新人教版初中八年级数学上册12.2 第3课时 “角边角”、“角角边”导学案

合集下载

最新人教版初中八年级数学上册《边角边》导学案

最新人教版初中八年级数学上册《边角边》导学案

12.2三角形全等的判定第2课时边角边一、新课导入1.导入课题:上一节课,我们探究了三条边对应相等的两个三角形全等.如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?——这就是本节课我们要探讨的课题.2.学习目标:(1)能说出“边角边”判定定理.(2)会用“边角边”定理证明两个三角形全等.3.学习重、难点:重点:“边角边”定理及其应用.难点:“边角边”定理的应用.二、分层学习1.自学指导:(1)自学内容:探究有两条边和它们的夹角对应相等的两个三角形是否全等.(2)自学时间:5分钟.(3)自学方法:根据探究提纲进行操作,并观察归纳得出结论.(4)探究提纲:①如果两个三角形有两条边和一个角分别对应相等,有几种可能的情形?②画△ABC和△A′B′C′,使AB=A′B′,BC=B′C′,∠A=∠A′,剪下两个三角形,相互交流一下,看△ABC与△A′B′C′是否一定能重合?不一定③画△ABC和△A′B′C′, 使A′B′=AB,∠A′=∠A,A′C′=AC,剪下△ABC 和△A′B′C′,大家试一试,△A′B′C′与△ABC能重合吗?能a.由上面的探究得到判定两个三角形全等的方法是两边和它们的夹角分别相等的两个三角形全等(简写成边角边或SAS).b.将上述结论写成几何语言:∵AB=A′B′,∠BAC=∠B′A′C′,AC=A′C′,∴△ABC≌△A′B′C′(SAS)④寻找题目中的隐含条件.a.如图(a),AB、CD相交于点O,且AO=OB.观察图形,图中已具备的另一个相等的条件是∠AOC=∠BOD;联想SAS公理,只需补充条件OC=OD,则有△AOC≌△BOD.b.如图(b),AB⊥AC,AD⊥AE,AB=AC, AD=AE.能得出△DAC≌△EAB吗?能.∵AB⊥AC,AD⊥AE,∴∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠EAB=∠DAC.在△DAC和△EAB中,AC=AB,∠DAC=∠EAB,∴△DAC≌△EAB(SAS)AD=AEc.如图(c),AB=CD,∠ABC=∠DCB,能判定△ABC≌△DCB吗?解:∵AB=CD,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).2.自学:学生结合探究提纲进行探究学习.3.助学:(1)师助生:①明了学情:部分学生在归纳结论上会存在一定的困难,特别是“夹角”的理解及表述上.②差异指导:根据学生学习中存在的问题予以分类指导.(2)生助生:探究提纲中的问题可以由小组合作学习,相互交流帮助寻找出题目条件或隐含条件和说明方式.4.强化:(1)已知两边和夹角,会用尺规作图画三角形.(2)边角边公理内容及几何语言的表达.(3)边角边公理是判定两个三角形全等的第二个方法,现在一共学习了两个判定三角形全等的方法:SSS、SAS,结合条件可以选用这两个判定方法证明三角形全等.(4)强化练习:①下列条件中,能用SAS判定△ABC≌△DEF的条件是(B)A.AB=DE,∠A=∠D,BC=EFB.AB=DE,∠B=∠E,BC=EFC.AB=EF,∠A=∠D,AC=DFD.BC=EF,∠C=∠F,AB=DF②已知△ABC中,AB=BC≠AC,作与△ABC只有一条公共边,且与△ABC全等的三角形,这样的三角形一共能作出7个.1.自学指导:(1)自学内容:教材第38页例2到教材第39页练习前的“思考”.(2)自学时间:10分钟.(3)自学指导:结合自学参考提纲,阅读教材.(4)自学参考提纲:①看懂例题题意,对照定理,在证明过程的后面注上理由.②此题证明△ABC≌△DEC的理论依据是什么?SAS③归纳:线段相等或者角相等,可以通过什么方法得到?证明三角形全等,再根据全等三角形的性质得到.④思考:定理中为什么要强调“夹角”?因为只有满足“两边及夹角”的两个三角形才能全等,否则不一定全等.