第6章_燃烧过程及混合气形成

合集下载

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点
柴油机混合气的形成主要通过喷油器将柴油喷入气缸内,并与空气混合形成可燃的混合气。

在柴油机中,柴油的喷射是通过高压喷油系统实现的,喷油器会将柴油以高速喷入气缸内,形成小的液滴。

随着喷雾进一步扩散和混合,柴油蒸发成为气态,与周围的空气发生反应,形成高温、高压的混合气。

柴油机燃烧过程的主要特点有以下几点:
1. 自燃性:柴油机的燃烧过程是自燃的,即燃料不需要预先混合空气,在高温和高压的条件下,柴油会自发地点燃。

2. 气缸压力高:由于柴油机采用的是压燃式燃烧方式,混合气在气缸内的压力相对较高,通常达到较高的压缩比,从而增加了柴油机的热效率和功率。

3. 燃烧过程较长:相对于汽油机的燃烧过程来说,柴油机的燃烧速率较慢。

这是因为柴油燃料的自燃性会引起燃烧的延迟,混合气的蒸发和扩散时间相对较长。

4. 高温高压条件下生成大量烟雾:由于柴油燃烧过程中温度和压力较高,同时还有一部分未完全燃烧的碳氢化合物存在,因此柴油机的排放中常常会产生大量的烟雾和颗粒物。

综上所述,柴油机混合气的形成和燃烧过程具有高压、自燃、延迟燃烧和较高的烟雾排放等特点。

这些特点决定了柴油机在高负荷工况下有较高的热效率和牵引力,适用于重载和长途运输等场景。

发动机原理第六章柴油机混合气形成与燃烧

发动机原理第六章柴油机混合气形成与燃烧

2.对柴油机燃烧室的要求:
① α小,但应燃烧完全及时; ② 适度的ΔP/ΔΦ和Pz值;以保证工作柔和,
平稳,可靠; ③ 排气品质好; ④ 变工况适应好;应在负荷、转速变化时,
柴油机性能稳定; ⑤ 冷起动性好; ⑥ 制造、维修方便。
3、直喷式燃烧室的空气涡流运动
空气涡流运动是加速混合气形成的 有效手段;也是保证完善燃烧的重 要条件。
3.影响喷注质量的主要因素:
喷注结构,喷油压力,气缸内空气的压力,柴油
的粘度等。
二、空气运动对混合气形成的影响
缸内空气的涡流运动能加速雾化的油滴与 周围空气的混合,促进燃烧过程的进行。
但涡流过强,会使燃烧产物与邻近的喷注重叠; 涡流过强也使进气阻力加大,充量系数下降。
三、典型燃烧室结构分析
1.燃烧室分为两大类:直喷式和分开式。 直喷式燃烧室:燃油直接喷入由活塞顶和缸盖形成的
汽油机:提高火焰传播速度。 柴油机:保证及时形成较均匀的混合气。
第一节 混合气形成与燃烧过程
一、燃烧方式--油滴扩散燃烧
柴油机是在压缩过程中活塞接近上止点时,借助喷 油设备将燃油在高压下成雾状喷入燃烧室,以便 与空气形成可燃混合气。
油滴的着火要满足两个条件: (1)混合气的温度要高于着火临界温度。 (2)混合气的浓度要适当,即混合气的浓度要在
不变)
面容比大,经济性较差,启动性差(传热和流动损失大,装电热塞)
涡流室式燃烧室
1)预燃室式燃烧室
混合气形成:空间雾化混合为主。一般采用轴针 式喷油器。
主要特点:
喷雾质量要求不高(预燃室形成强的紊流和二次喷射的燃
烧涡流形成混合气)。
ΔP/ΔΦ较小,工作柔和。 空气利用率高,α值可较小。 变工况适应性好,对转速不敏感。 NOx排放低 启动性差,面容比较大,经济性差 低速噪声(惰转噪声)大(预燃室气体速度低,油束贯穿力大,

