2018年安徽省九年级中考数学模拟卷二及答案(20190804005229)
4月2018届九年级第二次模拟大联考(安徽卷)数学卷(考试版)

数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前|学科网试题命制中心2018届九年级第二次模拟大联考【安徽卷】数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.14-的相反数是 A .14-B .14C .4D .-42.下列运算正确的是 A .(a -b )2=a 2-b 2B .(-2a 3)2=4a 6C .a 3+a 2=2a 5D .-(a -1)=-a -13.合肥市城市轨道交通2号线东起长江东路与大众路交叉口,西起长江西路与长宁大道交叉口,线路全长27.8公里,全部为地下线,全线共设车站24座,预计2017年10月1日开通运营,该项目总投资约190亿元,其中190亿用科学记数法表示为 A .819010⨯B .101.910⨯C .110.1910⨯D .91910⨯4.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是A .B .C .D .5.电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为A .3040125x x -=- B .3040125x x -=+ C .3040125xx +=-D .3040125x x +=+ 6.如图,已知AB ∥CD ,∠A =55°,∠C =20°,则∠P 的度数是A .55°B .75°C .35°D .125°7.如图,若一次函数y =ax +b 的图象经过二、三、四象限,则二次函数y =ax 2+bx 的图象可能是A .B .C .D .8.某支青年排球队有12名队员,队员年龄情况如图所示,那么球队队员年龄的众数、中位数分别是A .19,19B .19,20C .20,20D .22,199.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与慢车。
安徽省十校联考2018年中考数学二模试卷(含答案)

安徽省十校联考2018年中考数学二模试卷(解析版)一.选择题1.一元二次方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A. 5,﹣1B. 5,4C. 5,﹣4D. 5x2,﹣4x2.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.把抛物线y=﹣经()平移得到y=﹣﹣1.A. 向右平移2个单位,向上平移1个单位B. 向右平移2个单位,向下平移1个单位C. 向左平移2个单位,向上平移1个单位D. 向左平移2个单位,向下平移1个单位4.一个直角三角形的两条直角边长的和为20cm,其中一直角边长为xcm,面积为ycm2,则y与x的函数的关系式是()A. y=10x﹣x2B. y=10xC. y= ﹣xD. y=x(10﹣x)5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A. 6B. 5C. 4D. 36.近几年,我国经济高速发展,但退休人员待遇持续偏低,为了促进社会公平,国家决定大幅增加退休人员退休金.企业退休职工李师傅2012年月退休金为1500元,2014年达到2160元.设李师傅的月退休金从2012年到2014年年平均增长率为x,则可列方程为()A. 1500(1+x)2=2160B. 1500(1+x)2=2060C. 1500+1500(1+x)+1500(1+x)2=2160D. 1500(1+x)=21607.学校早上8时上第一节课,45分钟后下课,这节课中分针转动的角度为()A.45°B.90°C.180°D.270°8.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A. 45°B. 60°C. 25°D. 30°9.二次函数y=ax2+bx+c的图象如图所示,关于此二次函数有以下四个结论:①a<0;②c>0;③b2﹣4ac>0;④ab>0,其中正确的有()个.A. 1B. 2C. 3D. 410.如图,边长为2a的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A. aB. aC.D.二.填空题11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是________.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.13.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=6cm,则⊙O的半径为________ cm.14.如图,抛物线y1=(x﹣2)2﹣1与直线y2=x﹣1交于A、B两点,则当y2≥y1时,x的取值范围为________.三.解答题15.解方程:4x2﹣12x+5=0.16.已知二次函数图象经过点A(﹣3,0)、B(1,0)、C(0,﹣3),求此二次函数的解析式.四.解答题17.如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣3),C(﹣4,﹣1).①作出△ABC关于原点O中心对称的图形;②将△ABC绕原点O按顺时针方向旋转90°后得到△A1B1C1,画出△A1B1C1,并写出点A1的坐标.18.已知函数y=x2﹣mx+m﹣2.求证:不论m为何实数,此二次函数的图象与x轴都有两个不同交点.五.解答题19.已知抛物线y=﹣x2+2x+2(1)求该抛物线的对称轴、顶点坐标以及y随x变化情况;(2)在如图的直角坐标系内画出该抛物线的图象.20.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.六.解答题21.在如图中,每个正方形由边长为1的小正方形组成:(1)观察图形,请填写下列表格:(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.七.解答题。
2018年安徽省中考数学模试题(含解析)

2018安徽省中考模拟考试数学试题一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD•DB=AE•ECB .AD•AE=BD•EC C .AD•CE=AE•BD D .AD•BC=AB•DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sin α B .i=cos α C .i=tan α D .i=cot α4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3 B .y=(x+2)2﹣3 C .y=(x ﹣2)2+3 D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )图①A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 . 15.如图,正方形ABCD 的边EF 在△ABC 的边BC 上,顶点D 、G分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若tan α=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.安徽省2018中考模拟考试数学试题含答案解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图①图②A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN 是菱形ABCD 的角平分线,同理CM 也是菱形ABCD 的角平分线,设BD 与AC 交于点O , 易知四边形BMDN 是菱形,设S △OMB =S △ONB =S △OMD =S △OND =a ,∵四边形BMDN 的面积是菱形ABCD 面积的,∴S △AMB =S △AMD =S △CNB =S △CND =4a ,∴AM=4OM ,CN=4ON ,设ON=OM=k ,则AM=CN=4k ,∵△ABO ∽△BNO ,∴OB 2=OA•ON=5k 2,∴OB=k ,AB=AD==k ,∵AD•BH=•BD•AO,∴BH==,∴AH===k ,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x 2﹣4x+5化为y=a (x+m )2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x 2﹣4x+5=(x ﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD ,由等腰三角形的性质得出∠DBC=∠ACB ,证出∠ABD=∠BDC ,再证明点B 、E 、D 、F 四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB 是AD 与AC 的比例中项.