小学六年级奥数专题大全
小学六年级奥数题(六篇)

小学六年级奥数题(六篇)1、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3、有一只水桶装满了8千克水,如果把这桶水平均分装在两只水桶内,两只水桶分别可装5千克与3千克。
最少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的'足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?【篇二】小学六年级奥数题1、求下列时刻的时针与分针所形成的角的度数。
(1)9点整(2)2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
【篇三】小学六年级奥数题1、小明和小英各自在公路上往返于甲、乙两地。
设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?2、一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。
小学六年级奥数题100道与答案解析

20.根据下表中的排列规律,在空格里填上适当的数。
【思路导航】经仔细观察、分析表格中的数可以发现:12+6=18,8+7=15,即每一横行中间的数等于两边的两个数的和。依此规律,空格中应填的数为:4+8=12。
21.找规律,在空格里填上适当的数。
22.根据前面图形中的数之间的关系,想一想第三个图形的括号里应填什么数?
32.
(1)一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量。1只西瓜的重量等于几个橘子的重量?
所以C是12221或11011。
12.先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19
【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?
解答:9+3+2=14(种)
6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?
解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)
7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?
12345679×54=12345679×9×6=66666666612345679×81=12345679×9×9=999999999.
练习3:找规律,写得数。
(1)1+0×9=2+1×9=3+12×9=4+123×9=9+12345678×9=
小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。
【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。
这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。
(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。
【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。
甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。
【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。
如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。
我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。
(完整)小学六年级奥数题100道带答案有解题过程

(完整)小学六年级奥数题100道带答案有解题过程姓名:__________班级:__________学号:__________1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的工程由乙单独完成,还需要几天?解:设工程总量为单位“1”,甲的工作效率是1/10,乙的工作效率是1/15,两人合作4天完成的工作量是(1/10+1/15)×4=2/3,剩下的工作量是1-2/3=1/3,那么乙单独完成需要的时间是1/3÷1/15=5天。
