2018年中考数学真题分类汇编(第一期)专题15频数与频率试题(含解析)

合集下载

2018年全国各地中考数学真题汇编:统计与概率(中南西南)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(中南西南)(解析卷)

2018年全国各地中考数学真题汇编(中南西南)统计与概率参考答案与试题解析一.选择题(共10小题)1.(2018•广东)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.2.(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10解:众数为85,极差:85﹣75=10,故选:A.3.(2018•广州)甲袋中装有2个相同的小球,分别写有数字1和2:乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.B.C.D.解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:.故选:C.4.(2018•河南)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.5.(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.6.(2018•河南)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.7.(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.8.(2018•重庆)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工解:为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是:用企业人员名册,随机抽取三分之一的员工.故选:C.9.(2018•昆明)下列判断正确的是()A.甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则甲组学生的身高较整齐B.为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为4000C.在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.7D.有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件解:A、甲乙两组学生身高的平均数均为1.58,方差分别为S甲2=2.3,S乙2=1.8,则乙组学生的身高较整齐,故此选项错误;B、为了了解某县七年级4000名学生的期中数学成绩,从中抽取100名学生的数学成绩进行调查,这个问题中样本容量为100,故此选项错误;C、在“童心向党,阳光下成长”合唱比赛中,30个参赛队的决赛成绩如下表:则这30个参赛队决赛成绩的中位数是9.6,故此选项错误;D、有13名同学出生于2003年,那么在这个问题中“至少有两名同学出生在同一个月”属于必然事件,正确.故选:D.10.(2018•云南)2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数字科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个选项,错误的是()A.抽取的学生人数为50人B.“非常了解”的人数占抽取的学生人数的12% C.a=72°D.全校“不了解”的人数估计有428人解:抽取的总人数为6+10+16+18=50(人),故A正确,“非常了解”的人数占抽取的学生人数的=12%,故B正确,α=360°×=72°,故正确,全校“不了解”的人数估计有1300×=468(人),故D错误,故选:D.二.填空题(共2小题)11.(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.12.(2018•重庆)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.解:将这5天的人数从小到大排列为.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.三.解答题(共12小题)13.(2018•广州)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是16,众数是17;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)=14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.14.(2018•广东)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.15.(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为100人,a=0.25,b=15.(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.16.(2018•河南)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).17.(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.18.(2018•云南)某同学参加了学校举行的“五好小公民•红旗飘飘”演讲比赛,7名评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.解:(1)从小到大排列此数据为:5,6,7,7,8,8,8,数据8出现了三次最多为众数,7处在第4位为中位数;(2)该同学所得分数的平均数为(5+6+7×2+8×3)÷7=7.19.(2018•重庆)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有来自七年级,有来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.解:(1)调查的总人数为12÷30%=40(人),所以C项目的人数为40﹣12﹣14﹣4=10(人)条形统计图为:(2)画树状图为:(用A、B、C分别表示七年级、八年级和九年级的学生)共有12种等可能的结果数,其中所选出的两人中既有七年级又有九年级同学的结果数为4,所以所选出的两人中既有七年级又有九年级同学的概率==.20.(2018•云南)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.(2)求取出的两张卡片上的数字之和为偶数的概率P.解:(1)画树状图得:由树状图知共有6种等可能的结果:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)∵共有6种等可能结果,其中数字之和为偶数的有2种结果,∴取出的两张卡片上的数字之和为偶数的概率P==..(2018•昆明)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为108度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200﹣56﹣44﹣40=60(人),补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,故答案为:108;(3)1600×=928(名),答:使用A和B两种支付方式的购买者共有928名.22.(2018•曲靖)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.解:(1)样本容量为6÷12%=50;(2)14岁的人数为50×28%=14、16岁的人数为50﹣(6+10+14+18)=2,则这组数据的平均数为=14(岁),中位数为=14(岁),众数为15岁;(3)估计该校年龄在15岁及以上的学生人数为1800×=720人.23.(2018•昆明)为了促进“足球进校园”活动的开展,某市举行了中学生足球比赛活动.现从A,B,C三支获胜足球队中,随机抽取两支球队分别到两所边远地区学校进行交流.(1)请用列表或画树状图的方法(只选择其中一种),表示出抽到的两支球队的所有可能结果;(2)求出抽到B队和C队参加交流活动的概率.解:(1)列表如下:由表可知共有6种等可能的结果;(2)由表知共有6种等可能结果,其中抽到B队和C队参加交流活动的有2种结果,所以抽到B队和C队参加交流活动的概率为=.24.(2018•曲靖)数学课上,李老师准备了四张背面看上去无差别的卡片A,B,C,D,每张卡片的正面标有字母a,b,c表示三条线段(如图),把四张卡片背面朝上放在桌面上,李老师从这四张卡片中随机抽取一张卡片后不放回,再随机抽取一张.(1)用树状图或者列表表示所有可能出现的结果;(2)求抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率.解:(1)由题意可得,共有12种等可能的结果;(2)∵共有12种等可能结果,其中抽取的两张卡片中每张卡片上的三条线段都能组成三角形有2种结果,∴抽取的两张卡片中每张卡片上的三条线段都能组成三角形的概率为=.。