动手操作:把一长一短的两根木棍的一端固定在一起,摆出△ABC,固定住长木棍,转动短木棍,得到△ABD,这个实验说明了什么?两边相等,夹角不相等的两个三角形不一定全等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:第二层次的学习是教会学生证明角、线段相等的方法是构造全等三角形,学生在初次接触到这种方法,应用起来会比较生疏.②差异指导:a.指导学生构造全等三角形来证明角或者边相等;b.引导学生理解“两边及一角对应相等是不是一定可以得到两个三角形全等?”(2)生助生:小组共同探讨帮助认知例题的证明方法及教材第39页的思考所反映的问题.4.强化:(1)判定两个三角形全等到目前学习的方法有“SSS”、“SAS”,注意没有“SSA”或“ASS”(特殊情形除外).(2)证明三角形全等的方法和步骤.(3)课堂练习:①课本教材第39页练习.练习1:相等,根据边角边定理,△BAD≌△BAC,∴DA=CA.练习2:证明:∵BE=FC,∴BE+EF=FC+EF,即BF=CE,又AB=DC,∠B=∠C,∴△ABF≌DCE,∴∠A=∠D.②如图,在四边形ABCD中,AD∥BC,AD=BC,你能得出AB=CD 吗?若能,试说明理由.解:连接AC.∵AD∥BC,∴∠DAC=∠BCA.在△ABC和△CDA中,AD=BC,∠DAC=∠BCA,AC=CA,∴△ABC≌△CDA(SAS).∴AB=CD.三、评价1.学生的自我评价:学生交谈自己的学习收获及学习中的困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价(课堂评价检测).3.教师的自我评价(教学反思):本节课的引入,可采用探究的方式,引导学生通过操作、观察、探索、交流、发现思索的过程,得出判定三角形全等的“SAS”条件,同时利用一个联系生活实际的问题——测量池塘两端的距离,对得到的知识加以运用,最后再通过实际图形让学生认识到“两边及其中一边的对角对应相等”的条件不能判定两个三角形全等.一、基础巩固(第1、2题每题10分,第3、4题每题20分,共60分)1.下列命题错误的是(D)A.周长相等的两个等边三角形全等B.两条直角边对应相等的两个直角三角形全等C.有两条边对应相等的两个等腰三角形不一定全等D.有两条边和一个角对应相等的两个三角形全等2.如图,AB=AC,若想用“SAS”判定△ABD≌△ACE,则需补充一个条件AD=AE.第2题图第3题图第4题图3.如图,给出5个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.请你以其中两个为条件,另三个中的一个为结论,组成一个正确的命题(用“若……则……”的形式表述)(只需写出一个),并加以证明.解:命题:若AD=BC,∠DAB=∠CBA,则AC=BD.证明如下:在△ABD和△BAC中,AD=BC,∠DAB=∠CBA,AB=BA,∴△ABD≌△BAC(SAS).∴AC=BD.4.如图,点B,E,C,F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,AB=DE,∠B=∠DEF,∴△ABC≌△DEF(SAS).∴AC=DF.BC=EF二、综合应用(20分)5.已知:如图AB=AC,AD=AE,∠BAC=∠DAE,求证:△ABD≌△ACE.证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,∴△ABD≌△ACE(SAS),AD=AE,三、拓展延伸(20分)6.小明做了一个如图所示的风筝,测得DE=DF,EH=FH,由此你能推出哪些正确结论?并说明理由.解:结论:(1)DH平分∠EDF和∠EHF.(2)DH垂直平分EF.理由.(1)在△EDH和△FDH中,DE=DF,EH=FH,DH=DH,∴△EDH≌△FDH(SSS).∴∠EDH=∠FDH,∠EHD=∠FHD.即DH平分∠EDF和∠EHF.(2)由(1)知,在△EOD和△FOD中,ED=DF,∠EDO=∠FDO,OD=OD,∴△EOD≌△FOD(SAS).∴EO=OF,∠EOD=∠FOD=90°,∴DH垂直平分EF.作者留言:非常感谢!您浏览到此文档。