∴,又∵∠A=∠A ,∴△ABD ∽△ACB ,∴∠ACB=∠ABD ;(2)证明:∵△ABD ∽△ACB ,∴,即,解得:AD=,BD=,∴CD=AC ﹣AD=6﹣=, ∴BD=CD ,∴∠DBC=∠ACB ,∵∠ACB=∠ABD ,∴∠ABD=∠BDC ,∵∠EDF=∠A+∠C ,∠A+∠C=180°﹣∠ABC ,∴∠EDF+∠ABC=180°,∴点B 、E 、D 、F 四点共圆,∴,∴DE=DF .【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点A (1,0)、B (3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2018年安徽省中考数学模拟试题及参考答案(Word版)

2018年安徽省中考模拟试题数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.以“和谐之旅”为主题北京奥运会火炬接力,传递总里程约为137 000千米,这个数据用科学记数法可表示为()A.1.37×103千米B.1.37×104千米C.1.37×105千米D.1.37×106千米2.为了分析某班在四月调考中的数学成绩,对该班所有学生的成绩分数换算成等级统计结果如图所示,下列说法:①该班B等及B等以上占全班60%;②D等有4人,没有得满分的(按120分制);③成绩分数(按120分制)的中位数在第三组;④成绩分数(按120分制)的众数在第三组,其中正确的是()A.①②B.③④C.①③D.①③④3.下列运算中正确的是()A.a5÷b﹣5=a5b5B.a6•a4=a24C.a4+b4=(a+b)4D.(x3)3=x64.下列计算正确的是()A.﹣3﹣3=0 B.20+32=9 C.3÷|﹣3|=﹣1 D.3×(﹣3)﹣1=﹣15.将不等式组的解集表示在数轴上,下面表示正确的是()A .B.C .D .6.Rt△ABC中,∠C=90°,a:b=3:4,运用计算器计算,∠A的度数(精确到1°)()A.30°B.37°C.38°D.39°7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为P0,P1,P2,P3,则P0,P1,P2,P3中最大的是()A.P0B.P1C.P2D.P38.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2 C.x(x﹣1)=1035 D.2x(x+1)=10359.已知反比例函数y=的图象在每一个象限内,y随x的增大而增大,那么一次函数y=kx+2的大致图象是()A .B.C D .10.如图,∠MON=36°,点P是∠MON中的一定点,点A、B分别在射线OM、ON上移动.当△PAB的周长最小时,∠APB的大小为()A.100°B.104°C.108°D.116°二、填空题(本大题共4小题,每小题5分,满分20分)13.计算:()﹣2+(π﹣3)0﹣=.14.如图,在网格中,△ABC的顶点都在网格上,则sin∠A=.15.一位老师说,他班学生的一半在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足6名同学在操场上踢足球,则这个班的学生最多有人.14.(5分)如图,把一个边长为1的正方形经过三次对折后沿中位线(虚线)剪开,则下图展开得到的图形的面积为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.16.(8分)列方程解应用题今年某网上购物商城在“双11岁物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?四、(本大题共2小题,每题8分,共16分)17.(8分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)18.(8分)已知,A (0,4);B (3,0).(1)将△AOB 沿x 轴翻折得△A 1OB ,则A 1的坐标为 ;(2)将△AOB 沿射线BA 1方向平移2.5个单位得到△A 2O 2B 2,则点A 2的坐标为 ;(3)画出△A 1OB 和△A 2O 2B 2,并求出△A 1A 2B 的面积.五、(本大题共2小题,每题10分,共20分) 19.(10分)从2开始,连续的偶数相加,它们和的情况如下表: 加数的个数n和S 1 2=1×2 2 2+4=6=2×3 3 2+4+6=12=3×4 4 2+4+6+8=20=4×5 52+4+6+8+10=30=5×6(1)若n=8时,则S 的值为 .(2)根据表中的规律猜想:用n 的式子表示S 的公式为:S=2+4+6+8+…+2n= .(3)根据上题的规律求102+104+106+108+…+200的值(要有过程)20.(10分)如图,O ,H 分别是锐角△ABC 的外心和垂心,D 是BC 边上的中点.由H 向∠A 及其外角平分线作垂线,垂足分别是E ,F .求证:D ,E ,F 三点共线.六、(本题满分12分)21.(12分)某市中考体育测试有“跳绳”项目,为加强训练,某班女生分成甲、乙两组参加班级跳绳对抗赛,两组参赛人数相等,比赛结束后,依据两组学生的成绩(满分为10分)绘制了如下统计图表: 甲组学生成绩统计表 分 数 人 数 5分 5人 6分 2人 7分 3人 8分 1人 9分4人(1)经计算,乙组的平均成绩为7分,中位数是6分,请求出甲组学生的平均成绩、中位数,并从平均数的角度分析哪个组的成绩较好?(2)经计算,甲组的成绩的方差是2.56,乙组的方差是多少?比较可得哪个组的成绩较为整齐?(3)学校组织跳绳比赛,班主任决定从这次对抗赛中得分为9分的学生中抽签选取5个人组成代表队参赛,则在对抗赛中得分为9分的学生参加比赛的概率是多少?七、(本题满分12分)22.(12分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.八、(本题满分14分)23.(14分)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.(1)求线段CD的长;(2)当t为何值时,△CPQ与△ABC相似?(3)当t为何值时,△CPQ为等腰三角形?参考答案一、选择题(本大题共10小题,每小题4分,满分40分)1.C2.C3.A4.D5.A6.B7.C8.B9.C10.C二、填空题(本大题共4小题,每小题5分,满分20分)11.212.13.2814..三、(本大题共2小题,每小题8分,满分16分)15.(8分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.解:|﹣2|﹣2cos45°+(﹣1)﹣2+,=2﹣﹣2×+1+2,=2﹣﹣+1+2,=3.16.(8分)解:(1)200×0.9=180(元).答:按活动规定实际付款180元.(2)∵500×0.9=450(元),490>450,∴第2次购物超过500元,设第2次购物商品的总价是x元,依题意有500×0.9+(x﹣500)×0.8=490,解得x=550,550﹣490=60(元).答:第2次购物节约了60元钱.(3)200+550=750(元),500×0.9+(750﹣500)×0.8=450+200=650(元),∵180+490=670>650,∴小丽将这两次购得的商品合为一次购买更省钱.故答案为:180.四、(本大题共2小题,每题8分,共16分)17.(8分)解:(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=80×cos30°=80×=40(cm).(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC×tan30°=165×=55(cm),∴OD=OC﹣CD=55﹣40=15(cm),∴AB=AO﹣OB=AO﹣OD=55×2﹣15=95(cm).18.