思路:先求出合作完成的工作量,再求剩余工作量以及乙完成剩余工作所需时间。
2.一个数的20%比它的3/5少30,这个数是多少?解:设这个数为x,则3/5x-20%x=30,即0.6x-0.2x=30,0.4x=30,解得x=75。
思路:根据数量关系列方程求解。
3.甲乙两车分别从A、B两地同时出发,相向而行,甲车每小时行60千米,乙车每小时行80千米,3小时后两车相距40千米,A、B两地相距多少千米?解:两车3小时行驶的路程之和再加上相距的40千米就是A、B两地的距离,(60+80)×3+40=460千米。
思路:先求两车行驶的路程和,再加上相距距离。
4.一个圆柱的底面半径是2厘米,高是5厘米,求它的侧面积和体积。
解:侧面积=2πrh=2×3.14×2×5=62.8平方厘米,体积=πr²h=3.14×2²×5=62.8立方厘米。
思路:根据圆柱侧面积和体积公式计算。
5.有浓度为20%的盐水80克,要把它变成浓度为40%的盐水,需要加盐多少克?解:设需要加盐x克,根据盐的质量关系可列方程,(80×20%+x)÷(80+x)=40%,即(16+x)÷(80+x)=0.4,16+x=0.4×(80+x),16+x=32+0.4x,0.6x=16,解得x=80/3。
六年级奥数题100道及答案

六年级小升初奥数专题100道1、有 28位小朋友排成一行 .从左边开始数第 10位是学豆,从右边开始数他是第几位?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于 2人,任何三个房间里的人数不少 8人,这四个房间至少有多少人?6、在 1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是 88分,要想平均分达到 90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将 0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同 .□ +□□ =□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是 2857,后两位记不清,即 2857□□但是我记得,它能被 11和 13整除,请你算出后两位数 .11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给 A, B, C三个班,每人都能分到 6张 .如果只分给 B班,每人能得 15张,如果只分给 C班,每人能得14张,问只分给 A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是 1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是 123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数题专题训练七篇

小学六年级奥数题专题训练七篇篇一:小学六年级奥数题:小学奥数应用题专题汇总1.(归一问题)工程队计划用60人5天修好一条长4800米的公路,实际上增加了20人,每人每天比计划多修了4米,实际修完这条路少用了几天?2.(相遇问题)甲、乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米。
两车距中点40千米处相遇。
东西两地相距多少千米?3.(追及问题)大客车和小轿车同地、同方向开出,大客车每小时行60千米,小轿车每小时行84千米,大客车出发2小时后小轿车才出发,几小时后小轿车追上大客车?4.(过桥问题)列车通过一座长2700米的大桥,从车头上桥到车尾离桥共用了3分钟。
已知列车的速度是每分钟1000米,列车车身长多少米?5.(错车问题)一列客车车长280米,一列货车车长200米,在平行的轨道上相向而行,从两个车头相遇到车尾相离经过20秒。
如果两车同向而行,货车在前,客车在后,从客车头遇到货车尾再到客车尾离开货车头经过120秒。
客车的速度和货车的速度分别是多少?6.(行船问题)客轮和货轮从甲、乙两港同时相向开出,6小时后客轮与货轮相遇,但离两港中点还有6千米。
已知客轮在静水中的速度是每小时30千米,货轮在静水中的速度是每小时24千米。
