POWER_MOSFET驱动技术
PowerMOS&IGBT&SCR器件结构、原理、参数介绍

CE结反向击穿电压V(br)ces
PNP管的集电极结的反偏耐压即为IGBT的CE结反向击穿电压V(br)ces 测试条件为Vge=0V,Vce大于0V,PNP管的集电结击穿时,取一定大小下的漏电流对 应的CE结所加电压即为V(br)ces。 通VDMOS一样,IGBT耐压也是主要通过增加N-漂移区的厚度和降低电阻率来提高的。
Cgd也称为密勒电容,给电路的输入和输出之间提 供了一个反馈路径,与电压有关,在器件开关过程 中起主导作用。
VDMOS 单元元胞电容示意
Cgd由两部分电容串联组成:Cgdox(栅氧电容)和 Cgdbulk(体电容)
VDMOS源漏CV曲线
VDMOS 寄生电容模型
10
VDMOS开关特性简述
Turn-on
6
导通电阻Ron(一)
导通电阻Ron是影响VDMOS器件特性的的 重要参数。除工艺参数外,它主要由元胞 排列、元胞个数和几何形状及其芯片面积 等因数决定。VDMOS器件的单个元胞导通 电阻Ron(cell)主要由六个部分组成,如图所 示:
导通电阻R
硅极限(silicon limit)
PT、NPT、FS关系示意
16
CE结饱和压降Vce(sat)
不同于VDMOS,当沟道开启时,在漏端施加正电压即有漏极电流,IGBT由于背面正偏 PN结的存在,如果Vce小于0.7V,即使栅极信号使得MOS沟道形成,集电极电流Ic也无 法流通。 一般取栅极电压Vge=15V,给定集电极电流Ic的值,此时的CE结压降即为CE结饱和压 降Vce(sat)。
IGBT元胞结构
IGBT等效电路
12
IGBT发展
MOSFET的驱动保护电路设计

摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。
分析了二极管器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。
该电路具有结构简单,实用性强,响应速度快等特点。
在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。
功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。
但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。
如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET 功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。
文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。
该设计使系统功率驱动部分的可靠性大大的提高。
1 功率MOSFET保护电路设计功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。
功率MOSFET保护电路主要有以下几个方面:1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt 而引起误导通。
为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。
PowerMOSFET基础知识

针对PowerMOSFET的常见问 题,如热管理、开关时间和电 压击穿等,进行了深入探讨, 并提出了相应的解决方案。
结合实际案例,展示了 PowerMOSFET在电机驱动、 电源供应和逆变器等领域的应 用,突出了其高效、可靠和灵 活的特点。
对未来研究的建议
01
深入研究PowerMOSFET的材料、工艺和结构设计,以提高其性能和 可靠性。
最大允许工作电压是指PowerMOSFET在正 常工作条件下所承受的最大电压,超过此 电压可能导致器件损坏。
03
CATALOGUE
PowerMOSFET的应用领域
电源管理
电源转换
电源保护
PowerMOSFET在电源管理领域中常 用于实现高效的直流电压转换,如将 高压直流电转换为低压直流电,以满 足不同设备的供电需求。
电力系统
无功补偿
PowerMOSFET可以用于构建无功补 偿装置,通过控制MOSFET的开关状 态来调节电容器的投切,从而实现无 功补偿和滤波功能,提高电力系统的 功率因数和稳定性。
智能电网
在智能电网中,PowerMOSFET可以 作为智能电表中的重要元件,用于实 现远程控制和智能管理电力系统的功 能。
PowerMOSFET的工作原理
开关状态
在开关状态下,PowerMOSFET可以 通过控制栅极电压来开启或关闭电流 的导通。当栅极电压足够高时,导电 沟道形成,电流从源极流向漏极。