(8分)解:(1)A1的坐标为(0,﹣4);(2)点A2的坐标为(,2);(3)所画图形如下所示:S△A1A2B=S△A2DB+S△A1BD =×2×4+×4×4=12.故答案为:(0,﹣4),(,2).五、(本大题共2小题,每题10分,共20分)19.(10分)解:(1)当n=8时,S=8×9=72;故答案为:72;(2)根据特殊的式子即可发现规律,S=2+4+6+8+…+2n=2(1+2+3+…+n)=n(n+1);故答案为:n(n+1);(3)102+104+106+…+200=(2+4+6+...+102+...+200)﹣(2+4+6+ (100)=100×101﹣50×51=7550.20.(10分)证明:如图,连接OA、OD,并延长OD交⊙O于M,则OD⊥BC,,∴A、E、M三点共线,又AE、AF是∠A及其外角平分线,∴AE⊥AF,∵HE⊥AE,HF⊥AF,∴四边形AEHF为平行四边形,∴AH与EF互相平分,设其交点为G,于是,AG=AH=EF=EG,∵OA=OM,OD∥AH,∴∠OAM=∠OMA=∠MAG=∠GAE,∴EG∥OA ①又O、H分别是△ABC的外心和垂心,且OD⊥BC,∴OD=AH=AG,∴四边形AODG为平行四边形,∴DG∥OA,②由①②可知,D、E、G三点共线,而F在EG上,∴D、E、F三点共线.六、(本题满分12分)解:(1)甲组学生的平均成绩==6.8(分),甲组成绩的中位数为6分,所以从平均数的角度分析乙组的成绩较好;(2)乙组的方差=[1×(5﹣7)2+7×(6﹣7)2+0×(7﹣7)2+5×(8﹣7)2+2×(9﹣7)2]≈1.71,所以甲组的方差比乙组的方差大,’所以乙组的成绩较为整齐;(3)这次对抗赛中得分为9分的学生有6人,从中抽签选取5个人组成代表队参赛,即抽签选取1个人不参赛,所以在对抗赛中得分为9分的学生参加比赛的概率=1﹣=.七、(本题满分12分)22.(12分)解:(1)若商店经营该商品不降价,则一天可获利润100×(100﹣80)=2000(元);(3分)(2)①依题意得:(100﹣80﹣x)(100+10x)=2160(5分)即x2﹣10x+16=0解得:x1=2,x2=8(6分)经检验:x1=2,x2=8都是方程的解,且符合题意,(7分)答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(8分)②依题意得:y=(100﹣80﹣x)(100+10x)(9分)∴y=﹣10x2+100x+2000=﹣10(x﹣5)2+2250 (10分)画草图:观察图象可得:当2≤x≤8时,y≥2160,∴当2≤x≤8时,商店所获利润不少于2160元.(13分)八、(本题满分14分)23.(14分)解:(1)∵∠ACB=90°,AC=8,BC=6,∴AB=10.∵CD⊥AB,∴S△ABC=BC•AC=AB•CD.∴CD===4.8.∴线段CD的长为4.8.(2)由题可知有两种情形,设DP=t,CQ=t.则CP=4.8﹣t.①当PQ⊥CD时,如图a∵△QCP∽△△ABC∴=,即=,∴t=3;②当PQ⊥AC,如图b.∵△PCQ∽△ABC∴=,即=,解得t=,∴当t为3或时,△CPQ与△△ABC相似;(3)①若CQ=CP,如图1,则t=4.8﹣t.解得:t=2.4.②若PQ=PC,如图2所示.∵PQ=PC,PH⊥QC,∴QH=CH=QC=.∵△CHP∽△BCA.∴=.∴=,解得t=.③若QC=QP,过点Q作QE⊥CP,垂足为E,如图3所示.同理可得:t=.综上所述:当t为2.4秒或秒或秒时,△CPQ为等腰三角形.。
2018年安徽省中考模拟试卷含答案.docx

7. 某企业为了解员工给灾区“爱心捐款”的情况,随机抽収部分员工的捐款金额整理 绘制成如图所示的直方图,根据图中信息,下列结论错误的是()A. 样本屮位数是200元B. 样本容量是20C. 该企业员工捐款金额的平均数是180元D. 该企业员工最大捐款金额是500元2018年安徽中考模拟卷题号一二三四 五六七八总分得分时间:120分钟满分:150分一、选择题(本大题共10小题,每小题4分,满分40分)1. —5的绝对值是() A. —5 B. 5 C. ±5 D. —§2.计算2a 2+a 2f 结果正确的是() A. 2a 4B. 2a 2C. 3a 4D. 3a 23.如图所示的工件,其俯视图是(A C D4. C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A. IX 106B. 100X 104C. 1X107D. 0.1X10*2x~ 131,5. 不等式组的解集在数轴上表示为()X —2<0] A ------- 1 ---- 1 ---- -------------------------------------------- ! --- 1―A -3-2-10 1 -10123A _____ B丨I 厂? I A丨丨 匚1 I A -10123-10123C D6. 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30。
角的直角三角板的斜边与纸条一边重合,含45。
角的三角板的一个顶点在纸条的另一边上,则Z1的度数是()A. 15°B. 22.5°C. 30°D. 45°8. 川国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民 2015年年收入为200美元,预计2017年年收入将达到1000美元,设2015年到2017年该 地区居民年人均收入平均增长率为兀,可列方程为()A. 200(1+2x )=1000B. 200(1+才=1000C. 200(1+?)= 1000D. 200+2%= 10009. 二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=bx+a 与反比例函数y=在同一坐标系内的图象大致为(10.如图,在矩形ABCD 中,4D=6, AE 丄BD,垂足为E, DE=3BE,点P, Q 分别在AD 上,则AP+PQ 的最小值为()A. 2^2B.^2 C ・ 2^3 D ・ 3羽二、填空题(本大题共4小题,每小题5分,满分20分)11. 16的算术平方根是 ________ .12. 分解因式:2?-8/= _____________________ .13. 如图,已知是OO 的直径,延长至C 点,使AC=3BC, CD 与(DO 相切于D 点.若CD 卡,则劣弧45的长为 _______________14. 如图,在四边形纸片 ABCD 中,AB=BC, AD=CD, ZA=ZC=90°, ZB=150°.将纸片先沿直线BD 对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形 打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD= ____________________三、(本大题共2小题,每小题8分,满分16分)15. 计算:2"1 +^/3-tan30°-A /8-(2018-TC )°.16. “鸡兔同笼”是我国古代著名的数学趣题之一.大约在1500年前成书的《孙子算经》第14题图 B中,就有关于“鸡兔同笼”的记载:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔关在一个笼子里,从上面数,有35个头;从下面数,有94条腿.问笼中各有几只鸡和兔?四、(本大题共2小题,每小题8分,满分16分)17.小明、小华利用五一假期结伴游览某旅游景点,他们想测量景点内一条小河的宽度, 如图,己知观测点C距离地面高度CH=40m,他们测得正前方河两岸4、3两点处的俯角分别为45。
安徽省合肥市2018届毕业班第二次中考模拟测试 数学试题(word版附答案)