人教版初中八年级上册数学《角边角和角角边》精品教案

人教版初中八年级上册数学《角边角和角角边》精品教案
证明:在△ABE 和△ACD 中, ∠B =∠C, AB = AC , ∠A =∠A(公共角) ,
∴ △ABE ≌△ACD(ASA). ∴ AE =AD.
知识点2 探究“AAS”判定方法
例2 如图,在△ABC 和△DEF 中,∠A =∠D,∠B =∠E,BC =EF . 求证△ABC ≌△DEF.
∴AB∥CD. ∴∠BAO =∠DCO.
在△ABO和△CDO中,
B D,
AB
CD,
BAO DCO,
∴△ABO≌△CDO,
∴BO = DO,AO = CO,即AC与BD互相平分.
课堂小结
ED C′
A′
B′
两角和它们的夹边分别相等的两个三角形全等
(简称为“角边角”或“ASA”).
两角分别相等且其中一组等角的对边相等的两
B′E相交于点C′ . 现象:两个三角形放在一起
能完全重合.
ED C′
说明:这两个三角形全等.
A′
B′
归纳概括“ASA”判定方法: 两角和它们的夹边分别相等的两个三角形全 等(简写为“角边角”或“ASA”). 几何语言: 在△ABC 和△ A′B′ C′ 中,
∠A =∠A′,
AB = A′B′, ∠B =∠B′,
拓展延伸
3.如图,点 E、F 在BD上,且 AB = CD,
BF = DE,AE = CF,求证:AC 与 BD 互相平分.
证明:∵BF = DE,
∴BF-EF = DE-EF,即BE = DF.
在△ABE和△CDF中,
AB CD,
AE
CF,
BE DF,
∴△ABE≌△CDF. ∴∠B =∠D.
R·八年级上册
12.2 三角形全等的判定

12.2 第3课时 “角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备

12.2 第3课时 “角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备

12.2 第3课时“角边角”“角角边”(教学设计)-2022-2023学年八年级上册初二数学同步备课(人教版)一、教学目标1.理解“角边角”和“角角边”两种关系的概念及特点。

2.掌握通过给定的角边关系,判断两个角是否相等的方法与技巧。

3.能够灵活运用“角边角”和“角角边”两种关系,解决相关的角度计算问题。

二、教学重点1.角边角的概念和特点。

2.角边角关系的判断方法。

3.解决相关的角度计算问题。

三、教学难点灵活运用“角边角”和“角角边”两种关系,解决相关的角度计算问题。

四、教学过程1. 导入新知•引入问题:根据已经学过的知识,请问下面的两个角是否相等?1.∠ABC 和∠CBA2.∠ABC 和∠BCA•让学生思考并讨论这两个问题,并与学生一起找出判断的依据和方法。