导通状态
在导通状态下,PowerMOSFET的导 电沟道内存在大量的自由电子和空穴 ,形成很强的电导率,允许大电流通 过。
02
探索新型的PowerMOSFET驱动和控制技术,以适应不断发展的电力 电子系统需求。
详细讲解MOSFET管驱动电路

详细讲解M O S F E T管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素;这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的;下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创;包括MOS管的介绍,特性,驱动以及应用电路;1,MOS管种类和结构MOSFET管是FET的一种另一种是JFET,可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种;至于为什么不使用耗尽型的MOS管,不建议刨根问底;对于这两种增强型MOS管,比较常用的是NMOS;原因是导通电阻小,且容易制造;所以开关电源和马达驱动的应用中,一般都用NMOS;下面的介绍中,也多以NMOS 为主;MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的;寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍;在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管;这个叫体二极管,在驱动感性负载如马达,这个二极管很重要;顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的;2,MOS管导通特性导通的意思是作为开关,相当于开关闭合;NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况低端驱动,只要栅极电压达到4V或10V就可以了;PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况高端驱动;但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS;3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗;选择导通电阻小的MOS管会减小导通损耗;现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有;MOS在导通和截止的时候,一定不是在瞬间完成的;MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失;通常开关损失比导通损失大得多,而且开关频率越快,损失也越大;导通瞬间电压和电流的乘积很大,造成的损失也就很大;缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数;这两种办法都可以减小开关损失;4,MOS管驱动跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值,就可以了;这个很容易做到,但是,我们还需要速度;在MOS管的结构中可以看到,在GS,GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电;对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大;选择/设计MOS管驱动时第一要注意的是可提供瞬间短路电流的大小;第二注意的是,普遍用于高端驱动的NMOS,导通时需要是栅极电压大于源极电压;而高端驱动的MOS管导通时源极电压与漏极电压VCC相同,所以这时栅极电压要比VCC大4V或10V;如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了;很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管;上边说的4V或10V是常用的MOS管的导通电压,设计时当然需要有一定的余量;而且电压越高,导通速度越快,导通电阻也越小;现在也有导通电压更小的MOS管用在不同的领域里,但在12V汽车电子系统里,一般4V导通就够用了;MOS管的驱动电路及其损失,可以参考Microchip公司的AN799 Matching MOSFET Drivers to