内燃机原理第六章 燃烧的基础知识

内燃机原理第六章 燃烧的基础知识

作用于液滴表面张力
We
液滴张力
a d0 u2
a —周围空气密度,kg/m3;
u —气液两相间的相对速度,m/s;
—液体表面张力,N/m;
d0 —液滴直径,m。
We
破碎可能性 汽、柴油:Wec 10 ~ 14
液滴最大直径:d 0 m a x
Wec a u2
强化燃料雾化的方法:
提高燃烧室内的空气压力——增大周围空气密度; 提高燃料喷射压力——增大液滴的相对速度;
一、湍流(紊流,Turbulence)定义 流速大小和方向无规则变化的微元气体流动。
湍流影像
进气流场
压缩湍动能
二、湍流特征参数 ➢湍流强度
脉动速度uT 瞬时速度u
平均速度U
速度
曲轴 转角
ICE在第i个循环、曲轴转角为 φ时的瞬时湍流速度:
u(,i) U (,i) uT (,i)
集总平均速度:
➢高能点火可以拓宽着火极限
二、火焰的传播
已燃气体
火花
火焰前锋面
vL
气缸 未燃气体
火焰层厚度
未燃气体
预热区
反应区 已燃气体
混合气浓度
混合气温度
反应速度
燃烧速率:
dm dt
vL
FL
m
m —混合气质量 FL —火焰前锋表面积 m —混合气密度
燃烧放热速率:
dQB dt
vL FL m Hum
甲醇
提高燃烧室内空气温度——减小液滴表面张力。
一、喷雾特性
贯穿距离
喷雾特性 喷雾锥角
➢贯穿距离
喷雾粒径
要求:足够的距离,穿过火焰,防止“火包油”
孔式喷油器贯穿距离计算方法:

第六章:柴油机燃料供给系统

第六章:柴油机燃料供给系统
1)发火性:指柴油的自燃能力,用十六烷值评定。 柴油的十六烷值大,发火性好,容易自燃。国家标 准规定轻柴油的十六烷值不小于45。 (45-55为宜)
柴油及其使用性能
汽车构造
2)蒸发性:指柴油蒸发汽化的能力,用柴油馏出 某一百分比的温度范围即馏程和闪点表示。比如, 50%馏出温度即柴油馏出50%的温度,此温度越 低,柴油的蒸发性越好,混合气形成速度就越快, 易完全燃烧。但蒸发性过高,则会使全部柴油迅 速燃烧,缸内压力急剧升高,柴油机工作粗暴。 闪点低,蒸发性好。
空间雾化混合
油雾的形成 燃料以高压、高速从喷油器以 圆锥形的油束喷出,由于受到 高密度空气的摩擦阻力作用, 被分裂为许多油线进而成为油粒。
空气的运动促进混合 将燃油喷成雾状油束是混合气 形成的第一步,其次是使油粒
分布得更均匀。
汽车构造
空间雾化混合
汽车构造
最有效的措施:空气运动 多采用两种办法:(l)使进气产生涡流;(2)产生挤压涡流
油膜蒸发混合
它是将柴油喷向球形油膜燃 烧室的壁面上,在强烈地空气 涡流作用下,燃油的大部分 (95%)形成油膜.由于油束贯 穿空气和室壁的反射,必然有 少量油粒(5%)悬浮在空间, 形成着火源。油膜在热能作 用下,逐层蒸发、逐层卷走、 逐层燃烧,产生了燃气涡流, 其燃烧速度是前期慢、后期 快,使燃烧过程加速进行到 终点。
混合气的形成(空间雾化混合或油膜蒸发混合)、 点火和燃烧方式不同于汽油机;
柴油机的a>1,燃烧充分,排气污染小;
柴油机的喷油泵与喷嘴制造精度要求高,所以成本 较高;
柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬 季冷车时起动困难;
排气噪声大,颗粒排放严重,废气中含SO2多
柴油及其使用性能

内燃机原理第六章-燃烧的基础知识

内燃机原理第六章-燃烧的基础知识

一、燃烧现象
燃烧过程(氧化过程)—着火阶段+燃烧阶段 ➢着火阶段 可燃混合气在一定压力、温度和浓度
反应速度
下,氧化反应突然加速,并出现火焰
的现象。 着火阶段——滞燃期
➢燃烧阶段
燃烧
滞燃期 i
着火后燃料与氧化剂剧烈放热的氧化反应。
ICE属周期性非稳定燃烧过程,燃烧持续期10-20ms, 着火过程只有0.3-0.03ms,滞燃期对性能影响大。
二、燃烧分类
固相燃烧:氧化剂在燃料表面的氧化反应
燃烧
预混合燃烧:燃料与氧化剂按一定比例混合
气相燃烧
扩散燃烧: 燃料与氧化剂彼此分离
层流预混合燃烧
层流扩散燃烧
紊流扩散燃烧
着火延迟
火焰按准球面传播
SI-ICE燃烧
油束外围燃烧
多区域同时着火燃烧
CI-ICE燃烧
HCCI(柴油)燃烧
两种燃烧方式对比
燃烧速度 混合气浓度 裂解
火花点火过程和湍流火焰 四、液体燃料的雾化和喷雾特性 五、油滴的蒸发和燃烧
单个油滴和油滴群的蒸发和燃烧 六、燃烧放热规律
放热速率和累积放热率
高电压(300~500V),低电流,温度3000K。 ➢火核形成
(二)点火能量 Eb Eb 30 ~ 50 mJ
过大
电极间隙 Sb 过小
Eb 50 mJ——高能点火
极间混合气多
Eb 大
电极散热快
Eb 大
Sbopt
Sb 0.6 ~ 0.8 mm
➢a 1.0 时,Eb 最小
➢每个 Eb 存在混合气的浓稀极限
作用于液滴表面张力
We
液滴张力
a d0 u2
a —周围空气密度,kg/m3;