初中数学频数与频率典型题解析中考数学原来这么简单

初中数学频数与频率典型题解析中考数学原来这么简单

初中数学频数与频率典型题解析中考数学原来这么简单频数与频率典型题解析频数、频率是初中数学中的两个重要概念,它们都能反映每个对象出现的频繁程度,但也存在区别:在同⼀个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是实验的总次数;频率反映的是对象出现频繁程度的相对数据,所有频率之和是1.1.有关频数与频率概念的辨析题.例1判断以下说法是否正确,并说明理由:⼩明和⼩芳分别在各⾃班级⾥竞选班长.⼩明得了25票,⼩芳得了23票.可以断⾔,⼩明在班内受欢迎的程度⽐⼩芳⾼.解不正确.虽然⼩明⽐⼩芳的得票多,但受欢迎程度不依赖于得票出现的频数,⽽是依赖于得票出现的频率,由于各班总⼈数没有给出,因此,⽆法计算出频率.说明频数表⽰的是某⼀对象出现的次数,⽽频率则是某⼀对象的频数与总次数的⽐值.从本例可知,频率能更好地反映出某⼀对象出现的频繁程度.2.有关频数与频率的简单计算题.3.频数与频率在实际问题中的应⽤.例3 学期结束前,班主任想知道同学们对班长⼀个学期以来的⼯作表现的满意程度,特向全班40名学⽣(除班长外)作问卷调查,其结果如下:频数及其分布应⽤举例频数、频率、频数分布表与频数分布图有着⼴泛地应⽤,下⾯举例做⼀下简单的说明.例1 李明和张健站在罚球处进⾏定点投篮⽐赛其结果如下表所⽰:点击频数分布中考题⼀、图上获取信息由于落在不同⼩组中的数据个数为该组的频数,频数与数据总数的⽐为频率,频率能反映各组频数的⼤⼩在总数中所占的份量.所以频数分布直⽅图能直观清楚地反映数据在各个范围内的分布情况,从⽽更全⾯、准确、细致地反映事物的属性.⼆、根据信息画图例2 .育才中学为了了解本校学⽣的⾝体发育情况,对同年龄的40名⼥⽣的⾝⾼进⾏了测量,结果如下(数据均为整数,单位:cm):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据整理后,列出频数分布表,画出频数直⽅图,并根据所画的直⽅图说明:⼤部分同学处于哪个⾝⾼段?⾝⾼的整体分布情况如何?分析:由于有40个数据,最⼩的数据为146cm,最⼤数据为170cm,其差为24cm,可将数据分成5组,整理数据列出分布表,画出频数直⽅图,可从总体上把握数据的分布情况。

2018全国各地中考数学分类解析第28章 频数分布

2018全国各地中考数学分类解析第28章 频数分布

第二十八章频数分布14.1频数与频率<2018浙江省温州市,14,5分)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩<满分为120分,成绩为整数),绘制成右图所示的统计图。

由图可知,成绩不低于90分的共有_____人。

EEMJuZjosi【解读】由频数分布直方图可知成绩不低于90分的共有24+3=27<人)【答案】27【点评】本题是统计与概率的频数分布直方图问题,解题时要能从所给的统计图、表中获取有用的信息.难度较小.EEMJuZjosi<2018山东莱芜, 19,8分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数:EEMJuZjosi<1)确定调查方式时,甲同学说:“我到六年级<一)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”。

请你指出哪位同学的调查方式最合理;EEMJuZjosi<2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图。