MOSFETs;讲述得很详细,所以不打算多写了;5,MOS管应用电路MOS管最显着的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光;现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有左右的压降,导致实际最终加在gate上的电压只有;这时候,我们选用标称gate电压的MOS管就存在一定的风险;同样的问题也发生在使用3V或者其他低压电源的场合;2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动;这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的;为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值;在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗;同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗;3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者数字电压,而功率部分使用12V甚至更高的电压;两个电压采用共地方式连接;这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题;在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构;于是我设计了一个相对通用的电路来满足这三种需求;电路图如下:图1 用于NMOS的驱动电路图2 用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh;Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通;R2和R3提供了aPWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置;Q3和Q4用来提供驱动电流,由于导通的时候,Q3和Q4相对Vh和GND最低都只有一个Vce的压降,这个压降通常只有左右,大大低于的Vce;R5和R6是反馈电阻,用于对gate电压进行采样,采样后的电压通过Q5对Q1和Q2的基极产生一个强烈的负反馈,从而把gate电压限制在一个有限的数值;这个数值可以通过R5和R6来调节;最后,R1提供了对Q3和Q4的基极电流限制,R4提供了对MOS管的gate电流限制,也就是Q3和Q4的Ice的限制;必要的时候可以在R4上面并联加速电容;这个电路提供了如下的特性:1,用低端电压和PWM驱动高端MOS管;2,用小幅度的PWM信号驱动高gate电压需求的MOS管;3,gate电压的峰值限制4,输入和输出的电流限制5,通过使用合适的电阻,可以达到很低的功耗;6,PWM信号反相;NMOS并不需要这个特性,可以通过前置一个反相器来解决;在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题;DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电;目前DC-DC转换器设计技术发展主要趋势有:1高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善;小功率DC-DC转换器的开关频率将上升到兆赫级;2低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求;这些技术的发展对电源芯片电路的设计提出了更高的要求;首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作;其次,对于电池供电的便携式电子设备来说,电路的工作电压低以锂电池为例,工作电压~,因此,电源芯片的工作电压较低;MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC芯片中多采用MOS管作为功率开关;但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法;这对于设计高工作频率DC-DC转换器开关管驱动电路的设计提出了更高的要求;在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路;这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹;本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路;电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压,负载电容为60pF时,工作频率能够达到5MHz以上;自举升压电路自举升压电路的原理图如图1所示;所谓的自举升压原理就是,在输入端IN 