柴油机混合气形成和燃烧

柴油机混合气形成和燃烧

.
11
三、柴油机的有害排放物和振动噪声
CO和HC的生成机理与汽油机相同,但a>1,缝隙激冷效应
小,故其排放小。 柴油机有害排放物:NOx, PM, 且二者矛盾。 CO2 1) NOx的生成机理:
根据燃料及其混合气形成方式分为: 热力NO(Themal NO)和快速NO(Prompt NO) ➢ 热力NO产生条件:高温、富氧、滞留时间汽油机
适应高效率低排放燃烧方式的要求
.
26
二、喷射雾化和油束特性
➢ 喷雾(油束)特性取决于喷油器的结构、喷射压力和背压, 是影响混合气形成的主要因素
➢ 油束特性:用几何形状和雾化质量评价
几何形状:贯穿距离L ;贯穿率和喷雾锥角或B
贯穿率:油束射程与喷 孔出口沿喷孔轴线到达 燃烧室壁面的距离的比
核心部分液滴 密集,速度高
.
粒径分布
粒子直径/nm
15
高温:在预混合火焰温度2000~2400K范围内出现峰值; 在
扩散火焰区缺氧
实验结果
未氧化PM。
由 HC
向碳烟
的转换
T>2400K时:PM

计算结果
C原子不易凝聚;
已形成的碳烟氧化。
急速加热到1700K以上 时,聚乙炔及碳蒸汽成 为中间产物而生成碳烟
➢危害:致癌物;大气可见度
喷射压力与供油压力有关; 但非线性关系,不可控。
.
30
直列泵
VE型分配泵: 一个柱塞,与固定
在一起的端面凸轮 盘一同旋转
调速手柄
调速套筒 飞锤 燃油入口
停车 调速弹簧 手柄
流回油箱
溢流节流孔
张力杠杆 断油阀
供油量控制:通过驾驶 调 压 阀 员/调速器调节油量控制

第6章 汽油机燃油系统

第6章  汽油机燃油系统

6.3.2
电控式燃油系统的工作过程
燃油箱内的汽油被电动汽油泵吸出 并加压至350kPa左右,压力燃油经汽油 滤清器滤去杂质后,被送至发动机上方 的分配油管。
分配油管与安装在各缸进气歧管上 的喷油器相通。 喷油器是一种电磁阀,由发动机电 控系统的计算机(又称ECU)控制。 通电时喷油器开启,压力燃油以雾 状喷入进气歧管内,与空气混合,在进 气行程中被吸进气缸。
图6-17 喷油器的安装位置
当ECM使电磁线圈通电时,便产生磁力, 将衔铁和针阀吸起,打开喷孔,一定压力的燃 油经针阀头部的轴针与喷孔之间的环形间隙高 速喷出,并被粉碎成雾状,与空气混合,在进 气行程中被吸入气缸(见图6-18)。
图6-18
1—针阀
喷油器
2—衔铁 3—插头 4—进油口 5—电磁线圈 6—喷孔
图6-13 叶轮式电动汽油泵
电动汽油泵在运转时,转子周围小槽 内的燃油跟随转子一同高速旋转。 由于离心力的作用,使燃油出口处油 压增高,同时在进口处产生一定的真空, 使燃油经过入口的滤网被吸入油泵,加压 后经过电动机周围的空间由出口泵出。
油泵出口处有一单向阀,在油泵不工作 时阻止燃油倒流回油箱,以保持发动机停机 后的燃油压力,便于再次起动。 其最大泵油压力较高(可达600kPa以 上),若因汽油滤清器堵塞等原因使油泵出 口一侧油压过高,与油泵一体的限压阀即被 顶开,使部分燃油回到进油口一侧,以保护 电动汽油泵。
(5)暖机工况
在暖机工况下,为保证发动机能稳 定运转,应提供足够浓的混合气。 随着发动机温度逐渐升高,混合气 浓度应逐渐减小,直至达到热车后正常 稳定怠速所要求的浓度为止。
(6)加速工况
由于汽油的运动惯性比空气大,其 雾化和蒸发也需要一定的时间,为保证 进入气缸的混合气不至于瞬时变稀,使 发动机的转速和功率能迅速增大,应在 节气门急剧开大的过程中,向进气管内 多供入一些汽油,以及时加浓混合气, 满足发动机加速的需要。

