2017年中科院数学分析考研试题
中科大历年考研数学真题

则向量组 α1 + α2, α2 + α3, α3 + α4, α4 + α1 的秩等于
.
5. 在 3 维实向量空间 R3 中,设 α1 = (−1, 1, 1)T , α2 = (1, −1, 0)T , α3 = (1, 0, −1)T , β =
(−4, 3, 4)T , 则 beta在基 α1, α2, α3 下的坐标是
1.4 中科大 2012 年研究生入学考试试题线性代数与解析几何
–6–
1.4 中科大 2012 年研究生入学考试试题线性代数与解 析几何
一. 填空题 (每题 5 分)
1. 在 R3 中,直线 x = y = z 与平面 z = x − y 的夹角的余弦值等于
2. 在 R3 中, 方程 xy − yz + zx = 1 所表示的二次曲面类型为
−2
x2 + 2x3 + 2x4 + 6x5 = 5 5x1 + 4x2 + 3x3 + 3x4 − x5
=
0
1.2 中科大 2010 年研究生入学考试试题线性代数与解析几何
–3–
2.
设空间上有直线 l1
:
x−1 3
=
y 1
=
z 0
和 l2 √
: (x, y, z) = (3 + 2t, t, 3t − 3). 设平面 π 与
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对
角化。 8. A 是复方阵,定义 eA = ∑ +∞ Ak ,证明:det(eA) = etr(A)
中国科学技术大学2017年线性代数与解析几何考研试题及解答

2.
设直线
l:
1−x 3
=y+1=
3−z 2
在平面
x−y+z
=2
上的投影为
l1,
则
l1
的方程为
,l
绕 l1 旋转所得的曲面方程是 .
101
3. 矩阵 1 1 = −1 1
3 + a1b1 a1b2
,
行列式
det
a2b1
3 + a2b2
a1b3
a2b3
=
.
a3b1
a3b2 3 + a3b3
3 −2 1
2. (15分) 考虑二阶复方阵 M (C) 组成的复线性空间, 方阵 A = 7 2 以及线性变换 B : 37
M2(C) → M2(C) 满足 B(X) = AX − XA, 其中 X 为任意 2 阶方阵, 试证明: B 是可对角 化的线性变换.
3. (20分) 设 V 是由次数不超过 3 的实系数多项式组成的线性空间. 对于任意的 f (x), g(x) ∈
解得
a
=
3 5
.
2. 设 l 与平面的交点为 (1 − 3t, t − 1, 3 − 2t), 由交点在平面上得 1 − 3t − t + 1 + 3 − 2t = 2, 解得
t
=
1 2
,
于是交点为
−
1 2
,
−
1 2
,
2
. l1 的一个方向向量为 (−3, 1, −2) × (1, −1, 1) × (1, −1, 1) =
就马上得到结论. 至于上面例题的证明可以翻书查阅, 书上给了两种证明, 第二种证明与证 明惯性定理类似.
考研数学二真题及答案分析精选文档

证明:
若 ,求方程组 的通解。
【答案】(I)略;(II)通解为
【解析】
(I)证明:由 可得 ,即 线性相关,
因此, ,即A的特征值必有0。
又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0.
且由于A必可相似对角化,则可设其对角矩阵为
(15)(本题满分10分)求极限
【答案】
【解析】 ,令 ,则有
(16)(本题满分10分)设函数 具有2阶连续偏导数, ,求 ,
【答案】
【解析】
结论:
(17)(本题满分10分)求
【答案】
【解析】
(18)(本题满分10分)已知函数 由方程 确定,求 的极值
【答案】极大值为 ,极小值为
【解析】
两边求导得:【答案】 Nhomakorabea【解析】
(11) _______
【答案】1
【解析】
(12)设函数 具有一阶连续偏导数,且 , ,则
【答案】
【解析】 故
,
因此 ,即 ,再由 ,可得
【答案】
【解析】
(13)
【答案】 .
【解析】交换积分次序:
.
(14)设矩阵 的一个特征向量为 ,则
【答案】-1
【解析】设 ,由题设知 ,故
故 .
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
【解析】 在 处连续 选A.
(2)设二阶可导函数 满足 且 ,则()
【答案】B
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
2017年考研数学三真题与解析