输入一个方波信号,利用电容Cboot将A点电压抬升至高于VDD的电平,这样就可以在B端输出一个与输入信号反相,且高电平高于VDD的方波信号;具体工作原理如下;当VIN为高电平时,NMOS管N1导通,PMOS管P1截止,C点电位为低电平;同时N2导通,P2的栅极电位为低电平,则P2导通;这就使得此时A点电位约为VDD,电容Cboot两端电压UC≈VDD;由于N3导通,P4截止,所以B点的电位为低电平;这段时间称为预充电周期;当VIN变为低电平时,NMOS管N1截止,PMOS管P1导通,C点电位为高电平,约为VDD;同时N2、N3截止,P3导通;这使得P2的栅极电位升高,P2截止;此时A 点电位等于C点电位加上电容Cboot两端电压,约为2VDD;而且P4导通,因此B点输出高电平,且高于VDD;这段时间称为自举升压周期;实际上,B点电位与负载电容和电容Cboot的大小有关,可以根据设计需要调整;具体关系将在介绍电路具体设计时详细讨论;在图2中给出了输入端IN电位与A、B两点电位关系的示意图;驱动电路结构图3中给出了驱动电路的电路图;驱动电路采用Totem输出结构设计,上拉驱动管为NMOS管N4、晶体管Q1和PMOS管P5;下拉驱动管为NMOS管N5;图中CL为负载电容,Cpar为B点的寄生电容;虚线框内的电路为自举升压电路;本驱动电路的设计思想是,利用自举升压结构将上拉驱动管N4的栅极B点电位抬升,使得UB>VDD+VTH ,则NMOS管N4工作在线性区,使得VDSN4 大大减小,最终可以实现驱动输出高电平达到VDD;而在输出低电平时,下拉驱动管本身就工作在线性区,可以保证输出低电平位GND;因此无需增加自举电路也能达到设计要求;考虑到此驱动电路应用于升压型DC-DC转换器的开关管驱动,负载电容CL很大,一般能达到几十皮法,还需要进一步增加输出电流能力,因此增加了晶体管Q1作为上拉驱动管;这样在输入端由高电平变为低电平时,Q1导通,由N4、Q1同时提供电流,OUT端电位迅速上升,当OUT端电位上升到VDD-VBE时,Q1截止,N4继续提供电流对负载电容充电,直到OUT端电压达到VDD;在OUT端为高电平期间,A点电位会由于电容Cboot 上的电荷泄漏等原因而下降;这会使得B点电位下降,N4的导通性下降;同时由于同样的原因,OUT端电位也会有所下降,使输出高电平不能保持在VDD;为了防止这种现象的出现,又增加了PMOS管P5作为上拉驱动管,用来补充OUT端CL的泄漏电荷,维持OUT端在整个导通周期内为高电平;驱动电路的传输特性瞬态响应在图4中给出;其中a为上升沿瞬态响应,b为下降沿瞬态响应;从图4中可以看出,驱动电路上升沿明显分为了三个部分,分别对应三个上拉驱动管起主导作用的时期;1阶段为Q1、N4共同作用,输出电压迅速抬升,2阶段为N4起主导作,使输出电平达到VDD,3阶段为P5起主导作用,维持输出高电平为VDD;而且还可以缩短上升时间,下降时间满足工作频率在兆赫兹级以上的要求;需要注意的问题及仿真结果电容Cboot的大小的确定Cboot的最小值可以按照以下方法确定;在预充电周期内,电容Cboot 上的电荷为VDDCboot ;在A点的寄生电容计为CA上的电荷为VDDCA;因此在预充电周期内,A点的总电荷为Q_{A1}=V_{DD}C_{boot}+V_{DD}C_{A} 1B点电位为GND,因此在B点的寄生电容Cpar上的电荷为0;在自举升压周期,为了使OUT端电压达到VDD,B点电位最低为VB=VDD+Vthn;因此在B点的寄生电容Cpar上的电荷为Q_{B}=V_{DD}+V_{thn}Cpar 2忽略MOS管P4源漏两端压降,此时Cboot上的电荷为VthnCboot ,A点寄生电容CA的电荷为VDD+VthnCA;A点的总电荷为QA2=V_{thn}C_{BOOT}+V_{DD}+V_{thn}C_{A} 3同时根据电荷守恒又有Q_{B}=Q_{A}-Q_{A2} 4综合式1~4可得C_{boot}=\frac{V_{DD}+V_{thn}}{v_{DD}-v_{thn}}Cpar+\frac{v_{thn}}{v_{DD}-v_{ thn}}C_{A}=\frac{V_{B}}{v_{DD}-v_{thn}}Cpar+\frac{V_{thn}}{v_{DD}-v_{thn}}C_{ A} 5从式5中可以看出,Cboot随输入电压变小而变大,并且随B点电压VB变大而变大;而B点电压直接影响N4的导通电阻,也就影响驱动电路的上升时间;因此在实际设计时,Cboot的取值要大于式5的计算结果,这样可以提高B点电压,降低N4导通电阻,减小驱动电路的上升时间;P2、P4的尺寸问题将公式5重新整理后得:V_{B}={V_{DD}-V_{thn}\frac{C_{boot}}{Cpar}-V_{thn}\frac{C_{A}}{Cpar} 