求水流速度是多少?7.(和倍问题)小李有邮票30枚,小刘有邮票15枚,小刘把邮票给小李多少枚后,小李的邮票枚数是小刘的8倍?8.(差倍问题)同学们为希望工程捐款,六年级捐款数是二年级的3倍,如果从六年级捐款钱数中取出160元放入二年级,那么六年级的捐款钱数比二年级多40元,两个年级分别捐款多少元?9.(和差问题)一只两层书架共放书72本,若从上层中拿出9本给下层,上层还比下层多4本,上下层各放书多少本?10.(周期问题)2006年7月1日是星期六,求10月1日是星期几?11.(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
小学六年级奥数题50道及答案

小学六年级奥数题50道及答案1. 三个袋子里放着相同数量的红球,黄球和蓝球,共有 10 粒球。
每袋子里各有几粒?答案:每袋子 3 粒2. 某人有 8 支铅笔,4 支钢笔,用它们排成一排,问最多可以排成几排?答案:两排3. 小明有 12 元钱,用它买了 6 个橘子,每个 1 元,还剩几块钱?答案:还剩 6 元4. 大卫有 3 个朋友,他们共分了 20 个苹果,大卫得到几个?答案:大卫得到 6 个苹果5. 一个游乐场有 5 个火车,每辆火车上有 8 个座位,共有多少个座位?答案:共有 40 个座位6. 一个餐厅共有 6 个桌子,每个桌子可以坐 4 人,共可以容纳多少人?答案:共可以容纳 24 人7. 一共有 10 块砖,每堆 3 块,共有几堆?答案:共有 4 堆8. 一共有 8 支铅笔,4 支钢笔,每支铅笔的价格是钢笔的 2 倍,大卫花了 48 元,买了几支钢笔?答案:买了 4 支钢笔9. 请问把12 个正方形拼成一个大正方形,大正方形有几条边?答案:大正方形有 4 条边10. 一共有 12 个苹果,每袋只能装 4 个,共需要几袋?答案:共需要 3 袋11. 一共有 18 个橘子,每篮可以装 6 个,需要几篮?答案:需要 3 篮12. 一共有 10 块砖头,每袋装 2 块,需要几袋?答案:需要 5 袋13. 一共有 9 张书,每盒可以装 3 张,需要几盒?答案:需要 3 盒14. 一共有 5 个小朋友,一共分了 15 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖15. 一共有 10 支铅笔,每盒装 3 支,需要几盒?答案:需要 4 盒16. 一共有 10 个小球,每篮可以装 4 个,需要几篮?答案:需要 3 篮17. 大卫有 6 元钱,用它买了 4 个橘子,每个 1.5 元,还剩几块钱?答案:还剩 0 元18. 一共有 12 支钢笔,每盒可以装 4 支,需要几盒?答案:需要 3 盒19. 一共有 24 个正方形,每排 6 个,一共有几排?答案:一共有 4 排20. 一共有 12 张牌,每人可以得到 3 张,共有几个人?答案:共有 4 个人21. 一共有 9 块蛋糕,每人可以分得 3 块,共有几个人?答案:共有 3 个人22. 一共有 10 瓶饮料,每袋可以装 5 瓶,需要几袋?答案:需要 2 袋23. 一共有 18 个书,每箱可以装 6 个,需要几箱?答案:需要 3 箱答案:一共有 12 粒食物,每袋装 4 粒,需要几袋?答案:需要 3 袋25. 一共有 5 个孩子,一共分了 15 个糖果,每个孩子可以得到几个糖果?答案:每个孩子可以得到 3 个糖果26. 一共有 8 块砖头,每袋装 2 块,需要几袋?答案:需要 4 袋27. 一共有 6 条链子,每盒可以装 3 条,需要几盒?答案:需要 2 盒28. 一共有 10 把伞,每把伞包一个盒子,一共需要几个盒子?答案:一共需要 10 个盒子29. 一共有 7 个苹果,每篮可以装 3 个,需要几篮?答案:需要 3 篮30. 一共有 14 支钢笔,每筒装 4 支,需要几筒?答案:需要 4 筒31. 一共有 12 块橡皮,每盒装 4 块,需要几盒?答案:需要 3 盒32. 一共有 10 个棋子,每盒可以装 2 个,需要几盒?答案:需要 5 盒33. 一共有 9 块布,每袋装 3 块,需要几袋?答案:需要 3 袋34. 一共有 16 小球,每份可以分 4 个,共有几份?答案:共有 4 份35. 一共有 11 个小朋友,一共分了 33 块糖,每个小朋友可以得到几块糖?答案:每个小朋友可以得到 3 块糖36. 一共有 8 支铅笔,每盒装 2 支,需要几盒?答案:需要 4 盒37. 一共有 12 条鱼,每箱可以装 4 条,需要几箱?答案:需要 3 箱38. 一共有 6 块橡皮,每袋装 2 块,需要几袋?答案:需要 3 袋39. 一共有 9 个正方形,每排 3 个,一共有几排?答案:一共有 3 排40. 一共有 12 张牌,每人可以得到 4 张,共有几个人?答案:共有 3 个人41. 