燃烧学-第六章

燃烧学-第六章

二、雾化方式和喷嘴
• 按照油的雾化机理,工程上油的雾化方式分为:压力式、旋 转式和气动式等。前两种又称为机械式雾化。如下图所示。
压力式雾化喷嘴
压力式雾化喷嘴又称为离心式机械雾化器。它可以用在航空喷气发动机、 燃气轮机、柴油机以及锅炉和工业窑炉上。 燃油在高压下通过雾化片的特殊机械结构将燃油雾化,通过喷油嘴喷出。 按该原理工作的雾化器有:直流式、离心式和转杯式
中间直径法(d50)
是一个假定液滴的直径,即液雾中大于或小于这一直径的两部分 液滴的总质量相等。
索太尔平均直径法(dSMD)
设在特定的液滴群中的滴数为N0 ,且所有液滴的直径都等于
dSMD,而这些液滴的总体积与总面积之比正好等于实际液滴群的总
体积与总面积之比。
18
(2)雾化角
出口雾化角
19
(3)燃料的流量密度分布 单位时间内通过与燃料喷射方向相垂直的单位截面上燃 油质量沿半径的分布规律。
20
(4)喷雾射程 喷嘴水平喷射时,油雾液滴丧失水平方向动能的行程。 不同直径油粒的射程也不同。射程取决于轴向速度和颗 粒度。射程的大小影响火焰长度。
21
(5)雾化均匀度 积分表示法 将大于某一直径d的所有液滴的质量占全部液滴质量的 百分数表示成液滴直径的函数。 微分表示法 将直径在d和d+Δ d之间的所有液滴的质量占全部液 滴总质量的百分数表示成液滴直径的函数。
7
四、雾化燃烧--重点
1.过程:
破碎 雾化器 液体 小液滴 悬浮 边蒸发边燃烧
燃料的蒸发表面积增加 上千倍
燃烧速度加快
2.关键问题:--雾化 (1)雾化方式:据液体燃料的蒸发性定 不易蒸发的液体--喷嘴雾化 (2)易蒸发的液体--汽化器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2,挤流 压缩时空气被挤入燃烧室凹坑内形成挤流
膨胀时燃烧气体冲出凹坑形成逆挤流
挤流强度 ∝ dk/D,S0 特点:不影响φc和Ω,但强度较弱,作用小 于涡流,起辅助作用 思考:汽油机中的挤流运动
3,湍流(紊流) 湍流是指无规则的小尺度气体运动,也称微涡流 湍流可以改善微观的油气混合程度 形成方式:
4,后燃期( φD~φE )
现象 剩余10~20%的燃料继续燃烧, 远离TDC,气流扰动变弱,燃烧速度 下降. 后燃期过长,会造成: 等容度↓,散热↑,碳烟和微粒 排放↑,排温↑ , η t ↓ ; 减少后燃的基本思路 加速混合,以加快燃烧;燃油充分 雾化.
燃烧特性测试例:柴油机
满足欧Ⅳ排放的 Cummins 重型柴油机
Bertrand D. Hsu(徐大宏). Practical Diesel-Engine Combustion Analysis. 2002 SAE International