请你根据以上图表提供的信息解答下列问题: ① a= , b= ; ②在扇形统计图中器乐类所对应扇形的圆心角的度数是 ;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.【解读】(1> 丙同学的抽样调查具有随机性、代表性和普遍性,甲乙同学的调查方式不具有随机性、代表性和普遍性,所以丙同学的调查方式最合理;EEMJuZjosi (2> ①a=10020.020=,b=15.010015= ②器乐类所对应扇形的圆心角的度数=()15.020.025.01360---⨯=144° ③估计参加武术类校本课程的人数:56014025.0=⨯ 【答案】(1> 丙同学的调查方式最合理;(2> ①a= 100, b= 0.15②144°; ③人14025.0560=⨯【点评】本题考察了数据的统计调查,以及用数据的描述,统计图表的互相转换,另外考察了统计中的重要思想即用样本估计总体.解决此类问题时,应仔细观察图表,利用各聘数和等于数据总数,各频率之和等于1.EEMJuZjosi14.2 频数分布直方图<2018贵州铜仁,21,10分)某市对参加2018年中考的50000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:EEMJuZjosi<1)在频数分布表中,a的值为__________,b的值为__________,并将频数分布直方图补充完整;EEMJuZjosi<2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?<3)若视力在4.9以上<含4.9)均属正常,则视力正常的人数占被统计人数的百分比是________,并根据上述信息估计全市初中毕业生中视力正常的学生有多少人?EEMJuZjosi<1)首先利用表格数据求出样本的总人数,之后就可以求出a的值,再根据频率之和等于1,可求出b,最好再将频数分布直方图补充完整;EEMJuZjosi<2)根据中位数的定义可以求出此次抽样调查所得数据的中位数的视力范围,继而可得到甲同学的视力情况在什么范围内EEMJuZjosi<3)根据条件先求出视力在4.9以上<含4.9)的人数,除以总人数计算出视力正常的人数占被统计人数的百分比,然后根据样本估计总体的思想可求出全市初中毕业生中视力正常的学生有多少人EEMJuZjosi【解读】<1)20÷0.1=200a=200-20-40-70-10=60b=10÷200=0.05故填 60 0.05<2)由题意可知:中位数在4.6≤x<4.9所以甲同学的视力情况应4.6≤x<4.9<3)视力正常的人数占被统计人数的百分比是200)1060(+×100%=35% 估计全市初中毕业生中视力正常的学生有17500%3550000=⨯(人> 【点评】此题考查了读频数分布直方图的能力及利用统计图获取信息的能力,同时也考查了中位数、众数的求法,是一道综合性试题。

2018年中考数学专题复习卷:数据的整理与分析(含解析)

2018年中考数学专题复习卷:数据的整理与分析(含解析)

数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。

3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。

A.4B.5C.6D.7【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。

2018年中考数学真题分类汇编(第一期)专题3整式与因式分解试题(含解析)

2018年中考数学真题分类汇编(第一期)专题3整式与因式分解试题(含解析)

整式与因式分解一、选择题1.(2018•山东枣庄•3分)下列计算,正确的是( )A .a 5+a 5=a 10B .a 3÷a ﹣1=a 2C .a•2a 2=2a 4D .(2018•山东枣庄•﹣a 2)3=﹣a 6【分析】根据合并同类项法则、同底数幂的除法法则、幂的乘方法则、单项式乘单项式的运算法则计算,判断即可.【解答】解:a 5+a 5=2a 5,A 错误;a 3÷a ﹣1=a3﹣(﹣1)=a 4,B 错误; a•2a 2=2a 3,C 错误;(﹣a 2)3=﹣a 6,D 正确,故选:D .【点评】本题考查的是合并同类项、同底数幂的除法、幂的乘方、单项式乘单项式,掌握它们的运算法则是解题的关键.2. (2018•山西•3分)下 列 运 算 正 确 的 是 ( ) A. (- a 3 )2 = -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b aa -=- 【 答案】 D【考点】 整式运算【解析】 A . (- a 3 )2 = a 6 B 2a2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a3 = 2a 53. (2018•四川成都•3分)下列计算正确的是( )A.B.C.D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A 、x 2+x 2=2x 2 , 因此A 不符合题意;B 、 (x-y )2=x 2-2xy+y 2 , 因此B 不符合题意;C 、 (x 2y )3=x 6y 3 , 因此C 不符合题意;D 、,因此D 符合题意; 故答案为:D【分析】根据合并同类项的法则,可对A 作出判断;根据完全平方公式,可对B 作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C 、D 作出判断;即可得出答案。