2. 角边角的概念介绍•引导学生回顾角的定义,并解释什么是角边角。

•定义:当一个角的两边分别与另外一个角的两边相等时,这两个角互为角边角。

•通过示意图展示角边角的形态,并指导学生理解和掌握这一概念。

3. 角边角关系的判断方法•督促学生观察示例,并帮助学生发现判断角边角关系的方法。

•角边角关系的判断方法:1.两个角的两边分别相等。

2.一个角的两边分别等于另一个角的两边。

•通过示例演示和练习,确保学生掌握判断角边角关系的方法。

4. 解决相关的角度计算问题•给出一些角边角关系的题目,由学生自己解决并解释答案的推理过程。

•通过讨论和解析,引导学生总结解决相关角度计算问题的方法和技巧。

5. 拓展和应用•引导学生思考,如何利用角边角关系解决实际问题,如建筑设计、地图导航等方面的应用。

•让学生自由发挥,探索更多的角度计算问题,并分享解题思路和方法。

五、教学延伸1.在教学过程中,可以加入趣味性的角度计算游戏或竞赛,激发学生的学习兴趣和参与度。

2.引导学生进行角边角关系的衍生思考和推广,挑战更复杂的角度计算问题。

六、教学反思本课通过引入问题、示例演练和任务解决的方法,使学生能够深刻理解“角边角”和“角角边”两种关系的概念和判断方法。

2019秋八年级数学上册12.2 三角形全等的判定 第3课时“角边角”“角角边”导学案(无答案)新人教版

2019秋八年级数学上册12.2 三角形全等的判定 第3课时“角边角”“角角边”导学案(无答案)新人教版

第十二章 全等三角形12.2 全等三角形的判定第3课时 “角边角”和“角角边”学习目标:1.了解1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证线段或角相等. 重点:已知两角一边的三角形全等探究. 难点:理解,掌握三角形全等的条件:“ASA ”“AAS ”.一、知识链接1.能够 的两个三角形叫做全等三角形.2.判定两个三角形全等方法有哪些?边边边: 对应相等的两个三角形全等.边角边: 和它们的 对应相等的两个三角形全等. 二、新知预习1. 在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探 究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两 种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了, 如图:你能制作一张与原来同样大小的新道具吗? 能恢复原来三角形的原貌吗? (1) 以①为模板,画一画,能还原吗? (2) 以②为模板,画一画,能还原吗? (3) 以③为模板,画一画,能还原吗?(4) 第③块中,三角形的边角六个元素中,固定不变的元素是_____________. 猜想:两角及夹边对应相等的两个三角形_______.三、我的疑惑______________________________________________________________________________________________________________________________________________________自主学习教学备注学生在课前完成自主学习部分ABCFED一、要点探究探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC.再画一个△A′B′C′,使A′B′=AB,∠A′=∠A,∠B′=∠B.把画好的△A′B′C′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳:相等的两个三角形全等(简称“角边角”或“ASA ”). 几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF. 典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC ,求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB=AC, ∠B=∠C,求证:AD=AE.方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决. 针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .课堂探究教学备注 配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-9)A B CA BCFED探究点2:三角形全等的判定定理3的推论--“角角边”做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm ,你能画出这个三角形吗?追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?要点归纳: 相等的两个三角形全等(简称“角角边”或“AAS ”).几何语言:如图,在△ABC 和△DEF 中,∴△ABC ≌△DEF.典例精析例3:在△ABC 和△DEF 中,∠A =∠D ,∠B = ∠E ,BC=EF. 求证:△ABC ≌△DEF .例4:如图,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:(1)△BDA ≌△AEC ;(2)DE =BD +CE .方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化. 针对训练如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是( )教学备注3.探究点2新知讲授(见幻灯片10-15)二、课堂小结全等三角形判定定理3简称图示符号语言有两角及夹边(或一角的对边)对应相等的两个三角形全等“角边角”(ASA)或“角角边”(AAS)∴△ABC≌△A1B1C1(ASA).推论:“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三角形全等.1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()A.AC=DF B.BC=EF C.∠A=∠D D.∠C=∠F2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,且AC=A′C′,那么这两个三角形()A.一定不全等 B.一定全等C.不一定全等 D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,才能使△ABC≌△DEF (写出一个即可),并说明理由.5.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.拓展提升6.已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′的试说明AD=A′D′ ,并用一句话说出你的发现.当堂检测教学备注配套PPT讲授4.课堂小结5.当堂检测(见幻灯片16-22)⎪⎩⎪⎨⎧∠=∠=∠=∠,,,1111BBBAABAA。