2,速燃期( φB~φC )
影响 dp/dφ的主要因素: 燃烧开始时的可燃混合气量 ∵ 控制对策:滞燃期中的混合 气生成量和着火时间,亦即喷油 速率和混合速率 dp/dφ与dQB/dφ的关系: 最大值基本对应,但过分后燃 时例外
3,缓燃期( φC~φD )
现象 剩余燃料边蒸发混合边燃烧, 燃烧速率受控于燃料扩散混合 速率,也称为扩散燃烧期, 出现柴油机燃烧特有的"双峰 "现象; pmax的大小及位置:上止点后 10~15CA,取决于喷油时间, 着火落后期,预混燃烧; 缓燃期燃烧 "过缓",会造 成: 等容度↓,散热↑,ηi ↓;碳 烟和微粒排放↑
瞬时放热率 (J/deg)
例:柴油机燃烧特性 不同负荷燃烧特性对比
小负荷 大负荷 BMEP=0.6MPa BMEP=1.6MPa 燃烧持续期(oCA) 最大爆发压力(bar) 主燃期平均压升率 (bar/oCA) 最高瞬时放热率(J/oCA) 着火落后期(oCA) 44 100.6 2.3 115 8 37 136.1 2.4 192 7
汽油机燃烧过程及分析 柴油机燃烧过程及分析 合理的燃烧放热规律 汽油机与柴油机燃烧特性对比
分析方法:
示功图,P (φ) = f (燃烧速率,温度,燃室容积) 放热速率ROHR (Rate of Heat Release) dQ B 1 dp dV pV dk - V +kp = (k-1)2 d +α t FW (T-TW ) d d d k-1
滚流
本章要点
扩散燃烧速度 着火落后期 dp/dφ 1. 喷油规律和供油规律的异同及原因 2. 喷油规律对燃烧特性的影响 3. 内燃机中空气运动的方式及适用范围 4. 两种混合气形成方式的对比 5. 汽油机混合气形成(6.3节)内容自学,但不作为重点. 混合气 形成速度 气流运动 燃烧室形状 喷油规律
第6章 燃烧过程及混合气形成
发动机(内燃机)燃烧的特点:
高速(混合+着火+燃烧=10~2ms) 高温(2000℃ 左右) 高压(柴油机高达100bar 以上) 复杂过程:流动,喷雾,多相流,燃烧化学
内燃机燃烧所追求的目标: 高ηe(ηi) ,高Pme(Pmi),低污染,低噪声振动
6.1 实际发动机的燃烧过程及放热规律 主要内容
6.1.1 汽油机燃烧过程及分析
汽油机着火和燃烧的高速摄影
火核形成
特点:均质透明火焰,前锋面皱褶
1, 着火落后期(φA~φB )
现象: 在φ A 点开始火花点火,高 温单阶段着火; 在φ B 点产生稳定的火核, 开始火焰传播; φ B 点也可用CA05表示,即 累计放热5%的相位. 特性参数:着火落后期φi 10°~ 20°CA 注意区别点火提前角θig φ i 相对稳定(相对柴油机), 因此θ ig对pmax相位有重要影响
pmax位置,φc=10~15 CA( ATDC)
3,后燃期(φC~φD )
现象 燃烧剩余约10%燃料,主要存在 于火焰前锋面扫过后尚未完全燃烧 区域,壁面附近未燃混合气 要求: 燃期短—后燃期↑, ηi ↓ , 排温 ↑,甚至"放炮" 燃烧净—否则,HC ↑ ,CO ↑
6.1.2 柴油机燃烧过程
分为四期: 着火落后期( φA~φB ) 速燃期( φB~φC ) 缓燃期( φC~φD ) 后燃期( φD~φE ) 分析中注意与汽油机燃烧过程 的不同
1, 着火落后期( φ A ~φB )
现象: 喷雾及混合+低温多阶段着火, 是复杂的物理化学过程 ; 影响着火落后期的主要因素:
温度,压力,喷油量,雾化特性
着火点的判断方式: P-φ图,ROHR ,火焰图像 柴油机的着火落后期对后续燃烧 过程有重要影响. 为什么柴油机着火时可 明显看到"脱离压缩线" 的现象,而汽油机不能?
2,速燃期( φB~φC )
现象 大面积多点着火,燃烧极快, 压力陡升; 速燃期也称为预混合燃烧期, 但与汽油机的预混合燃烧有所 不同; 主要控制参数:dp/dφ 对动力性,ηi ,η m ,NOx, 振动噪声有显著影响, 一般柴油机: dp/dφ =0.2~0.6 (MPa/CA)
例:柴油机燃烧特性
14
缸内压力 (MPa)
12 10 8 6 4 2 0
缸内压力 (MPa)
TDC 1500r/min 小负荷 BMEP=0.6MPa
14 12 10 8 6 4 2
TDC
1500r/min 大负荷 BMEP=1.6MPa
200 160 120 80 40 0
0
200 160 120 80 40 0
95%
累计放热率