4.(2018•山东淄博•4分)若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A.3 B.6 C.8 D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项的定义可得m、n的值,代入求解即可.【解答】解:∵单项式a m﹣1b2与的和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.5. (2018•山东枣庄•3分)如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A.3a+2b B.3a+4b C.6a+2b D.6a+4b【分析】观察图形可知,这块矩形较长的边长=边长为3a的正方形的边长﹣边长2b的小正方形的边长+边长2b的小正方形的边长的2倍,依此计算即可求解.【解答】解:依题意有3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.故这块矩形较长的边长为3a+2b.故选:A.【点评】考查了列代数式,关键是得到这块矩形较长的边长与两个正方形边长的关系.6.(2018•四川凉州•3分)下列运算正确的是()A.a3•a4=a12B.a6÷a3=a2C.2a﹣3a=﹣a D.(2018•四川凉州•a﹣2)2=a2﹣4【分析】根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.【解答】解:A、应为a3•a4=a7,故本选项错误;B、应为a6÷a3=a3,故本选项错误;C、2a﹣3a=﹣a,正确;D、应为(a﹣2)2=a2﹣4a+4,故本选项错误.故选:C.【点评】本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.7. (2018•山东滨州•3分)下列运算:①a2•a3=a6,②(a3)2=a6,③a5÷a5=a,④(ab)3=a3b3,其中结果正确的个数为()A.1 B.2 C.3 D.4【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【解答】解:①a2•a3=a5,故原题计算错误;②(a3)2=a6,故原题计算正确;③a5÷a5=1,故原题计算错误;④(ab)3=a3b3,故原题计算正确;正确的共2个,故选:B.【点评】此题主要考查了同底数幂的除法、乘法、幂的乘方、积的乘方,关键是熟练掌握各计算法则.8. (2018•江苏盐城•3分)下列运算正确的是()A. B. C. D.8.【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,合并同类项法则及应用【解析】【解答】解:A、,故A不符合题意;B、,故B不符合题意;C.,故C符合题意;D.,故D不符合题意;故答案为:C【分析】根据合并同类项法则、同底数幂的乘除法则即可。

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编:统计与概率(浙江专版)(解析卷)