12.2 第3课时 “角边角”、“角角边”(教案)-2022-2023学年八年级上册初二数学(人教版

12.2 第3课时 “角边角”、“角角边”(教案)-2022-2023学年八年级上册初二数学(人教版

12.2 第3课时“角边角”、“角角边”(教案)-2022-2023学年八年级上册初二数学(人教版)一、教学目标1.理解和掌握“角边角”和“角角边”的概念。

2.能够根据已知条件判断两个三角形是否相似。

3.掌握相似三角形中的对应角、对应边等比例关系。

4.运用相似三角形的性质解决与角边角和角角边有关的问题。

二、教学重点和难点1.教学重点:理解和应用相似三角形的相关概念和性质。

2.教学难点:解决与角边角和角角边有关的问题。

三、教学过程3.1 旧知回顾通过复习上节课的内容,引导学生回顾相似三角形的概念和性质。

3.2 角边角1.引入角边角的概念:如果两个三角形的一个角相等,两个边成比例,另一个角不相等,那么这两个三角形相似。

2.示意图与实例:通过示意图和具体实例,让学生更好地理解角边角相似的条件。

3.相关练习:设计一些练习题,让学生通过计算和分析来判断两个三角形是否相似。

4.总结概括:让学生总结角边角相似的条件和相应的判断方法。

3.3 角角边1.引入角角边的概念:如果两个三角形的两个角相等,另一个角不相等,而且它们的对边成比例,那么这两个三角形相似。

2.示意图与实例:通过示意图和具体实例,让学生更好地理解角角边相似的条件。

3.相关练习:设计一些练习题,让学生通过计算和分析来判断两个三角形是否相似。

4.总结概括:让学生总结角角边相似的条件和相应的判断方法。

3.4 应用问题1.情境模拟:设计一些与角边角和角角边有关的应用问题,让学生运用已学知识解决实际问题。

2.小组讨论:将学生分成小组,让他们在组内进行讨论,互相交流解题思路,共同解决问题。

3.总结回顾:通过讲解和讨论,总结解决应用问题的方法和注意事项。

四、课堂练习1.完成教材相关的习题。

2.布置课后作业:设计一些练习题,让学生巩固所学知识。

五、课堂小结通过本节课的学习,学生理解和掌握了“角边角”和“角角边”的概念,学会根据已知条件判断两个三角形是否相似。

同时,他们还能够应用相似三角形的性质解决与角边角和角角边有关的问题。

三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案

三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案

第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。

[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。

1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。

[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。

1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。

2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。

2.2 教学难点[1]数学语言表达和证明三角形全等。

[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。

此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。

4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。

6 教学过程6.1 引入新课【师】同学们好。

上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。

【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。

【师】没错。

那我们今天来继续学习两种新的判定三角形全等的方法。

【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。

请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。

人教版八年级上册数学12.2《三角形全等的判定》教案第3课时

人教版八年级上册数学12.2《三角形全等的判定》教案第3课时

第十二章全等三角形12.2全等三角形的判定第3课时一、教学目标1.掌握三角形全等“ASA”和“AAS”条件.2.能运用“ASA”和“AAS”条件判定两个三角形全等.二、教学重点及难点重点:经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,.难点:“角边角”和“角角边”判定条件的理解和应用三、教学用具电脑、多媒体、课件、三角形硬纸板、直尺、刻度尺四、相关资源“已知两角及其夹边”作一个三角形与已知三角形重合的过程;三角形全等的判定微课五、教学过程(一)情境导入(1)一张教学用的三角形硬纸板不小心被撕坏了,如下图,你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?(2)到目前为止,可以作为判别两个三角形全等的方法有几种?各是什么?三种:(1)定义;(2)SSS;(3)SAS.今天我们接着探究已知两角一边是否可以判断两三角形全等?