安徽省合肥市2018届初中毕业班第二次中考模拟测试数 学 试 题一、选择题(共10小题,每小题4分,满分40分)1.下列图形中,是轴对称图形的是( )2.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为( )A .0.845³1010元B .84.5³108元C .8.45³109元D .8.45³1010元 3.64的立方根是( )A .4B .8C .±4D .±8 4.下列计算正确的是( )A .2x 2²2xy =4x 3y 4B .3x 2y -5xy 2=-2x 2yC .x -1÷x -2=x -1D .(-3a -2)(-3a +2)=9a 2-4 5.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是( )6.如图,在△ABC 中,AB =AC ,BC =6,△DEF 的周长是7,AF ⊥BC 于点F ,BE ⊥AC 于点E ,且点D 是AB 的中点,则AF 的长为( )A . 5B .7C . 3D .77.在同一平面坐标系内,若直线y =3x -1与直线y =x -k 的交点在第四象限的角平分线上,则k 的值为( )A .k =-12B .k =13C .k =12D .k =18.若x 1,x 2是一元二次方程x 2-2x -1=0的两个根,x 12-x 1+x 2的值为( )A .-1B .0C .2D .3 9.如图,∠ACB =60○,半径为2的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O移动的水平距离为()A .2π B .4π C .32 D .410.如图,直线l 的解析式为y=-x +4,它与x 轴分别相交于A ,B 两点.平行于直线l 的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴和y 轴分别相交于C ,D 两点,运动时间为t 秒(0≤t≤4),以CD 为斜边作等腰直角三角形CDE(E ,O 两点分别在CD 两侧).若△CDE 和△OAB 的重合部分的面积为S ,则S 与t 之间的函数关系的图象大致是( )二、填空简答题(共4小题,每小题5分,满分20分)11.分解因式:x ﹣4x 2﹣12x=.12.风华中学七年级(2)班的“精英小组”有男生4人,女生3人,若选出一人担任班长,则组长是男生的概率为 .13.如图,OP 平分∠AOB ,∠AOP =15°,PC ∥OA ,PD ⊥OA 于点D ,PC =4,则PD = .14.如图,在菱形ABCD 中,AB=BD .点E 、F 分别在AB 、AD 上,且AE=DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论: ①△AED ≌△DFB ; ②S 四边形BCDG =CG 2; ③DE=CG ;④若AF=2DF ,则BG=6GF . 其中正确的结论 . 三、解答题(90分)15.(8分)计算:()﹣2﹣6sin30°+(﹣2)0+|2﹣|;16.(8分)先化简,再求值:÷(x+2﹣),其中x=﹣3.17.(8分)如图所示,在▱ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°,求∠B的度数.18.(8分)已知关于x的不等式22mxm>21x-1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.19.(10分)在一次数学兴趣小组活动中,李燕和刘凯两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字).游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于12,则李燕获胜;若指针所指区域内两数和等于12,则为平局;若指针所指区域内两数和大于12,则刘凯获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止).(1)请用列表或画树状图的方法表示出上述游戏中两数和的所有可能的结果;(2)分别求出李燕和刘凯获胜的概率.20.(10分)童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要分钟,生产1件B产品需要分钟.(2)求小李每月的工资收入范围.21.(12分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A.非常喜欢”、“B.比较喜欢”、“C.不太喜欢”、“D.很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是________;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?22.(12分)关于三角函数有如下的公式:sin(α+β)=sinαcosβ+cosαsinβ①cos(α+β)=cosαcosβ﹣sinαsinβ②tan(α+β)=③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan(45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.23. (14分)如图,点A在Y轴上,点B在X轴上,且OA=OB=1,经过原点O 的直线L交线段AB于点C,过C作OC的垂线,与直线X=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC 的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值。
2018安徽中考数学模拟试卷

2018安徽中考数学模拟试卷22017-2018学年第二学期九年级中考模拟考试 数学试卷 2018年5月考生注意:本卷共八大题,23小题,满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,满分40分) 1.在0,,3,1π--四个数中,绝对值最大的数是( ).A .0B .π-C .3D .-12.下列计算结果等于5a 的是( ).A .32a a + B .32a a C .32()a D .102a a ÷3.经济学家马光远在2017新消费论坛上表示,因为新技术引发新产生、新业态、新模式,新兴消费增长速度超过40%,将会影响到5亿人左右.受此影响,到2020年,中国个人消费总规模有望达到5.6万亿美元.其中5.6万亿用科学记数法表示为( ).A .95.610⨯ B .105610⨯ C .125.610⨯ D .135.610⨯4.如图所示的几何体中,其俯视图是( ).5.把多项式228xy x -因式分解,结果正确的是( ).A.2x y-2(4) B.(2)(24)y xy x+-C.(22)(2)+-xy x y D.2(2)(2)+-x y y6.如图,AB∥CD,AC⊥BE于点C,若∠1=140°,则∠2等于().A.40°B.50°C.60°D.70°7 若关于x的一元二次方程2440-+=有两个相等的x x c实数根,则c的值为().A.1 B.-1 C.4 D.-48.合肥市主城区2017年8月10至8月19日连续10天的最高气温统计如下表:最高气38 39 40 41温(°C)天数 1 3 4 2则这组数据的中位数和平均数分别为().A.40,39.5 B.39,39.5 C.40,39.7 D.39,39.7345为线段AB 上一动点,将等边△ABC 沿过点M 的直线折叠,直线与AC 交于点N ,使点N 落在直线BC 的点D 处,且BD :DC =1:4,设折痕为MN ,则CN 的值为 .三、(本大题共2小题,每小题8分,满分16分) 15.计算:21o 131()sin 60122--+---.16.高迪同学在一本数学课外读物中看到这样一则信息:1925年,数学家莫伦发现了如图(1)所示的世界上第一个完美长方形,它恰能被分割成10个大小不同的正方形.高迪同学仔细研究了此图后,设计出了一个如图(2)所示的“准完美长方形”,其中标号“3与4”的正方形完全相同,若中间标号为“1”的正方形的边长为1cm ,求这个“准完美长方形”DCA BMN第14第136的面积.四、(本大题共2小题,每小题8分,满分16分) 17.(1)计算(直接填写结果)2222121⨯=++ ;33333312321⨯++++= .(2)先猜想结果,再计算验证:444444441234321⨯++++++= ;5555555555123454321⨯++++++++= .(3)归纳:设N 是各位数字都是n 的n 位数(n 是小于10的正整数),那么123(1)21N Nn n ⨯+++++-+++是 位数,其正中的一个数字是 .654321((718.某太阳能热水器的横截面示意图如图所示,已知真空热水管AB 与支架CD 所在直线相交于点O ,且OB =OD ,支架CD 与水平线AE 垂直,∠BAC =∠CDE =30°,DE =80cm ,AC =165cm . (1)求支架CD 的长;(2)求真空热水管AB 的长.(结果保留根号).五、(本大题共2小题,每小题10分,满分20分)19.在边长为1个单位长度的小正方形网格中,给出了格点△ABC (顶点为网格线的交点),以及过格点的的直线l .