2018年全国各地中考数学真题汇编(浙江专版)统计与概率参考答案与试题解析一.选择题(共12小题)1.(2018•杭州)测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不易受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选:C.2.(2018•宁波)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.3.(2018•杭州)一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1﹣6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.解:根据题意,得到的两位数有31、32、33、34、35、36这6种等可能结果,其中两位数是3的倍数的有33、36这2种结果,∴得到的两位数是3的倍数的概率等于=,故选:B.4.(2018•温州)某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()A.9分B.8分C.7分D.6分解:将数据重新排列为6、7、7、7、8、9、9,所以各代表队得分的中位数是7分,故选:C.5.(2018•宁波)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.3解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.6.(2018•温州)在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.解:∵袋子中共有10个小球,其中白球有2个,∴摸出一个球是白球的概率是=,故选:D.7.(2018•嘉兴)2018年1~4月我国新能源乘用车的月销量情况如图所示,则下列说法错误的是()A.1月份销量为2.2万辆B.从2月到3月的月销量增长最快C.4月份销量比3月份增加了1万辆D.1~4月新能源乘用车销量逐月增加解:由图可得,1月份销量为2.2万辆,故选项A正确,从2月到3月的月销量增长最快,故选项B正确,4月份销量比3月份增加了4.3﹣3.3=1万辆,故选项C正确,1~2月新能源乘用车销量减少,2~4月新能源乘用车销量逐月增加,故选项D错误,故选:D.8.(2018•湖州)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.9.(2018•绍兴)抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是()A.B.C.D.解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.10.(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.11.(2018•衢州)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A.0 B.C.D.1解:∵某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,∴老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是:=.故选:B.12.(2018•湖州)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:则这一天16名工人生产件数的众数是()A.5件B.11件C.12件D.15件解:由表可知,11件的次数最多,所以众数为11件,故选:B.二.填空题(共3小题)13.(2018•嘉兴)小明和小红玩抛硬币游戏,连续抛两次,小明说:“如果两次都是正面,那么你赢;如果两次是一正一反,则我嬴.”小红赢的概率是,据此判断该游戏不公平(填“公平”或“不公平”).解:所有可能出现的结果如下表所示:因为抛两枚硬币,所有机会均等的结果为:正正,正反,反正,反反,所以出现两个正面的概率为,一正一反的概率为=,因为二者概率不等,所以游戏不公平.故答案为:,不公平.14.(2018•衢州)数据5,5,4,2,3,7,6的中位数是 5 .解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.15.(2018•金华)如图是我国2013~2019年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.三.解答题(共8小题)16.(2018•温州)现有甲、乙、丙等多家食品公司在某市开设蛋糕店,该市蛋糕店数量的扇形统计图如图所示,其中统计图中没有标注相应公司数量的百分比.已知乙公司经营150家蛋糕店,请根据该统计图回答下列问题:(1)求甲公司经营的蛋糕店数量和该市蛋糕店的总数.(2)甲公司为了扩大市场占有率,决定在该市增设蛋糕店,在其余蛋糕店数量不变的情况下,若要使甲公司经营的蛋糕店数量达到全市的20%,求甲公司需要增设的蛋糕店数量.解:(1)该市蛋糕店的总数为150÷=600家,甲公司经营的蛋糕店数量为600×=100家;(2)设甲公司增设x家蛋糕店,由题意得:20%×(600+x)=100+x,解得:x=25,答:甲公司需要增设25家蛋糕店.17.(2018•杭州)某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表(1)求a的值(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?解:(1)由频数分布直方图可知4.5~5.0的频数a=4;(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5×4+5.5×3+6=51.5(kg),∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×0.8=41.2元,∴该年级这周收集的可回收垃圾被回收后所得金额不能达到50元.18.(2018•绍兴)为了解某地区机动车拥有量对道路通行的影响,学校九年级社会实践小组对2010年~2019年机动车拥有量、车辆经过人民路路口和学校门口的堵车次数进行调查统计,并绘制成下列统计图:根据统计图,回答下列问题:(1)写出2019年机动车的拥有量,分别计算2010年~2019年在人民路路口和学校门口堵车次数的平均数.(2)根据统计数据,结合生活实际,对机动车拥有量与人民路路口和学校门口堵车次数,说说你的看法.解:(1)由图可得,2019年机动车的拥有量为3.40万辆,==120(次),==100(次)即;2010年~2019年在人民路路口和学校门口堵车次数的平均数分别是120次、100次;(2)随着人民生活水平的提高,居民的汽车拥有量明显增加,同时随着汽车数量的增加,也给交通带来了压力,堵车次数明显增加,学校路口学生通过次数较多,政府和交通部分加强重视,进行治理,堵车次数明显好转,人民路口堵车次数不断增加,引起政府重视,加大治理,交通有所好转.19.(2018•宁波)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.20.(2018•嘉兴)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为176mm~185mm的产品为合格),随机各抽取了20个样品进行检测,过程如下:收集数据(单位:mm)甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:分析数据:应用数据:(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息,请判断哪个车间生产的新产品更好,并说明理由.解:(1)甲车间样品的合格率为:×100%=55%;(2)∵乙车间样品的合格产品数为:20﹣(1+2+2)=15(个),∴乙车间样品的合格率为:×100%=75%,∴乙车间的合格产品数为:1000×75%=750(个);(3)①乙车间合格率比甲车间高,所以乙车间生产的新产品更好;②甲、乙平均数相等,且均在合格范围内,而乙的方差小于甲的方差,说明乙比较稳定,所以乙车间生产的新产品更好..(2018•湖州)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.22.(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.23.(2018•衢州)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查.结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?解:(1)被随机抽取的学生共有14÷28%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,如图所示:(3)参与了4项或5项活动的学生共有×2000=720(人).淡若清风。

2018年中考数学试题分项版解析汇编(第01期)专题5.4投影与视图(含解析)

2018年中考数学试题分项版解析汇编(第01期)专题5.4投影与视图(含解析)