一共有 10 瓶苹果汁,每箱可以装 5 瓶,需要几箱?答案:需要 2 箱42. 一共有 11 条狗,每把笼子可以关住 3 条,需要几个笼子?答案:需要 4 个笼子43. 一共有 6 只鸟,每把笼子可以装 2 只,需要几把笼子?答案:需要 3 把笼子44. 一共有 14 颗橘子,每篮可以装 4 颗,需要几篮?答案:需要 4 篮45. 一共有 8 支毛笔,每筒装 4 支,需要几筒?答案:需要 2 筒46. 一共有 9 条鱼,每盒可以装 3 条,需要几盒?答案:需要 3 盒47. 一共有 10 个姑娘,一共分了 20 个糖果,每个姑娘可以得到几个糖果?答案:每个姑娘可以得到 2 个糖果48. 一共有 12 个龙虾,每袋装 4 个,需要几袋?答案:需要 3 袋49. 一共有 7 个箱子,每排可以放下 3 个,一共有几排?答案:一共有 3 排50. 一共有 5 个孩子,一共分了 15 块巧克力,每个孩子可以得到几块巧克力?答案:每个孩子可以得到 3 块巧克力。
小学六年级奥数题及解答(五篇)

【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是⽆忧考整理的《⼩学六年级奥数题及解答(五篇)》相关资料,希望帮助到您。
⼩学六年级奥数题及解答篇⼀ 3箱苹果重45千克.⼀箱梨⽐⼀箱苹果多5千克,3箱梨重多少千克? 考点:整数、⼩数复合应⽤题。
专题:简单应⽤题和⼀般复合应⽤题。
分析:可先求出3箱梨⽐3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量.据此解答 解答:解:45+5×3 =45+15 =60(千克) 答:3箱梨重60千克。
点评:本题的关键是先求出3箱梨⽐3箱苹果多的重量,然后再根据加法的意义求出3箱梨的重量。
⼩学六年级奥数题及解答篇⼆ 题⽬: ⼀块牧场长满了草,每天均匀⽣长。
这块牧场的草可供10头⽜吃40天,供15头⽜吃20天。
可供25头⽜吃多少天? 答案与解析: 假设1头⽜1天吃草的量为1份 (1)每天新⽣的草量为:(10×40-15×20)÷(40-20)=5(份); (2)原来的草量为:10×40-40×5=200(份); (3)安排5头⽜专门吃每天新长出来的草,这块牧场可供25头⽜吃:200÷(25-5)=10(天)。
⼩学六年级奥数题及解答篇三 我⼈民解放军追击⼀股逃窜的敌⼈,敌⼈在下午16点开始从甲地以每⼩时10千⽶的速度逃跑,解放军在晚上22点接到命令,以每⼩时30千⽶的速度开始从⼄地追击。
已知甲⼄两地相距60千⽶,问解放军⼏个⼩时可以追上敌⼈? 解答案与解析:是[10×(22-6)]千⽶,甲⼄两地相距60千⽶。
由此推知 追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(⼩时) 答:解放军在11⼩时后可以追上敌⼈。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 计数原理知识纵横:如果完成一件事情,有几类不同的方法,而且每类方法中又有几种可能的方法,那么求完成这件事 的方法总数,即各类方法的总和,就是我们要掌握的加法原理。
加法原理:完成某件事情,如果有几类方法,而在第一类方法中有m 1种方法,第二类方法中有方法⋯⋯第 n 类有 m n 种,那么完成这件事的方法总数可以表示为m 1+ m 2+ m 3+⋯ +m n 。
完成一件事,需要分几个步骤来完成,而完成每步又有几种不同的方法,要求完成这件事的方法的 总数,应当将各步骤方法总数相乘,这就是我们应掌握的乘法原理。
乘法原理:完成一件事需要分成几个步骤,第一步有m 1 种方法,第二步有 m 2 种方法,第三步有种方法⋯⋯第 n 步有 m n 种方法,那么完成这件事共有 m 1× m 2× m 3×⋯× m n 种不同的方法。
例题求解:【例 1】 10 个人进行乒乓球比赛,每两个人之间比赛一场,问:一共要比赛多少场?例 2】一天有 6 节不同的课,这一天的课表有多少种排法?例 3】 1000 至 1999 这些自然数中,个位数大于百位数的有多少个?例 4】 4 只鸟飞入 4 个不同的笼子里,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不同) 每个笼子只能进一只鸟。
若都不飞进自己的笼子里去,有 种不同的飞法。
例 5】 如果组成三位数 abc 的三个数字 a , b ,c 中,有一个数字是另外两个数字的乘积,则称它为 特殊数”。
在所有的三位数中,共有 个“特殊数” 。