设计意图:设置问题情境,激发学生的求知欲,明确本节课要探究的内容.(二)探究新知1.拿出准备好的三角形硬纸片△ABC ,再画一个△A ′B ′C ′,使A ′B′=AB ,∠A ′=∠A ,∠B ′=∠B (即保证两角和它们的夹边对应相等).把画好的△A ′B ′C ′,放到△ABC 上,它们全等吗?学生活动:(1)学生自己动手,利用直尺、三角尺、量角器等工具画出A ′B′C ′,将△ABC 与△A ′B′C 重叠,比较结果.(2)作好图形后,与同伴交流作图心得,讨论发现什么样的规律.操作结果展示:画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .(1)画A′B′=AB ;(2)在A′B′ 的同旁画∠DA′B′=∠A ,∠EB′A′=∠B ,A′D ,B′E 相交于点C ′.将做好的△A ′B′C 剪下,发现△ABC 与△A ′B′C ′全等.由此得出判定方法:两角和它们的夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA ”).几何语言表示:如图,在△ABC 和△DEF 中,B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ABC ≌△DEF (ASA ).设计意图:类比“边边边”和“边角边”探究得出“角边角”的两个三角形全等的判定方法,学生通过动手操作、自主探究、交流、获得新知,进一步增强了动手能力,渗透类比思想.2.在两个三角形中,是不是只要有两个角对应相等,一条边对应相等,这两个三角形就全等呢?下面,我们来看一个问题:如图,在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF .求证:△ABC ≌△DEF .证明:在△ABC 中,∠A +∠B +∠C =180°,∴∠C =180°-∠A -∠B .同理∠F =180°-∠D -∠E .又∠A =∠D ,∠B =∠E ,∴∠C =∠F .在△ABC 和△DEF 中B E BC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ABC ≌△DEF (ASA ).由此得出:两角和其中一角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS ”).几何语言表示:如图,在△ABC 和△DEF 中,A DB E BC EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△ABC ≌△DEF (AAS ).设计意图:用“角边角”证明满足两角和其中一角的对边分别相等的两个三角形全等的正确性,得出“角角边”的判定方法.(三)例题解析【例】如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:AD =AE .证明:在△ACD 和△ABE 中,A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ACD ≌△ABE (ASA ).∴AD =AE .设计意图:运用“角边角”判定方法证明两个三角形全等,从而证明两条线段相等.(四)课堂练习1.如图,点D 在AB 上,点E 在AC 上,BE 和CD 相交于点O ,AB =AC ,∠B =∠C .求证:BO =CO .2.解决课前导入的问题:一张教学用的三角形硬纸板不小心被撕坏了,如下图,你能制作一张与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?学生独立完成.答案:1.证明:在△ACD 和△ABE 中,A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴△ACD ≌△ABE (ASA ).∴AD =AE .∵AB =AC ,∴AB -AD =AC -AE .即BD =CE .在△BOD 和△COE 中,BOD COE B C BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△BOD ≌△COE (AAS ).∴BO =CO .2.被撕坏的这块三角形硬纸板保留了原三角形硬纸板的两角及其夹边,新制作的三角形硬纸板的两角及其夹边和被撕坏的这块三角形硬纸板对应相等,新制作的三角形硬纸板和原三角形硬纸板满足“角边角”,自然就同样大小了,所以能恢复原来三角形的原貌.设计意图:运用“角边角”和“角角边”的判定方法证明两个三角形全等,体会全等三角形判定方法的多样性,锻炼学生挖掘题目中隐含条件的能力.六、课堂小结1.如何找对应相等的边和角?寻找对应相等的边:公共边、中点或中线、通过计算(同加或同减)、作辅助线(构造公共边等).寻找对应相等的角:公共角、角平分线平分角、直角或垂直(90°)、平行线性质、通过计算(同加或同减);同角的余角相等.对应边所对的角是对应角,对应角所对的边是对应边.2.我们现在学了五种判定三角形全等的方法:(1)全等三角形的定义;(2)边边边(SSS);(3)边角边(SAS);(4)角边角(ASA);(5)角角边(AAS).3.要根据题意选择适当的判定方法.4.用三角形全等来证明线段相等或角相等.设计意图:通过小结,使学生梳理本节所学内容,理解“角边角”和“角角边”的判定方法,灵活选择全等三角形的判定方法判定两个三角形全等.七、板书设计12.2三角形全等的判定(“角边角”和“角角边”)“角边角”(ASA):两角和它们的夹边分别相等的两个三角形全等.“角角边”:两角和其中一角的对边分别相等的两个三角形全等.“角边角”的几何语言“角角边”的几何语言。