专题5.4投影与视图、单选题1 •如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是(【答案】A【解析】分析:根据从上面看得到的團形是値视圉,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.2 .如图是由5个大小相同的小正方体组成的几何体,则它的左视图是(【来源】江苏省盐城市 2018年中考数学试题 【答案】B【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.A.L Z O B .EhC. D.B.【来源】江苏省连云港市D.详解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:故选:B.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.图中立体图形的主视图是【解析】【分析】根据主视團是从物体正面看得到的團形艮冋得【详解】观察可知从正面看可得到三列小正方形,从左至右每一列小正方形的数目分别为K 2 观祭选项可知只有占选项符合, 故选B【点睛】本题考查了简单几何体的三视图,明确主视图是从几何体正面看得到的是解题的关键主视方向【答案】B【解析】分析:根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即 详解:A 、是其俯视图,故不符合题意;C. D.4 .移动台阶如图所示,它的主视图是(D.2018年中考数学试卷【答案】BC.【来源】浙江省温州市B是其主视图,故符合题意; C是右视图,故不符合题意;D是其左视图,故不符合题意故答案为:B.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图5 •如图所示的正六棱柱的主视图是()【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:根据主视阁是从正面看到的图象判定则可.详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同-故选A・点睛:本题考查了三视图的知【来源】四川省成都市2018年中考数学试题【答案】A【解析】分析:根据主视图是从正面看到的图象判定则可.详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同. 故选A.点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.如图所示的几何体的左视图是()【来源】山东省潍坊市 2018年中考数学试题 【答案】D【解析】分析:找到从左面看所得到的画形即可」注意所有的看到的棱都应表现在左视图中* 详解:从左面看可得矩形中间有一条横看的虚线.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8 •下图是一个由5个相同的正方体组成的立体图形,它的主视图是()【来源】天津市 2018年中考数学试题 【答案】A【解析】分析:画出从正面看到的图形即可得到它的主视图. 详解:这个几何体的主视图为:A. (A )B.(B )C. (C )D. (D )C.D. Xim 方啣故选:A.点睛:本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画 它的三视图.9 .一个几何体的三视图如图所示,该几何体是(【来源】浙江省金华市 2018年中考数学试题 【答案】A【解折】分析;根三视團的形状可判断几何体的形状. 详解:观乗三视團可知,该几何体罡直三棱柱・ 故选儿点睛:本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键. 10. 一个立体图形的三视图如图所示,则该立体图形是()□O馆视图主视图左视图A.圆柱B.圆锥 C. 长方体 D. 球【来源】四川省宜宾市 2018年中考数学试题 【答案】A【解析】分析:综合该物体的三种视图,分析得出该立体图形是圆柱体. 详解:A 、圆柱的三视图分别是长方形,长方形,圆,正确;B 、 圆锥体的三视图分别是等腰三角形,等腰三角形,圆及一点,错误;C 、 长方体的三视图都是矩形,错误;D 、 球的三视图都是圆形,错误;左视图A.直三棱柱B. 长方体C. 圆锥D.立方体故选A.点睛:本题由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力.B.11.如图所示的几何体的左视图为【来源】江西省2018年中等学校招生考试数学试题【答案】D【解析】【分析】根据左视團是从几何体左面看得到的團形,认真观祭实物,可得这个几何体的左视團为长方形,据此观察选项即可得.【详解】观祭实物,可知这个几何体的左观图为长方形,只有D选项符合題意,故选D【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键注意错误的选项B C.12.下图所示立体图形的俯视图是()【来源】湖南省娄底市2018年中考数学试题【答案】B【解折】【分析】主视團、左视團、俯视厦罡分别从物体正面、左面和上面看,所得到的團形/根揺俯视團 是从物体上面看得到的视團即可•【详解】从物体上面看可看到有两列小正方形,左边的一列有 1个,右边一列有两个,得到的图形如图所示:【点睛】本题考查了几何体的三视图,明确每个视图是从几何体的哪一面看得到的是解题的关键【来源】2018年浙江省舟山市中考数学试题【答案】C【解析】【分析】依次观察四个选项, A 中圆锥从正上看,是其在地面投影; B 中,长方体从上面看,看到 的是上表面;C 中,三棱柱从正上看,看到的是上表面; D 中四棱锥从正上看,是其在地面投影;据此得出 俯视图并进行判断【解答】A 圆锥俯视图是带圆心的圆,故本选项错误;B 、 长方体的俯视图均为矩形,故本选项错误;C 、 三棱柱的俯视图是三角形,故本选项正确;D 、 四棱锥的俯视图是四边形,故本选项错误;故选C. 【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;14•有6个相同的立方体搭成的几何体如图所示,则它的主视图是 ()13.下列几何体中,俯视图 为三角形的是(C. ) 宝视办曲【解析】分析:根据从正面看得到的團形是主视團P可得答案.详解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:D.点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.15. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()AN毬即A.r F r)T【来源】安徽省2018年中考数学试题【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得•【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【名师点睛】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键•16.如图是下列哪个几何体的主视图与俯视图()主视圈俯视團A. B. C. D.【来源】山东省泰安市2018年中考数学试题【答案】C【解析】分析:直接利用主视图次及俯视图的观察角度结合结合几何体的形状得出答案.详解:由已知主视图和俯视團可得到该几何体是圆柱体的一半』只有选项匚符合题意* 故选C.点睛:本题主要考查了由三视图判断几何体,正确掌握常见几何体的形状是解题的关键.17•由五个大小相同的正方体组成的几何体如图所示,那么它的主视图是(出C. D.产【来源】浙江省衢州市2018年中考数学试卷【答案】C【解析】分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从正面看得到3列正方形的个数依次为2, 1 , 1 •故选C.点睛:本题考查了三视图的知识,掌握主视图是从几何体正面看得到的平面图形是解决本题的关键.二、填空题18 .如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为..【来源】湖北省孝感市2018年中考数学试题【答案】I -【解折】分析:宙主视圉和左视團确走是柱体」锥体还是球体,再由俯视團确定具体形状」确定圆锥的母线长和底面半径,从而确定苴表面积.详解:由王视图和左视團为三角形判断出是锥体,由俯视團杲圆形可判断出这个几何体应该是圆锥:根据三视團知:该圆锥的母线长为6cm,底面半径为2cm,故表面积-nT;-^r;=2rx2Kg-^x2:-l^ (cm:)*故答案为:1和・点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.。