(1)将△ABC 向左平移3个单位长度,再向下平移两个单位长度,画出平移后的△DEF (点A 与点D ,点B 与点E ,点C 与点F 为对应点);(2)画出△ABC 关于直线l 对称的△GMN (点A 与点G ,点B 与点M ,点C 与点N 为对应点;(3)若DF 与MG 相交于点P ,则tan ∠MPF = .CODAB20.如图,四边形ABCD是⊙O的内接四边形, ,AC为直径,DE⊥BC,垂足为E.AD BD(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.六、(本题满分12分)21.小明、小强和小亮三个小朋友在一起玩“手心,手背”游戏,游戏时,每人每次同时随机伸出一只手,手心向上简称“手心”,手背向上简称“手背”(1)请你列出三人玩“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,用B表示手背)(2)求他们同时随机出手,都是“手心”的概率;(3)若小明出手为“手心”,则三人中只有一人出手为“手背”的概率为七、(本题满分12分)22.某工艺厂生产一种装饰品,每件的生产成本为20元,销售8价格在30元/件至80元/件之间(含30元/件和80元/件),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万件)与销售价格x(元/件)之间的函数关系如图所示.(1)当30≤x≤60时,求y与x之间的函数关系式.(2)求出该厂生产销售这种产品获得的利润w(万元)与销售价格x(元/件)之间的函数关系式.(3)当销售价格定为多少元/件时,获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们知道:三角形三条角平分线的交点叫做三角形的内心,已知点I为△ABC的内心(1)如图1,连接AI并延长交BC于点D,9若AB=AC=3,BC=2,求ID的长(2)过点I作直线交AB于点M,交AC于点N.①如图2,若MN⊥AI,求证:2MI BM CN=②如图3,AI交BC于点D,若∠BAC=60°,AI=4,求11AM AN+的值.2017-2018学年第二学期九年级第一次月考数学答案 2018年4月一、选择题题号1 2 3 4 5 6 7 8 9 1010答案B B C BDB AC C B二、填空题11.3x<12.13 13.23π14.92三、15.原式=016.设标号为“3”的正方形边长为x cm,由题意,得2531x x+=+,解得4x=,所以(25)(23)1311143x x++=⨯=2cm答:这个“准完美长方形”的面积为143cm2.四、17.(1)121 12321 (2)1234321123454321(3)21n-n18.(1)在Rt△CDE中,∠CDE=30°,DE=80cm,∴CD=o3=⨯=(cm)80cos3080403(2)在Rt△OAC中,∠BAC=30°,AC=165cm,∴OC=AC o3tan30165553=⨯=(cm)∴OD=OC-CD=553403153-=(cm).∴AB=AO-OB=AO-OD=5532153953⨯-=(cm).五、19.(1)(2)如图所示(3)220.(1)证明:∵四边形ABCD是⊙O内接四边形,∴∠DCE=∠BAD.∵AD BD=,∴∠BAD=∠ACD,∴∠DCE=∠ACD,即CD平分∠ACE.(2)∵AC为直径,∠ADC=90°.∵DE ⊥BC ,∴∠DEC =90°,∠DEC =∠ADC ∵∠DCE=∠ACD ,∴△DCE ∽△ACD∴CE CD CD CA =,即39CD CD =∴CD =33 六、21.(1)画树状图,得∴共有8种等可能的结果:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB(2)∵他们同时随机出手,都是“手心”的只有1种情况,∴他们同时随机出手,都是“手心”的概率是18(3)12七、22.(1)当60x =时,120260y == ∴当30≤x ≤60时,图象过(60,2)和(30,5)设y kx b =+,则305602k b k b +=⎧⎨+=⎩,解得0.18k b =-⎧⎨=⎩, ∴0.18(3060)y x x =-+≤≤ (2)当30≤x ≤60时2(20)50(20)(0.18)500.110210w x y x x x x =--=--+-=-+-当60<x≤80时1202400(20)50(20)5070w x y x x x=--=-⨯-=-+综述:20.110210(3060)240070(6080) x x x w x x ⎧-+-≤≤⎪=⎨-+<≤⎪⎩(3)当30≤x ≤60时,220.1102100.1(50)40w x x x =-+-=--+当50x =时,w 最大=40(万元)当60<x≤80时,w 随x 的增大而增大,∴当80x =时,w 最大=2400704080-+=(万元) 所以当销售价格定为50元/件或80元/件时,获得的利润最大,最大利润是40万元. 八、23.(1)作IE ⊥AB 于E .设ID =x ,∵AB =AC =3,I 点为△ABC 的内心,∴AD ⊥BC ,BD =CD =1.在Rt △ABD 中,由勾股定理,得AD =22 ∵∠EBI =∠DBI ,∠BEI =∠BDI =90°,BI =BI ∴△BEI ≌△BDI ,∴ID =IE =x ,BD =BE =1,AE =2 在Rt △AEI 中,222AEEI AI +=,即2222(22)x x +=-,∴22x =.(2)如图,连接BI ,CI∵I 是△ABC 的内心,∴∠MAI =∠NAI .∵AI ⊥MN ,∴AM =AN∴∠AMN =∠ANM ,∠BMI =∠CNI∵∠NIC =180°-∠IAC -∠ACI -∠AIM =90°-∠IAC -∠ACI∠ABC =180°-∠BAC -∠ACB =180°-2∠IAC -2∠ACI∴∠ABI =90°-∠IAC -∠ACI ,即∠NIC =∠ABI∴△BMI ∽△INC ,BM MI IN NC=又MI =NI ,∴2MIBM CN=.(3)过点N 作NG ∥AD 交MA 的延长线于点G , ∵∠BAD =∠CAD ,∠BAC =60°,∴AN =AG ,∠ANG =∠AGN =30°,NG 3由AI ∥NG ,得AM AIMG NG =,3AM AM AN AN=+∴113AMAN+=。
2018届中考数学二模试卷(带答案) (2)

2018年中考数学二模试卷一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)1.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)2.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣33.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,74.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a47.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.38.不等式组的解集在数轴上可表示为()A.B.C.D.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形10.计算﹣的结果是()A.﹣B.C.D.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣31212.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为.15.分解因式:1﹣x2=.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A 1B1C1D1E1,则OD:OD1=.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是册,a=册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是,极差是;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共12小题,共36分.每小题只有一个选项符合题意.请考生用2B铅笔在答题卷上将选定的答案标号涂黑)2.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2) B.(﹣2,3)C.(0,0) D.(﹣3,﹣2)【考点】点的坐标.【专题】计算题.【分析】满足点在第一象限的条件是:横坐标是正数,纵坐标也是正数,结合选项进行判断即可.