人教版数学八年级上册12.2第3课时角边角角角边优秀教学案例

人教版数学八年级上册12.2第3课时角边角角角边优秀教学案例
在教学过程中,我注重对学生几何直观能力的培养,通过引导学生画图、观察、分析,使学生能够清晰地感知到全等判定定理在几何图形中的应用。同时,我还将逻辑推理能力训练贯穿于教学全过程,引导学生学会从已知条件出发,运用逻辑推理得出结论,提高学生解决问题的能力。
为了巩固所学知识,我设计了丰富多样的练习题,让学生在实践中运用角边角和角角边全等判定定理,提高学生的运用能力。在教学过程中,我关注学生的个体差异,给予不同学生个性化的指导和关爱,使他们在数学学习中感受到成功的喜悦。
3.关注学生的个体差异,给予不同学生个性化的指导和关爱,使他们在数学学习中感受到成功的喜悦,增强自信心。
4.培养学生严谨治学的态度,引导学生养成良好的学习习惯和思维品质。
三、教学策略
(一)情景创设
1.利用实物模型、图片等教学资源,创设生动、有趣的教学情境,激发学生的学习兴趣和求知欲。
2.通过设计具有生活化、情境化的数学问题,让学生感受到数学与实际生活的紧密联系,提高学生的学习积极性。
(四)总结归纳
1.引导学生总结归纳全等判定定理的应用规律,培养学生归纳总结的能力。例如,在讲授完全等判定定理后,引导学生总结归纳出全等判定定理的应用规律,帮助他们更好地理解和运用。
2.教师对学生的学习过程和结果进行评价,关注学生的成长和进步。例如,对学生在小组讨论中的表现进行评价,鼓励他们积极参与和思考,关注他们的成长和进步。
(五)作业小结
1.布置具有针对性和实践性的作业,让学生在实践中运用角边角和角角边全等判定定理,提高学生的运用能力。例如,设计一些具有实际背景的数学问题,让学生在解决问题中运用所学的全等判定定理。
2.鼓励学生对作业进行自我反思和评价,培养学生的自我监控和自我反思能力。例如,让学生在完成作业后,对自己的解答进行反思和评价,思考自己的解题思路和方法是否合理,是否可以改进。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章全等三角形
“AAS”.
.
.
.
我们研究了三种,今天我们接
2.现实情境
一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道
具吗?能恢复原来三角形的原貌吗?
(1)以①为模板,画一画,能还原吗?
(2)以②为模板,画一画,能还原吗?
(3)以③为模板,画一画,能还原吗?
(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.
猜想:两角及夹边对应相等的两个三角形_______.
三、我的疑惑
________________________________________________________________________________ ______________________________________________________________________
一、要点探究
探究点1活动
要点归纳:
相等的两个三角形全等几何语言:
如图,在△ABC 和△DEF
∴△ABC ≌△DEF. 例1:如图,已知:∠ABC DCB .
例2:如图,点D在AB上,点E在AC上,AB=AC, ∠B=∠C,求证:AD=AE.
方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.
如图,AD∥BC,BE∥DF,AE=CF,求证:△ADF≌△CBE.
探究点2:三角形全等的判定定理3的推论--“角角边”
做一做:已知一个三角形的两个内角分别是60°和45°,且45°所对的边的边长为3cm,你能画出这个三角形吗?
追问:这里的条件与“角边角”中的条件有什么相同点与不同点?你能将它转化为“角边角”中的条件吗?
要点归纳:相等的两个三角形全等(简称“角角边”或“AAS”).
几何语言:
如图,在△ABC
和△DEF中,
∴△ABC≌△DEF.
例3:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.
求证:△ABC≌△DEF.
例4:如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:(1)△BDA≌△AEC;(2)DE=BD+CE.
方法总结:利用全等三角形可以解决线段之间的关系,比如线段的相等关系、和差关系等,解决问题的关键是运用全等三角形的判定与性质进行线段之间的转化.
如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是( )
二、课堂小结
“角角边”是利用三角形内角和定理转化成“角边角”来证明两个三
1.△ABC和△DEF中,AB=DE,∠B=∠E,要使△ABC≌△DEF,则下列补充的条件中错误的是()
A.AC=DF B.BC=EF C.∠A=∠D D.∠C=∠F
2. 在△ABC与△A′B′C′中,已知∠A=44°,∠B=67°,∠C′=69° ,∠A′=44°,
且AC=A′C′,那么这两个三角形()
A.一定不全等B.一定全等C.不一定全等D.以上都不对3.如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的
两个三角形是否全等,并说明理由.
4.如图∠ACB=∠DFE,BC=EF,那么应补充一个条件,
才能使△ABC≌△DEF (写出一个即可),并说明理由.
5.已知:如图,AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.
拓展提升
6.已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分别是△ABC 和△A′B′C′
试说明AD=A′D′ ,并用一句话说出你的发现.
()。

相关文档
最新文档