【八年级数学试题】2018八年级数学上第15章数据的收集与表示测试题(有答案)

【八年级数学试题】2018八年级数学上第15章数据的收集与表示测试题(有答案)

2018八年级数学上第15章数据的收集与表示测试题(有答
案)
第15 数据的收集与表示检测题
【本检测题满分100分,时间90分钟】
一、选择题(每小题3分,共30分)
1(2018 福建漳州中考)我市今年中考数学学科开考时间是6月22日15时,数串“201806221500”中“0”出现的频数是2下面是四名同学对他们学习小组将要共同进行的一次统计活动分别设计的活动程序,其中正确的是()
A B c D
3某电脑厂家为了安排台式电脑和手提电脑的生产比例,进行了一次市场调查,调查员在调查表中设计了下面几个问题,你认为哪个提问不合理()
A.你明年是否准备购买电脑?(1)是;(2)否
B.如果你明年购买电脑,打算买什么类型的?(1)台式;(2)手提
c.你喜欢哪一类型电脑?(1)台式;(2)手提
D.你认为台式电脑是否应该被淘汰?(1)是;(2)否
4如图是七年级(1)班参加外兴趣小组人数的扇形统计图,
则表示参加唱歌兴趣小组人数的扇形的圆心角度数是()
A36° B72°
c108° D180° 第4题图
5(2018 浙江丽水中考)王老师对本班40名学生的血型作了统计,列出如下的统计表,则
本班A型血的人数是()
组别A型B型AB型型
频率0403501015
A16人 B14人 c4人 D6人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频数与频率 一、填空题 1. (2018·湖南省常德·3分)某校对初一全体学生进行了一次视力普查,得到如下统计表,则视力在4.9≤x<5.5这个范围的频率为 0.35 . 视力x 频数 4.0≤x<4.3 20 4.3≤x<4.6 40 4.6≤x<4.9 70 4.9≤x≤5.2 60 5.2≤x<5.5 10 【分析】直接利用频数÷总数=频率进而得出答案. 【解答】解:视力在4.9≤x<5.5这个范围的频数为:60+10=70,

则视力在4.9≤x<5.5这个范围的频率为:=0.35. 故答案为:0.35. 【点评】此题主要考查了频率求法,正确把握频率的定义是解题关键.

2. (2018•北京•2分) 从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下: 公交车用时 公交车用时的频数 线路 3035t≤≤ 3540t≤ 4045t≤ 4550t≤ 合计

A 59 151 166 124 500 B 50 50 122 278 500 C 45 265 167 23 500 早高峰期间,乘坐_________(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大. 【答案】C 【解析】样本容量相同,C线路上的公交车用时超过45分钟的频数最小,所以其频率也最小,故选C. 【考点】用频率估计概率

3. (2018•湖南省永州市•4分)在一个不透明的盒子中装有n个球,它们除了颜色之外其 它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是 100 . 【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.

【解答】解:由题意可得,=0.03, 解得,n=100. 故估计n大约是100. 故答案为:100. 【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.

二.解答题 1.(2018•湖南省永州市•8分)永州植物园“清风园”共设11个主题展区.为推进校园文化建设,某校九年级(1)班组织部分学生到“清风园”参观后,开展“我最喜欢的主题展区”投票调查.要求学生从“和文化”、“孝文化”、“德文化”、“理学文化”、“瑶文化”五个展区中选择一项,根据调查结果绘制出了两幅不完整的条形统计图和扇形统计图.结合图中信息,回答下列问题.