6 从式6中可以看出在自举升压周期内, A、B两点的寄生电容使得B点电位降低;在实际设计时为了得到合适的B点电位,除了增加Cboot大小外,要尽量减小A、B两点的寄生电容; 在设计时,预充电PMOS管P2的尺寸尽可能的取小,以减小寄生电容CA;而对于B点的寄生电容Cpar来说,主要是上拉驱动管N4的栅极寄生电容,MOS管P4、N3的源漏极寄生电容只占一小部分;我们在前面的分析中忽略了P4的源漏电压,因此设计时就要尽量的加大P4的宽长比,使其在自举升压周期内的源漏电压很小可以忽略;但是P4的尺寸以不能太大,要保证P4的源极寄生电容远远小于上拉驱动管N4的栅极寄生电容;阱电位问题如图3所示,PMOS器件P2、P3、P4的N-well连接到了自举升压节点A上;这样做的目的是,在自举升压周期内,防止他们的源/漏--阱结导通;而且这还可以防止在源/漏--阱正偏时产生由寄生SRC引起的闩锁现象;上拉驱动管N4的阱偏置电位要接到它的源极,最好不要直接接地;这样做的目的是消除衬底偏置效应对N4的影响;Hspice仿真验证结果驱动电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证;在表1中给出了电路在不同工作电压、不同负载条件下的上升时间tr和下降时间tf 的仿真结果;在图5中给了电路工作在输入电压、工作频率为5MHz、负载电容60pF条件下的输出波形;结合表1和图5可以看出,此驱动电路能够在工作电压为,工作频率为5MHz,并且负载电容高达60pF的条件下正常工作;它可以应用于低电压、高工作频率的DC-DC转换器中作为开关管的驱动电路;结论本文采用自举升压电路,设计了一种BiCMOS Totem结构的驱动电路;该电路基于Samsung AHP615 BiCMOS工艺设计,可在电压供电条件下正常工作,而且在负载电容为60pF的条件下,工作频率可达5MHz以上;。
mosfet电压隔离驱动方案

mosfet电压隔离驱动方案MOSFET电压隔离驱动方案随着现代电子技术的快速发展,电路的稳定性和可靠性要求也越来越高。
在一些特殊的应用场景中,如高频电路、高压电路、噪声环境下的电路等,需要对电路进行电压隔离来提高系统的稳定性和安全性。
MOSFET电压隔离驱动方案因其高速、低功耗和可靠性等优势,成为了一种常用的解决方案。
MOSFET(金属氧化物半导体场效应晶体管)是一种常见的半导体器件,具有高速开关和低功耗的特点。
通过控制MOSFET的栅极电压,可以实现对电路的开关控制。
而MOSFET电压隔离驱动方案则是利用MOSFET的特性来实现电路之间的电压隔离。
在MOSFET电压隔离驱动方案中,一般会使用光耦来实现电路间的隔离。
光耦是一种能够将电路间的信号通过光信号进行转换的器件。
它由发光二极管(LED)和光敏二极管(光电晶体管)组成。
当输入信号施加在发光二极管上时,发光二极管会发出光信号,光信号经过隔离区域后,被光敏二极管接收并转换为与输入信号相同的电信号。
通过光耦将输入信号与MOSFET的栅极连接起来,当输入信号施加在光耦上时,光敏二极管会产生相应的电信号,通过MOSFET的栅极电压来控制MOSFET的导通和关断。
由于光耦实现了输入信号和MOSFET之间的电气隔离,可以有效地提高系统的稳定性和安全性。
MOSFET电压隔离驱动方案具有以下几个优势:1. 高速开关:MOSFET具有快速的开关速度,可以实现高频电路的要求。
通过光耦隔离驱动MOSFET,可以实现输入信号的快速响应,提高系统的响应速度。
2. 低功耗:MOSFET的工作电流较小,具有较低的功耗。
通过光耦隔离驱动MOSFET,可以进一步降低功耗,提高系统的能效。
3. 可靠性高:MOSFET具有较高的可靠性,长时间工作不易出现故障。
通过光耦隔离驱动MOSFET,可以避免外部电源的电压干扰和噪声对系统的影响,提高系统的稳定性和可靠性。
4. 成本低:MOSFET电压隔离驱动方案相对于其他电压隔离方案来说,成本较低。
功率场效应晶体管MOSFET原理及其驱动

功率场效应晶体管(MOSFET)原理功率场效应管(Power MOSFET)也叫电力场效应晶体管,是一种单极型的电压控制器件,不但有自关断能力,而且有驱动功率小,开关速度高、无二次击穿、安全工作区宽等特点。
由于其易于驱动和开关频率可高达500kHz,特别适于高频化电力电子装置,如应用于DC/DC变换、开关电源、便携式电子设备、航空航天以及汽车等电子电器设备中。
但因为其电流、热容量小,耐压低,一般只适用于小功率电力电子装置。
一、电力场效应管的结构和工作原理电力场效应晶体管种类和结构有许多种,按导电沟道可分为P沟道和N沟道,同时又有耗尽型和增强型之分。