2017年考研数学三真题与解析2017年考研数学三真题一、选择题 1—8小题.每小题4分,共32分. 1.若函数1cos 0(),0xx f x b x ->=⎪≤⎩在0x =处连续,则(A )12ab =(B )12ab =-(C )0ab =(D )2ab = 【详解】0001112lim ()lim lim 2x x x xx f x ax ax a+++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x xxyy ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂解方程组22320320zy xy y x zx x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B-=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D ) 3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1-(D )2- 【详解】ivn →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n 的二阶无穷小,级数收敛,从而选择(C ). 5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆(C )2TE αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个,从而,,2,2T T T TE E E E αααααααα-+-+的特征值分别为0,1,1,1L ;2,1,1,,1L ;1,1,1,,1-L ;3,1,1,,1L .显然只有TE αα-存在零特征值,所以不可逆,应该选(A ). 6.已知矩阵200021001A ⎛⎫⎪= ⎪⎪⎝⎭,210020001B ⎛⎫⎪= ⎪⎪⎝⎭,100020002C ⎛⎫⎪= ⎪⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似(C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况. 对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪⎪⎝⎭,秩等于 1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C . 对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪⎪⎝⎭,秩等于 2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-U()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-U显然,A B U 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)nX X Xn ≥L 为来自正态总体(,1)N μ的简单随机样本,若11nii X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n XX -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,ii X N X i nμμχ-⇒-=L 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)n ii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N n X N n X n μμμχ⇒-⇒-,所以(D )结论也是正确的; (4)对于选项(B):221111()~(0,2)~(0,1)()~(1)22n n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.322(sin )x x dx πππ-+-=⎰ .解:由对称性知332222(sin )22x x dx x dx ππππππ--=-=⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t yy +-=的通解为2xy C =;设122tt t yy +-=的特解为2ttyat =,代入方程,得12a =; 所以差分方程122tt t yy +-=的通解为12 2.2tty C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 . 【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e -=+,则总成本为()()QC Q QC Q Q Qe -==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy=++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()y yydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xyeC=+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫ ⎪= ⎪⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 . 【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b == 29292EX a b =++=,229()2DX EXE X =-=.三、解答题15.(本题满分10分) 求极限03lim t x x te dt x+→-⎰【详解】令x t u -=,则,t x u dt du =-=-,0tx u x te dt ue du--=⎰⎰33300002limlim limlim 332t x u u x x x x x x te dt e ue du ue du xe xxxx ++++---→→→→-====⎰⎰⎰16.(本题满分10分) 计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D 是第一象限中以曲线y x=与x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)11121411282x Dx y y dxdy dx dy x y x y d x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分)求21lim ln 1nn k k k n n→∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx nn n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分)已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x =-∈+,则 22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+L ,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明0n n n a x ∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++也就得到11(1)()()n n n n n aa a a +-+-=--,也就得到111,1,2,1n n n n aa n aa n +--=-=-+L1112110112101(1)(1)!nn n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+L也就得到111(1),1,2,(1)!n n n aa n n ++-=-=+L111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑L111lim12!3!!nnnn n n n a e n ρ→∞=≤+++≤=L ,所以收敛半径1R ≥(2)所以对于幂级数0nn n a x ∞=∑, 由和函数的性质,可得11()n n n S x na x ∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x-=-,由于0(0)1S a==,得1C =所以()1xe S x x-=-.20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+(1)证明:()2r A =; (2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪ ⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫⎪ ⎪=+ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分) 设二次型222123123121323(,,)2282f x x x xx ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122yy λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0iE A x λ-=得矩阵的属于特征值13λ=-的特征向量11131ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量21021ξ-⎛⎫⎪=⎪⎪⎭,3λ=的特征向量31261ξ⎛⎫⎪=⎪⎪⎭,所以()123326,,036326Q ξξξ⎛ == ⎝为所求正交矩阵.22.(本题满分11分) 设随机变量,X Y相互独立,且X的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,nX X X L 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)ii ZX i n μ=-=L ,利用12,,,nZ Z Z L 估计参数σ.(1)求iZ 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求iZ 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0ZF z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬⎪⎝⎭⎩⎭;所以iZ 的概率密度为222,0()()20,0z Z Z z f z F z z σπσ-⎧≥⎪'==⎨⎪<⎩. (2)数学期望2220()22z iEZ z f z dz ze dz σπσπ-+∞+∞===⎰⎰令11nii EZ Z Z n ===∑,解得σ的矩估计量122ni i Z Z ππσ===.(3)设12,,,nZ Z Z L 的观测值为12,,,nz z z L .当0,1,2,iz i n>=L 时似然函数为221121()(,)(2)ni i n nz i ni L f z σσσπσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22ni i n L n n z σπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为211n i i z n σ==∑。
中科大数学分析历年期末考试卷

:
(3)
2
1
大学生数学竞赛及考研:122307834
7.
15
a, b ax, −π < x < 0; bx, 0 ≤ x < π.
f (x) =
(1) (2)
f (x) f (x) (a)
Fourier Fourier
∞ ∑ (−1)n , 2 n + 1 n=0
(b)
∞ ∑ n=0
0 0
π 2 π 2
n=1 n = 1.
3.
x = sin t. ∫ 1 √ ∫ 2 2 x 1 − x dx = 2
−1
1
x
π 2
2
sin2 t cos2 t dt
1 = 2 4. ∫
0 +∞ √
∫
0
0
1 sin 2t dt = 4
2
1 (1 − cos 4t) dt = . 8 ∫ +
e dt − x
n+1
n→+∞ n
sin x dx x
n→+∞ 0
e x dx
x n
n→∞
lim
1 1 1 + + ··· + n+1 n+2 n+n
)
n→∞
lim ∫
n! n ( 5 ) 2. ∫ 1− x2 dx (x + y )dx + xdy = 0.
∞ ∑ (√ n=1
√
1
∫
x ln x dx
3.
ex xn ≤ exn , x ∈ [0, 1],
n→∞ 0
∫1 e 0 ≤ 0 ex xn dx ≤ n+1 . ∫ 1 lim ex xn dx = 0.
2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc

2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
中国科学院数学研究院数学分析试题及答案

中国科学院数学与系统科学研究院20XX 年硕士研究生招生初试试题参考解答数学分析1、求a,b 使下列函数在x=0处可导:2,1,ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=,得到b=1;又由(0),(0)0f a f +-==,得到a=0.即得。
2、 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 证明: 用反证法。
由0n a >知,1n ∞=∑n 1级数a ,111n ∞=+∑na 均为正项级数。
假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+n a ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a , 从而由正项级数的比较判别法知级数1n ∞=∑n1a 收敛,矛盾,从而得证。
3、 1(1).nx dx ≥-⎰m设m,n 0为整数,求积分x 的值解:1(1),nx dx -⎰m 设I(m,n)=x 则由分部积分法有11111n101I(m,n)=(1-x)(1)|(1)(1)0111m m m n n x x x d x n x dx m m m +++-=----+++⎰⎰(1,1)1nI m n m =+-+, 从而1(,)(1,1)(2,2)112n n n I m n I m n I m n m m m -=+-=+-+++11(,0)12n n I m n m m m n -==++++!1!!()!1(1)!!n m n m n m n m n m ==+++++,即得解。
4 、0().a aa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e 证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有 ()()()11a aat t t aa af t e f t dx dt dt e e -----=-=++⎰⎰⎰xf(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰, 得证。
2017年全国硕士研究生入学统一考试数学(二)真题及解析

【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
(3)设数列 收敛,则()
当 时, 当 时,
当 时, 当 时,
【答案】D
【解析】特值法:(A)取 ,有 ,A错;
取 ,排除B,C.所以选D.
(4)微分方程的特解可设为
(A) (B)
(C) (D)
【答案】C
【解析】特征方程为:
故特解为: 选C.
(5)设 具有一阶偏导数,且对任意的 ,都有 ,则
(A) (B) (C) (D)
【答案】D
【解析】 是关于 的单调递增函数,是关于 的单调递减函数,
所以有 ,故答案选D.
(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线 (单位: ),虚线表示乙的速度曲线 ,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为 (单位:s),则()
(1)
令 得
对(1)式两边关于x求导得 (2)
将 代入原题给的等式中,得 ,
将 代入(2)得
将 代入(2)得
故 为极大值点, ; 为极小值点,
(19)(本题满分10分)设函数 在区间 上具有2阶导数,且 ,证明:
方程 在区间 内至少存在一个实根;
方程 在区间 内至少存在两个不同实根。
【答案】
【解析】
2017年全国硕士研究生入学统一考试数学二试题
一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.
(1)若函数 在x=0连续,则
(A) (B) (C) (D)
(2)设二阶可到函数 满足 且 ,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院大学
2017年招收攻读硕士学位研究生入学统一考试试题科目名称:数学分析
考生须知:
1.本试卷满分为150分,全部考试时间总计180分钟;
2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
————————————————————————————————————————
1.(10分)计算极限lim x !1
x 32
(p 2+x 2p 1+x +p x ):2.(10分)已知a n +1(a n +1)=1;a 0=0,证明数列的极限存在,并且求出极限值.
3.(15分)f (x )三次连续可微,令u (x;y;z )=f (xyz ),求 (t )=@3u @x@y@z
的具体表达式,其中t =xyz .
4.(15分)求Z dx 1+x 4
:5.(15分)已知f (x )在[0;1]上二阶连续可微,并且j f (x )j Äa ,j f 00(x )j Äb ,证明f 0(x )Ä
2a +b 2
.6.(15分)已知f (x )有界且可微,假设lim x !1f 0(x )存在,求证lim x !1
f 0(x )=0.7.(15分)求二重积分“
D j x 2+y 2 1j dxdy ,其中D =f (x;y )j 0Äx Ä1;0Äy Ä1g .
8.(15分)已知a n =n X k =1
ln (k +1),证明1X n =11a n 发散.9.(15分)已知n 为整数,a 为常数,I n (a )=Z
10dx 1+nx a
.(1)试讨论a 对敛散性的影响;
(2)当a 在使积分收敛的情况下,求lim n !1
I n (a ).10.(15分)在[a;b ]上(0<a <b ),证明下面的不等式成立
Z
b a (x 2+1)e x 2dx e a 2 e b 2
:11.(10分)求f (x )=e x +e x +2cos x 的极值.
考试科目:数学分析整理人:Xiongge ,思念第1页共1页。