(1)参观的学生总人数为 40 人; (2)在扇形统计图中最喜欢“瑶文化”的学生占参观总学生数的百分比为 15% ; (3)补全条形统计图; (4)从最喜欢“德文化”的学生中随机选两人参加知识抢答赛,最喜欢“德文化”的学生

甲被选中的概率为 .

【分析】(1)依据最喜欢“和文化”的学生数以及百分比,即可得到参观的学生总人数; (2)依据最喜欢“瑶文化”的学生数,即可得到其占参观总学生数的百分比; (3)依据“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,即可补全条形统计图; (4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图可得最喜欢“德文化”的学生甲被选中的概率. 【解答】解:(1)参观的学生总人数为12÷30%=40(人);

(2)喜欢“瑶文化”的学生占参观总学生数的百分比为×100%=15%; (3)“德文化”的学生数为40﹣12﹣8﹣10﹣6=4,条形统计图如下:

(4)设最喜欢“德文化”的4个学生分别为甲乙丙丁,画树状图得: ∵共有12种等可能的结果,甲同学被选中的有6种情况, ∴甲同学被选中的概率是:=.

故答案为:40;15%;. 【点评】此题考查了条形统计图和扇形统计图,树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 2. (2018·新疆生产建设兵团·10分)杨老师为了了解所教班级学生课后复习的具体情况,对本班部分学生进行了一个月的跟踪调查,然后将调查结果分成四类:A:优秀;B:良好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图. 请根据统计图解答下列问题: (1)本次调查中,杨老师一共调查了 20 名学生,其中C类女生有 2 名,D类男生有 1 名; (2)补全上面的条形统计图和扇形统计图; (3)在此次调查中,小平属于D类.为了进步,她请杨老师从被调查的A类学生中随机选取一位同学,和她进行“一帮一”的课后互助学习.请求出所选的同学恰好是一位女同学的概率. 【分析】(1)由A类别人数及其所占百分比可得总人数,用总人数乘以C类别百分比,再减去其中男生人数可得女生人数,同理求得D类别男生人数; (2)根据(1)中所求结果可补全图形; (3)根据概率公式计算可得. 【解答】解:(1)杨老师调查的学生总人数为(1+2)÷15%=20人, C类女生人数为20×25%﹣3=2人,D类男生人数为20×(1﹣15%﹣20%﹣25%)﹣1=1人, 故答案为:20、2、1;

(2)补全图形如下: (3)因为A类的3人中,女生有2人, 所以所选的同学恰好是一位女同学的概率为. 【点评】此题考查了概率公式的应用以及条形统计图与扇形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.

3. (2018·四川宜宾·8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.

请根据以上信息,完成下列问题: (1)该班共有学生人; (2)请将条形统计图补充完整; (3)该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率. 【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图. 【分析】(1)根据化学学科人数及其所占百分比可得总人数; (2)根据各学科人数之和等于总人数求得历史的人数即可; (3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得. 【解答】解:(1)该班学生总数为10÷20%=50人;

(2)历史学科的人数为50﹣(5+10+15+6+6)=8人, 补全图形如下: (3)列表如下: 化学 生物 政治 历史 地理 化学 生物、化学 政治、化学 历史、化学 地理、化学 生物 化学、生物 政治、生物 历史、生物 地理、生物 政治 化学、政治 生物、政治 历史、政治 地理、政治 历史 化学、历史 生物、历史 政治、历史 地理、历史 地理 化学、地理 生物、地理 政治、地理 历史、地理 由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,

所以该同学恰好选中化学、历史两科的概率为=. 【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.

4. (2018·天津·8分) 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

(Ⅰ)图①中的值为 ; (Ⅱ)求统计的这组数据的平均数、众数和中位数; (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只? 【答案】(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)280只. 【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值; (Ⅱ)根据众数、中位数、加权平均数的定义计算即可; (Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解. 解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28; (Ⅱ)观察条形统计图,

∵, ∴这组数据的平均数是1.52. ∵在这组数据中,1.8出现了16次,出现的次数最多, ∴这组数据的众数为1.8.

∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有, ∴这组数据的中位数为1.5. (Ⅲ)∵在所抽取的样本中,质量为的数量占. ∴由样本数据,估计这2500只鸡中,质量为的数量约占. 有. ∴这2500只鸡中,质量为的约有200只。 点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.

5 (2018·四川自贡·8分)某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

相关文档
最新文档