【解答】解:因为第一象限的条件是:横坐标是正数,纵坐标也是正数,而各选项中符合纵坐标为正,横坐标也正的只有A(1,2).故选:A.【点评】本题主要考查了平面直角坐标系中第四象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).1.计算:﹣1﹣2=()A.1 B.﹣1 C.﹣2 D.﹣3【考点】有理数的减法.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:﹣1﹣2=﹣3,故选D.【点评】本题考查了有理数的减法,将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).3.下列长度的三条线段能组成三角形的是()A.1,2,3 B.3,4,5 C.3,1,1 D.3,4,7【考点】三角形三边关系.【专题】应用题.【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析.【解答】解:根据三角形的三边关系,知A、1+2=3,不能组成三角形,故A错误;B、3+4>5,能够组成三角形;故B正确;C、1+1<3,不能组成三角形;故C错误;D、3+4=7,不能组成三角形,故D错误.故选:B.【点评】本题考查了三角形的三边关系,判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数,难度适中.4.在Rt△ABC中,∠C=90°,AB=5,BC=3,则∠A的余弦值为()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【专题】计算题.【分析】先根据勾股定理,求出AC的值,然后再由余弦=邻边÷斜边计算即可.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,BC=3,∴AC=4,∴cosA==.故选C.【点评】本题考查了锐角三角函数的定义和勾股定理,牢记定义和定理是解题的关键.5.一个几何体的三视图完全相同,该几何体可以是()A.圆锥 B.圆柱 C.长方体D.球【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D、球体的主视图、左视图、俯视图都是圆形;故本选项正确.故选D.【点评】本题考查了简单几何体的三视图,锻炼了学生的空间想象能力.6.下列计算正确的是()A.(a+b)2=a2+b2B.(﹣2a)3=﹣6a3C.(a2b)3=a5b2 D.(﹣a)6÷(﹣a)2=a4【考点】同底数幂的除法;幂的乘方与积的乘方;完全平方公式.【分析】根据完全平方公式、幂的乘方和同底数幂的除法计算判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,错误;B、(﹣2a)3=﹣8a3,错误;C、(a2b)3=a6b3,错误;D、(﹣a)6÷(﹣a)2=a4,正确;故选D.【点评】此题考查完全平方公式、幂的乘方和同底数幂的除法,关键是根据法则进行计算.7.下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(3)射击运动员射击一次,命中10环;(4)在一个只装有红球的袋中摸出白球.A.0 B.1 C.2 D.3【考点】随机事件.【分析】确定事件就是一定发生的事件或一定不会发生的事件,根据定义即可确定.【解答】解:(1)(3)属于随机事件;(4)是不可能事件,属于确定事件;(2)是必然事件,属于确定事件;故属于确定事件的个数是2,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】首先解出不等式组x的取值范围,然后根据x的取值范围,找出正确答案;【解答】解:不等式组,解①得:x≥﹣1,解②得:x<2,则不等式组的解集是:﹣1≤x<2.故选B.【点评】本题考查了不等式组的解法及在数轴上表示不等式的解集,把不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形【考点】多边形内角与外角.【专题】应用题.【分析】任何多边形的外角和是360度,内角和等于外角和的一半则内角和是180度,可知此多边形为三角形.【解答】解:根据题意,得(n﹣2)•180°=180°,解得:n=3.故选D.【点评】本题主要考查了已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.10.计算﹣的结果是()A.﹣B.C.D.【考点】分式的加减法.【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案.【解答】解:﹣===﹣.故选A.【点评】此题考查了分式的加减运算法则.题目比较简单,注意解题需细心.11.方程:+=1的解是()A.x=﹣1 B.x=3 C.x=﹣1或x=3 D.x=1或x=﹣312【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+3=x2,即(x﹣3)(x+1)=0,解得:x=3或x=﹣1,经检验x=3与x=﹣1都为分式方程的解.故选C.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.如图,在平面直角坐标系中有一正方形AOBC,反比例函数y=经过正方形AOBC对角线的交点,半径为(4﹣2)的圆内切于△ABC,则k的值为()A.4B.4 C.2D.2【考点】反比例函数综合题.【分析】根据正方形的性质得出AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,进而根据半径为(4﹣2)的圆内切于△ABC,得出CD的长,从而得出DO的长,再利用勾股定理得出DN的长进而得出k的值.【解答】解:设正方形对角线交点为D,过点D作DM⊥AO于点M,DN⊥BO于点N;设圆心为Q,切点为H、E,连接QH、QE.∵在正方形AOBC中,反比例函数y=经过正方形AOBC对角线的交点,∴AD=BD=DO=CD,NO=DN,HQ=QE,HC=CE,QH⊥AC,QE⊥BC,∠ACB=90°,∴四边形HQEC是正方形,∵半径为(4﹣2)的圆内切于△ABC,∴DO=CD,∵HQ2+HC2=QC2,∴2HQ2=QC2=2×(4﹣2)2,∴QC2=48﹣32=(4﹣4)2,∴QC=4﹣4,∴CD=4﹣4+(4﹣2)=2,∴DO=2,∵NO2+DN2=DO2=(2)2=8,∴2NO2=8,∴NO2=4,∴DN×NO=4,即:xy=k=4.故选B.【点评】本题考查了反比例函数综合题,涉及正方形的性质以及三角形内切圆的性质以及待定系数法求反比例函数解析式,根据已知求出CD的长度,进而得出DN×NO=4是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在答题卷指定的位置上)13.若二次根式有意义,则x的取值范围是x≥1.【考点】二次根式有意义的条件.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.14.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力.用科学记数法表示568000为 5.68×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于568000有6位,所以可以确定n=6﹣1=5.【解答】解:568 000=5.68×105.故答案为:5.68×105.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.分解因式:1﹣x2=(1+x)(1﹣x).【考点】因式分解-运用公式法.【专题】因式分解.【分析】分解因式1﹣x2中,可知是2项式,没有公因式,用平方差公式分解即可.【解答】解:1﹣x2=(1+x)(1﹣x).故答案为:(1+x)(1﹣x).【点评】本题考查了因式分解﹣运用公式法,熟练掌握平方差公式的结构特点是解题的关键.16.甲、乙、丙、丁四位同学在本学期的四次数学测试中,他们成绩的平均数相同,方差分别为S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,则成绩最稳定的是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.5,S乙2=7.3,S丙2=8.6,S丁2=4.5,丁的方差最小,∴成绩最稳定的是丁同学,故答案为:丁.【点评】此题主要考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2.