和掌握“曲线的方程”与“方程的曲线”的概念之后,学习椭圆定义及其标准方程,符合学生的认知规律,学生有能力学好本节内容; 但在推导椭圆的标准方程时,学生需要自己建立坐标系,再研究推导出方程仍是一个难点。

且之前未接触过一个式子中含两个根式相加的情况,故化简也能是个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.1 椭圆及其标准方程
■一、教学背景——————————————————————————————
1.1 学生特征分析
学生的知识储备:必修二学习了直线方程,圆的方程,初步体会了方程与几何对象的对应关系,并能运用代数方程解决一些简单的几何问题。

学生的方法储备:由于必修二直线方程和圆的方程的学习和本章第一节曲线与方程的学习,学生应基本理解运用坐标法将几何问题代数化的想法,但还缺少实际运用,对方法的认识不够深刻。

1.2教师特点分析
自己教学中的优势:注重问题引导、思路分析、善于将学科课程与信息技术的整合、善于鼓励学生,能对学生进行有效指导。

不足:课堂教学语言相对不够准确简练、板书不够清晰美观。

1.3 学习内容分析
从知识上来讲:椭圆是本章中学到的第一个圆锥曲线,也是三种圆锥曲线中最重要的一个。

对上一节来言,是运用坐标法研究曲线几何性质的一次实际运用,也是进一步研究椭圆几何性质的基础。

从方法上来讲:为后续双曲线和抛物线的学习奠定了理论基础,起示范的作用。

因此无论内容上还是方法上,本节都起着承上启下的作用。

■二、设计思想————————————————————————————————
学生已经学习了直线和圆的方程,并且学习了曲线与方程的关系,初步理解求曲线方程的想法。

本节课椭圆无论在定义的发现还是方程的推导上都是很好的教学素材。

因此在定义的发现环节,精心设计学生活动,有教师的展示,有学生的动手实验,注重概念的生成过程。

在方程的推导阶段,注重数学思想方法的渗透,类比的思想,数形结合的思想。

不断强调几何关系和代数表示之间的关系,为学生充分领会解析几何的思想方法提供指导。

在例题的选取上,注重层次感,让不同层次的学生都能学到不同层次的数学。

讲练结合,讲在关键处,讲在练之后,让学生经历挫折,调整,成功的过程。

在问题的设计方面,充分考虑不同层次的学生情况,充分体现学生的分组讨论,团结合作。

在学生的分组上,考虑4人小组,每组依据层次编为1—4号,不同小组同号码段学生层次接近,营造即有合作又有竞争的课堂教学氛围。

■三、三维目标————————————————————————————————
(一)知识与技能
1. 掌握椭圆的定义和标准方程;
2. 会求简单的椭圆方程;
(二)过程与方法
1.经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到
一般,掌握数学概念的数学本质,提高学生的归纳概括能力。

2.巩固用坐标化的方法求动点轨迹方程。

3.在数学思想方法的不断渗透过程中,学生能自觉利用数学思想方法分析和解决问题。

(三)情感、态度与价值观
1.充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、
反思,促进形成研究氛围和合作意识。

2.重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰
辛过程与创新的乐趣。

3.通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风。

4.通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美、数与形
的和谐美。

■四、教学重点与难点—————————————————————————————————1.重点:椭圆定义的理解和标准方程的运用
2. 难点:标准方程的建立与推导
■五、教学方式————————————————————————————————————著名数学家波利亚认为:“学习任何东西最好的途径是自己去发现。

”考虑到椭圆在教材中的重要地位,在教学中采用了“启发探究”式的教学方法,重点突出引导发现和探索讨论。

以便激发学生的学习兴趣,对知识进行主动建构,突破教学难点
■六、教学媒体————————————————————————————————————教具多媒体课件
■七、教学过程设计——————————————————————————————
设出动点,写出已知点坐标。

根据两点之间距离公式代入等量关系
设问11:如何化简去根号?
a b 22
221(
y x
a b a b
+=>
请同学们课后完成。

相关文档
最新文档