0.6 0.4 0.2 0.0 -30
问题:为什么不研究汽 油机的喷油规律?
5%
-20 -10 0 10 20 30 40 50 60
曲轴转角 (deg)
瞬时放热率 (J/deg)
缸内气流运动
分类: 涡流,滚流,挤流——控制油气宏观混合 湍流——促进油气微观混合 1, 涡流(Swirl) 绕气缸中心线的有规则的气流运动.柴油机中最常用 (1)涡流种类:进气涡流,压缩涡流 (2)评价指标:涡流比Ω=涡流转速 / 发动机转速
项目 型号 型式 气缸数 总排量 /L 压缩比 最大功率/转速 (kW/ rmin-1) 最大转矩/转速 (Nm/ rmin-1) 燃油供给系统 后处理系统 参数 Cummins ISBe4 140 四冲程,直列, 增压中冷,直喷,水冷 4 4.5 17.3 103/2500 550/1500 高压共轨 尿素SCR
6.2 柴油机燃油喷射及混合气形成原理
由第5章和6.1节可知:柴油机混合气形成过程极短(<0.5ms) 经历:燃料喷射雾化汽化混合 扩散燃烧速度 着火落后期 dp/dφ 混合气 形成速度 气流运动 燃烧室形状 喷油规律
本节从油,气两个方面介绍柴油机混合气形成过程
柴油机喷雾燃烧高速摄影例 条件:涡流比2.5,4孔喷嘴,乙醇-柴油混合燃料
活塞运动自然形成的湍流,较弱且不可控; 预燃室中的空气运动(如图,压缩和膨胀均有); 非回转体燃烧室(参见讲义图9-10); 燃烧冲击形成湍流(预燃室的主燃室)
4 滚流 绕垂直于气缸轴线的有规则的 气流运动(与涡流相反),也称 纵向涡流 近年来开发的混合气形成方式 主要用于缸内直喷式汽油机
用滚流形成大范围的油气混合 滚流被压扁,破碎 形成高度湍流强化微混合.
喷油规律的优化
随着降低NOx和噪声的要 求不断提高,初始喷油速率不 断降低,以至于出现了预喷射 (Pilot Injection)
负荷率95%
14
TDC
缸内压力 (MPa)
12 10 8 6 4 2 0
1500r/min 大负荷 BMEP=1.6MPa
200 160 120 80 40 0
Hale Waihona Puke 1.0 0.8来源:清华大学
燃油喷射过程(机械式)
(1)喷射延迟阶段 供油提前角θfs-供油始点至TDC的 角度(油泵出油) 喷油提前角θfj-喷油始点至TDC的角 度(针阀始动) 喷油延迟角=θfs-θfj,转速越高, 油管越长,延迟角越大 (2)主喷射阶段 喷油始点~喷油器端压力开始下降点 喷入绝大部分燃油,具有良好的雾化 qn = f(Δp, 针阀升程,喷油持续期) (3)喷油结束阶段 喷油器端压力急剧下降点~针阀落座 燃油雾化质量差,尽可能减少喷油量
1.0 0.8
瞬时放热率 (J/deg)
1.0
95%
0.8
95%
累计放热率
0.6 0.4 0.2 0.0 -30
累计放热率
0.6 0.4 0.2 0.0 -30
5%
-20 -10 0 10 20 30 40 50 60
5%
-20 -10 0 10 20 30 40 50 60
曲轴转角 (deg)
曲轴转角 (deg)
2, 明显燃烧期(φB~φC )
现象: 由明显火核产生~火焰充满 燃烧室; 90%燃料在此期间被燃烧. 也称为速燃期 放热速率特征值CA50:累计放 热50%的相位,0~10 CAATDC 主要控制参数1: 最高爆发压力pmax pmax ↑,ηi ↑,W i ↑, NOx ↑,机械负荷及热负荷↑; 但
喷油时刻对柴油机性能的影响
COMBUSTION ANALYSIS OF TWO INJECTION TIMINGS
Test Condition and Results of Two Fuel Injection Timings Fuel Injection Timing Pmax (MPa) BSFC (kg/kWh) Smoke (Bosch #) NOx (ppm) Injection Start (CA BTDC) Injection Duration (CA) Relative Efficiency (%) Calculated Peak Temperature (K) Exhaust Temperature (C) Early 16.40 0.1919 0.15 1413 19.5 36.2 94.4 2028 455 Late 15.07 0.1968 0.27 1145 16.5 36.9 92.0 1979 473
相关文档
最新文档