【考点】位似变换.【分析】根据五边形ABCDE的面积扩大为原来的4倍,利用相似图形面积的比等于相似比的平方,即可得出答案.【解答】解:∵以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A1B1C1D1E1,则OD:OD1=1:2,故答案为:1:2.【点评】此题主要考查位似图形的性质,根据面积的比等于相似比的平方是解决问题的关键.18.点E是平行四边形ABCD边BC的中点,平行四边形ABCD的面积是m,则四边形ABEF的面积是m.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】设出△EFC的面积为a,根据△AFD∽△CFE和AD=2EC,求出△AFD的面积,根据DF=2FE,求出△DFC的面积,计算得到a=m,得到答案.【解答】解:设△EFC的面积为a,∵E是BC的中点,∴BC=2EC,则AD=2EC,∵AD∥BC,∴△AFD∽△CFE,∴△AFD的面积为4a,∵DF=2FE,∴△DFC的面积为2a,∴△ADC的面积为6a,则四边形ABEF的面积为5a,又∵平行四边形ABCD的面积是m,即12a=m,a=m,∴四边形ABEF的面积m.故答案为:m.【点评】本题考查的是面积的计算,掌握相似三角形的面积比等于相似比的平方是解题的关键,解答时,注意等高的两个三角形的面积比等于底的比.三、解答题(本大题共8小题,共66分,解答应写出文字说明、证明过程或验算步骤)19.计算:4cos45°+(﹣1)2015﹣+()﹣2.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用特殊角的三角函数值计算,第二项利用乘方的意义计算,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=4×﹣1﹣+36=2﹣+35.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,方格纸中的每个小正方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,O、M都在格点上.(1)画出△ABC关于直线OM对称的△A1B1C1;(2)画出将△ABC绕点O按顺时针方向旋转90°后得到的△A2B2C2(3)△A1B1C1与△A2B2C2组成的图形是轴对称图形码?如果是轴对称图形,请画出对称轴.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于直线OM的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕点O顺时针旋转90°后的对应点A2、B2、C2的位置,然后顺次连接即可;(3)根据轴对称的概念作出判断并画出对称轴.【解答】解:(1)△A1B1C1如图;(2)△A2B2C2如图;(3)是轴对称,如图直线l为对称轴.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.21.已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.【考点】作图—复杂作图;全等三角形的判定.【专题】压轴题.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M画射线,交AC于D,线段BD就是∠B的平分线;②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y画直线与AB交于点E,点E 就是AB的中点;(2)首先根据角平分线的性质可得∠ABD的度数,进而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,ED=ED,即可利用SSS证明△ADE≌△BDE.【解答】解:(1)作出∠B的平分线BD;作出AB的中点E.(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A,∴AD=BD,在△ADE和△BDE中∴△ADE≌△BDE(SSS).【点评】此题主要考查了复杂作图,以及全等三角形的判定,关键是掌握基本作图的方法和证明三角形全等的判定方法.22.小明对所在班级的“小书库”进行了分类统计,并制作了如下的统计图表:根据上述信息,完成下列问题:(1)图书总册数是100册,a=14册;(2)请将条形统计图补充完整;(3)数据22,20,18,a,12,14中的众数是14,极差是10;(4)小明从这些书中任意拿一册来阅读,求他恰好拿到数学或英语书的概率.【考点】条形统计图;众数;极差;概率公式.【专题】数形结合.【分析】(1)用其他类的册数除以频率即可求出总本数,再减去已知的本书即可求出a的值.(2)根据上题求出的结果将统计图补充完整即可.(3)根据众数与极差的概念直接解答即可.(4)根据概率的求法,用数学与英语书的总本数除以总本数即可解答.【解答】解:(1)总本数=14÷0.14=100本,a=100﹣22﹣20﹣18=12﹣14=14本.(2)如图:(3)数据22,20,18,a,12,14中a=14,所以众数是14,极差是22﹣12=10;(4)(20+18)÷100=0.38,即恰好拿到数学或英语书的概率为0.38.故答案为100,14,14,10.【点评】本题考查的是条形统计图和统计表的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.某商店第一次用3000元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个.(1)求第一次每个书包的进价是多少元?(2)若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,问最低可打几折?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一次每个书包的进价是x元,根据某商店第一次用300元购进某款书包,很快卖完,第二次又用2400元购进该款书包,但这次每个书包的进价是第一次进价的1.2倍,数量比第一次少了20个可列方程求解.(2)设最低可以打x折,根据若第二次进货后按80元/个的价格销售,恰好销售完一半时,根据市场情况,商店决定对剩余的书包全部按同一标准一次性打折销售,但要求这次的利润不少于480元,可列出不等式求解.【解答】解:(1)设第一次每个书包的进价是x元,﹣20=x=50.经检验得出x=50是原方程的解,且符合题意,答:第一次书包的进价是50元.(2)设最低可以打y折.2400÷(50×1.2)=4080×20+80×0.1y•20﹣2400≥480y≥8故最低打8折.【点评】本题考查理解题意能力,第一问以数量做为等量关系列方程求解,第二问以利润做为不等量关系列不等式求解.24.已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据点A的坐标求出反比例函数的解析式为y1=,再求出B的坐标是(﹣2,﹣2),利用待定系数法求一次函数的解析式;(2)当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围x<﹣2 或0<x<1.(3)根据坐标与线段的转换可得出:AC、BD的长,然后根据三角形的面积公式即可求出答案.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,∴△ABC的面积S△ABC=AC×BD=×8×3=12.【点评】本题主要考查了待定系数法求反比例函数与一次函数的解析式.以及三角形面积的求法,这里体现了数形结合的思想.25.如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于F.(1)求证:∠DCP=∠DAP;(2)若AB=2,DP:PB=1:2,且PA⊥BF,求对角线BD的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;菱形的性质.【专题】几何综合题;压轴题.【分析】(1)根据菱形的性质得CD=AD,∠CDP=∠ADP,证明△CDP≌△ADP即可;(2)由菱形的性质得CD∥BA,可证△CPD∽△FPB,利用相似比,结合已知DP:PB=1:2,CD=BA,可证A为BF的中点,又PA⊥BF,从而得出PB=PF,已证PA=CP,把问题转化到Rt△PAB中,由勾股定理,列方程求解.