m 2种m 31、2、3、4 的长方形,使任何相邻的【例6】如下图所示,用红、绿、蓝、黄四种颜色,涂编号为两个长方形的颜色都不相同,一共有多少种不同的涂法?基础夯实1、一件工作可以用3 种方法完成,有5 人会用第1 种方法完成,有4 人会用第2 种方法完成,有6 人会用第3 种方法完成。
选出一个人来完成这项工作共有多少种选法?2、一件工序可以分3 步方法完成,有5人会做第1步,有4人会做第2步,有6人会做第3 步,每个人只会做一步。
选出三个人来完成这组工序共有多少种选法?3、用1、2、3、4、5 这五个数字组成的不含重复数字的四位数有多少个?其中有多少个偶数?4、有20 个队参加篮球比赛,比赛先分三组,第一组7个队,第二组6个队,第三组7 个队,每组先进行单循环赛,然后由每小组的前两名共6 个队,再进行单循环赛,决出冠亚军。
问:共需要比赛多少场?5、7个人并排站成一排,如果甲必须站在中间,有多少种排法?如甲、乙两人必须站在两端,有多少种排法?6、某信号兵用红、黄、蓝三面旗子从上到下挂在竖直的旗杆上表示信号,每次可以任挂一面、二面或三面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?7、四位数2336、2445、2782、2116等有一些共同的特征,每个数都以 2 开头,并且恰好每个数中只有两个相同的数字,求这样的四位数一共有多少个?综合创新:8、如下图,一共有九个点,相邻两个点之间的距离为 1 厘米,求用这九个点一共可以组成多少个三角形?第二讲抽屉原理知识纵横:抽屉原理:有m件物体,放进n 个抽屉里去。
如果物体比抽屉多(即m大于n),那么必有一个抽屉要放进两件或两件以上的物体。
例题求解:【例1】把10个苹果摆到9 个盘子里,不管怎么摆,一定有一个盘子里至少有__________________ 个苹果。
有4 个同学练习投篮,一共投进30 个球,一定有一个人至少投进了几个球?【例2】有5 个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出 3 枚棋子。
请问,这5 个人中至少有几个小朋友摸出的棋子的颜色的配组是一样的?例3】一副扑克牌(去掉两张王),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌花色情况是相同的?例4】从2,4,6,⋯30这15 个偶数中,任取9个数,证明:其中一定有两个数之和是34.【例5】用红、蓝两种颜色将一个3× 9 的矩形中的小方格随意涂色,证明:必有两列,他们的小方格中涂的颜色完全相同。
例6】学校图书馆里有A、B、C、D四类书,规定每个同学最我可以借2本书,在借书的85 名同学中,可以保证至少几个人所借书的类型是完全一样的?【例7】问在1,3,5,7⋯⋯97,99 这50个奇数中,最多能取出多少个数,使其中任何一个数都不是另一个数的倍数。
基础夯实1、6只小鸡飞进5 个鸟笼里,不管怎么飞,一定有一个笼子里至少飞进了(、三名同学到图书馆借书,他们共借了7 本书,那么一定有一个同学至少借了(、一位同学一星期读完了一本80 页的故事书,那么他一定有一天至少读了(、某小学有367 个同学,那么一定有两人的生日是同一天,为什么?、有13 个学生,其中至少有两个人在同一个月内过生日,为什么?、棕、蓝、绿、橙四种颜色的小球各10 个,混合放在一个布袋里,一次摸出小球)只小鸟。
)本书。
)页。
5 个,其中至少有几个小球的颜色是相同的?7 、小朋友帮助幼儿园的阿姨搬运兔、狗、长颈鹿三种塑料玩具,每个小朋友从中任意选择两件,那么,至少要有几个小朋友才能保证总有两人选择的玩具相同?8 、一副扑克牌有4 种花色,每种花色有13 张,从中任意抽牌,问最少要抽多少张牌,才能保证有4 张牌是同一花色的?9、有19 个同学参加了生物组、音乐组、美术组等课外活动,每人可参加一个组,两个组或三个组,这些同学中至少有几个同学参加了相同的组?10 、从10到20这11 上自然数中,任取7个数,证明:其中一定有两个数之和是29.拓展延伸:用红、黄两种颜色将一个2× 5 的矩形中的小方格,随意涂色,每个方格涂一种颜色。
证明:必有两列,他们的小方格中涂的颜色完全相同。
第三讲容斥原理知识纵横:容斥原理:当两个计数部分有重复时,为了不重复计数,应从它们的和中减去重复部分,这种计数方法叫做容斥原理,也叫包含与排除。
例题求解:【例1】、在1~2003的自然数中,能被2 整除或能被5整除的数共有多少个?例2】、在1~500中,不能被2 整除,也不能被3整除,又不能被7 整除的数有多少个?【例3】、六年级的160 名学生参加期末考试,其中数学得满分的有58名,语文得满分的有53 分,英语得满分的有59名,数学、语文都得满分的有17 名,数学、英语都得满分的有22名,语文、英语都得满分的有20 名,数学、语文、英语都得满分的有10 名。
问六年级三科考试都没有得满分的有多少名?【例4】、如图所示,A、B、C 分别代表面积为12、28、16 的三张不同形状的纸片,它们放在一起盖住的面积为38,且A 与B,B与C,C与A 公共部分面积为8,7,6,求A、B、C三个图形公共部分的面积。
【例5】、星期日小丰骑自行车去同学A、B、C三家玩,他如果从A 出发经过B到C,共行10千米,如果从B出发经C达A,共行13千米,如果从C出发经过A到达B,共行11千米。
问:哪两个同学家之间的距离最短?最短的距离是多少千米?【例 5】、如图,在长方形 ABCD 中, AD=15厘米, AB=8厘米,四边形 OEFG 的面积是 9平方厘米,求阴影部 分的总面积。
基础夯实1、50 以内 5 的倍数和 7 的倍数的自然数共有多少个?2、在 1 至 100 的全部自然数中,既不是 3 的倍数也不是 5 的倍数的数有多少?3、在从 1 到 60 的整数中,能被 3 或 4或 5 整除的数有多少个?4、四(一)班 50 个学生,每人至少参加了一个兴趣小组,其中37 人参加科技组, 25 人参加美术组,求同时参加两个兴趣小组的人数是多少?5、六(一)班全体同学在期末测试中,语文、数学这两科至少有一门获得优秀,其中有秀,有 32 人数学获得优秀,两科都获得优秀的学生有 17人。
求该班学生的总人数。
6、六年级有 60人爱好数学, 50人爱好语文, 42人爱好体育, 30人既爱好数学又爱好语文, 20 人既爱好 语文又爱好体育, 35 人既爱好优育又爱好数学,有 18 人则三方面都爱好,请问这个年级中数学、语文、 体育三个方面至少爱好一项的学生有多少名?30 人语文获得优7、五年级四班48 个学生中,每个人至少会骑自行车和游泳中的一项,平均每12 个人中有7 人会游泳,每4 个人中有一个人两样都会,并且每个人至少会一样,求会骑自行车的有多少人?8、有一个数,除以3 余数是2,除以4 余数是1,问这个数除以12余数是几?9、有50 名同学面向老师站成一行。
老师让同学们从左到右依次按1、2、3、4、⋯⋯的顺序报数,报完后,让报数是4的倍数的同学向后转,接着又让报数是 6 的倍数的同学向后转,问此时还有多少名同学面向老师?第四讲推理与论证知识纵横:本专题主要涉及计算推理、列表推理来进行逻辑推理和用奇偶分析法、极端化思考来进行证明的一些方法。
这类数学题似乎不像数学题,因为题目中有时没有数据和图形,只出现一些相互关联的条件,有时也不需要演算或作图来解决,但是讨论这些问题必须有条理清晰的思维和严谨的推理与证明方法,这种训练对提高我们的数学思维能力,形成良好的思维方式和意识,具有不可低估的作用。
例题求解:【例1】、甲说:“乙和丙都说谎。
”乙说:“甲和丙都说谎。
”丙说:“甲和乙都说谎。
”根据三人所说,下面四种说法中,哪一种说法是正确的。
(1)三人都说谎;(2)三人都不说谎;(3)三人中有一人且只有一人说谎;(4)三人中有一人且只有一人不说谎。
【例2】、甲、乙、丙三名运动员囊括了全部比赛项目的前三名,他们的总分分别是:8、7和17 分,甲得了一个第一名,已知各个比赛项目分数相同,且第一名得分不低于二、三名得分的和,那么比赛共有多少个赛项?甲的每项得分分别是多少?【例3】、孙明、李冬和陈元是中学教师,在语文、数学、政治、地理、音乐和图画六门课中每人教两门,现在已知:(1)政治老师和数学老师是邻居。
(2)陈元最年轻。
(3)李冬老师常对地理老师和数学老师说他爱看书、爱听音乐。
(4)地理老师比语文老师年纪大。
(5)陈元、音乐老师和语文老师三人常一起看足球赛。
问:三位老师每人教哪两门?【例4】、一本书的页码共需N个数字来表示。
例如,一本书11页,页码1~11就需13 个数字表示,小冬统计了5 本书页码所用数字的个数,分别是109,157,1005,1995,2002,这5 个统计数据中的错误的数据是哪个数?【例5】、6个人围成一圈,每人心里想一个数,并把这个数告诉左、右相邻的两个人。
然后每个人把左、右两个相邻人告诉自己的数的平均数亮出来,如下图。
问:亮出数11 的人原来心中想的数是多少?基础夯实1、某年的三月有五个星期一,四个星期二,这一年的四月一日是星期几?2、A、B、C三人所读学校为甲校、乙校和丙校,分别爱好篮球、足球、排球。