【解答】(1)证明:∵四边形ABCD为菱形,∴CD=AD,∠CDP=∠ADP,∴△CDP≌△ADP,∴∠DCP=∠DAP;(2)解:∵四边形ABCD为菱形,∴CD∥BA,CD=BA,∴∠CDP=∠FBP,∠BFP=∠DCP,∴△CPD∽△FPB,∴===,∴CD=BF,CP=PF,∴A为BF的中点,又∵PA⊥BF,∴PB=PF,由(1)可知,PA=CP,∴PA=PB,在Rt△PAB中,PB2=22+(PB)2,解得PB=,则PD=,∴BD=PB+PD=2.【点评】本题考查了全等三角形、相似三角形的判定与性质,菱形的性质及勾股定理的运用.关键是根据菱形的四边相等,对边平行及菱形的轴对称性解题.26.如图,半径为1的⊙M经过直角坐标系的原点O,且分别与x轴正半轴、y轴正半轴交于点A、B,∠OMA=60°,过点B的切线交x轴负半轴于点C,抛物线过点A、B、C.(1)求点A、B的坐标;(2)求抛物线的函数关系式;(3)若点D为抛物线对称轴上的一个动点,问是否存在这样的点D,使得△BCD是等腰三角形?若存在,求出符合条件的点D的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)由题意可直接得出点A、B的坐标为A(1,0),B(0,);(2)再根据BC是切线,可求出BC的长,即得出点C的坐标,由待定系数法求出抛物线的解析式;(3)先假设存在,看能否求出符合条件的点D即可.【解答】解:(1)∵MO=MA=1,∠OMA=60°,∴∠ABO=30°,∴OB=,∴A(1,0),B(0,);(2)∵BC是切线,∴∠ABC=90°,∴∠ACB=30°,∴AC=4,∴C(﹣3,0),设抛物线的解析式为y=ax2+bx+c,将点A、B、C代入得,,解得∴抛物线的解析式为y=﹣x2﹣x+;(3)设在对称轴上存在点D,使△BCD是等腰三角形,对称轴为直线x=﹣1,设点D(﹣1,m),分3种情况讨论:①BC=BD;=2,解得m=±+;②BC=CD;=2,解得m=±2;③BD=CD;=,解得:m=0,∴符合条件的点D的坐标为,(﹣1,+),(﹣1,﹣+),(﹣1,2),(﹣1,﹣2),(﹣1,0).【点评】本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和等腰三角形判定等知识点,是各地中考的热点和难点,解题时注意数形结合等数学思想的运用,同学们要加强训练,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . 75
B . 95
AOB 的度数为· ························ (
)
C . 105
D .120
k
7.一次函数 y= kx+ b(k≠ 0) 与反比例函数 y= x(k≠ 0) 的图象如图, 则下列结论中正确的是· ··············(
)
A . k> 0, b> 0
第 9 题图
第 10 题图
第 12 题图
第 13 题图
10.如图, 已知正方形 ABCD 的边长为 4,E 是 BC 边上的一个动点, AE⊥ EF, EF 交 DC 于 F, 设 BE= x,FC= y, 则当点 E 从点 B 运动到点 C 时, y 关于 x 的函数图象是 ( )
1
2018 年安徽省九年级中考数学模拟卷二及答案
2
2018 年安徽省九年级中考数学模拟卷二及答案
请在图中画出 △ A 1B1C1,并直接写出 C1 点坐标; (2) 将 △ ABC 绕着点 O 顺时针旋转 90 °后得到 △ A 2B 2C2,请在图中画出 △ A2B2C 并求出线段 BC 旋转过程中所扫过的面积 (结果保留 π) .
18.某中学团委会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调
查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图
1,图 2),请你根据图中
提供的信息解答下列问题:
(1) 在这次研究中,一共调查了多少名学生?
(2) “其它 ”在扇形图中所占的圆心角是多少度?
(3) 补全频数分布折线图.
(卷Ⅱ )
3
2018 年安徽省九年级中考数学模拟卷二及答案
(2016
-
π) 0-
2sin45
°+
|1-
2|
第 14 题图
16. 学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加
如图所示.已知每个菱形图案的边长
10 3 cm,其一个内角为 60°.
(1) 若 d= 26 ,则该纹饰要 231 个菱形图案,求纹饰的长度 L;
2
D . 3π cm
5.如图,数轴上表示 2、 5的对应点分别为 C、B ,点 C 是 AB 的中点, 则点 A 表示的数是· ··············(
)
A .- 5
B. 2- 5
C. 4- 5
D . 5- 2
第 4 题图
第 5 题图
第 6 题图
第 7 题图
6.将一副常规的三角尺按如图方式放置,则图中∠
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 5 分,满分 20 分)
11.因式分解:
2
a
-
b
2-
2b
-
1=
.
12.如图,在半径为 5,圆心角等于 45 °的扇形 AOB 内部作一个正方形 CDEF ,使点 C 在 OA 上,点 D、E 在
OB 上,点 F 在 AB 上,则阴影部分的面积为
(2) 当 d= 20 时,若保持 (1) 中纹饰长度不变,则需要多少个这样的菱形图案?
d cm ,
四、本大题共 2 小题,每小题 8 分,满分 16 分 17.在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为 A(-2, 1), B (- 1, 4), C(- 3, ,2). (1) 在 y 轴的左侧,以原点 O 为位似中心,将 △ ABC 放大 2 倍后得到 △ A1B1C1,
B. k> 0, b< 0
C. k< 0, b> 0
D. k< 0, b< 0
8.小红、小明在玩 “剪子、包袱、锤子 ”游戏,小红给自己一个规定,一直不出 “锤子 ”.设在一个回合中,小红、
小明在胜的概率分别是 P1、 P2,则下列结论正确的是· ····································· (
2018 年安徽省九年级中考数学模拟卷二及答案
2018 年安徽省九年级中考数学模拟卷二
(卷Ⅰ )
一、选择题(本大题共
本卷共计 3 大题,时间 45 分钟,满分 92 分 10 小题,每小题 4 分,满分 40 分)
1.设 a 是实数,则 |a|- a 的值········································· (
本卷共计 4 大题,时间 50 分钟,满分 58 分
A .可以是负数 以是负数
B .不可能是负数
C.必是正数
) D.可以是正数也可
2.下列运算正确的是 ( ) A . 2a× 3a= 6a
B . (x- 2)(x- 3)= x2- 6
C. (x- 2) 2= x2- 4
D . (ab3) 2= a2b6
3.一种细菌在放大 1000 倍的电子显微镜下看到其直径约为 1.8 毫米,那么用科学记数法表示它的直径约
(结果保留 π).
13.如图,在平行四边形 ABCD 中, AB= 6, AD = 9,∠ BAD 的平分线交 BC 于 E,交 DC 的延长线于 F ,
BG ⊥ AE 于 G, BG= 4 2,则 △ EFC 的周长为 ________ . 14.如图,抛物线 y=ax 2+bx+c( a≠0)的对称轴为直线 x=1,与 x 轴的一个交点坐标为 (﹣ 1, 0),其部分图
)
A . P1= P2
B . P1> P2
C. P1< P2
D . P1≤ P2
9.如图,已知菱形 ABCD 的对角线 AC 、BD 的长分别为 6cm 、 8cm , AE⊥ BC 于点 E,则 AE 的长
是··········· (
)
A . 5 3cm
B. 2 5cm
24 C. 5 cm
48 D . 5 cm
象如图所示,下列结论:
① 4ac< b2;
② 当 y> 0 时, x 的取值范围是- 1< x< 3;
③ 3a+c< 0;
④ 关于 x 的方程 ax2+(b- 1)x+c=0 有两个不相等的实数根;
其中结论正确的序号是
.
三、本大题共 2 小题,每小题 8 分,满分 16 分
1
15.计算:
(2
-
)
2-
为······· (
)
A
.
18×
-
10
7
米
B . 1.8× 10-7 米
C. 1.8 × 10-6 米
D . 1.8× 10 -5 米
4.如图是一个几何体的三视图,则这个几何体的侧面积是·
2
A . 12 π························· (
)
2
C. 6π cm