在电力电子装置中,主要应用N沟道增强型。
电力场效应晶体管导电机理与小功率绝缘栅MOS管相同,但结构有很大区别。
小功率绝缘栅MOS管是一次扩散形成的器件,导电沟道平行于芯片表面,横向导电。
电力场效应晶体管大多采用垂直导电结构,提高了器件的耐电压和耐电流的能力。
按垂直导电结构的不同,又可分为2种:V形槽VVMOSFET和双扩散VDMOSFET。
电力场效应晶体管采用多单元集成结构,一个器件由成千上万个小的MOSFET组成。
N沟道增强型双扩散电力场效应晶体管一个单元的部面图,如图1(a)所示。
电气符号,如图1(b)所示。
电力场效应晶体管有3个端子:漏极D、源极S和栅极G。
当漏极接电源正,源极接电源负时,栅极和源极之间电压为0,沟道不导电,管子处于截止。
如果在栅极和源极之间加一正向电压U GS,并且使U GS大于或等于管子的开启电压U T,则管子开通,在漏、源极间流过电流I D。
U GS超过U T越大,导电能力越强,漏极电流越大。
二、电力场效应管的静态特性和主要参数Power MOSFET静态特性主要指输出特性和转移特性,与静态特性对应的主要参数有漏极击穿电压、漏极额定电压、漏极额定电流和栅极开启电压等。
{{分页}}1、静态特性(1)输出特性输出特性即是漏极的伏安特性。
功率MOSFET(PowerMOSFET)的基本知识

功率MOSFET(Power MOSFET)的基本知识自1976年开发出功率MOSFET以来,由于半导体工艺技术的发展,它的性能不断提高:如高压功率MOSFET其工作电压可达1000V;低导通电阻MOSFET其阻值仅lOmΩ;工作频率范围从直流到达数兆赫;保护措施越来越完善;并开发出各种贴片式功率MOSFET(如Siliconix最近开发的厚度为1.5mm“Little Foot系列)。
另外,价格也不断降低,使应用越来越广泛,不少地方取代双极型晶体管。
功率MOSFET主要用于计算机外设(软、硬驱动器、打印机、绘图机)、电源(AC/DC变换器、DC/DC变换器)、汽车电子、音响电路及仪器、仪表等领域。
本文将介绍功率MOSFET的结构、工作原理及基本工作电路。
什么是MOSFET“MOSFET”是英文MetalOxide Semicoductor Field Effect Transistor的缩写,译成中文是“金属氧化物半导体场效应管”。
它是由金属、氧化物(SiO2或SiN)及半导体三种材料制成的器件。
所谓功率MOSFET(Power MOSFET)是指它能输出较大的工作电流(几安到几十安),用于功率输出级的器件。
MOSFET的结构图1是典型平面N沟道增强型MOSFET的剖面图。
它用一块P型硅半导体材料作衬底(图la),在其面上扩散了两个N型区(图lb),再在上面覆盖一层二氧化硅(SiQ2)绝缘层(图lc),最后在N区上方用腐蚀的方法做成两个孔,用金属化的方法分别在绝缘层上及两个孔内做成三个电极:G(栅极)、S(源极)及D(漏极),如图1d所示。
从图1中可以看出栅极G与漏极D及源极S是绝缘的,D与S之间有两个PN结。
一般情况下,衬底与源极在内部连接在一起。
图1是N沟道增强型MOSFET的基本结构图。
为了改善某些参数的特性,如提高工作电流、提高工作电压、降低导通电阻、提高开关特性等有不同的结构及工艺,构成所谓VMOS、DMOS、TMOS 等结构。
MOSFET电流源驱动原理及实现

MOSFET电流源驱动原理及实现王仲娟,葛芦生王文娟郝玲玲陈志杰束林(安徽工业大学安徽马鞍山243002)摘要:在开关电源中,随着开关频率的提高,开关器件MOSFET的开关损耗也相应增加。
目前大多数都是采用电压源的驱动方法,此驱动方法存在Miller效应、开关时间长、开关损耗大等一些缺点。
本文对电流源驱动原理进行了分析,并以BUCK电路为例,实现了电流源驱动电路。
通过两种驱动类型比较分析,证明了电流源驱动方式可以缩短开关时间,从而可以有效的减低损耗,提高工作效率。
关键字:电流源驱动开关时间Abstract:In the switching power supply,along with turn-on frequency’s enchancement,the switch component MOSFET switching loss also correspondingly increase.At present the conventional driver is used majority,but this method has the Miller effect,the switching time to be long,switching loss big and so on some shortcomings.This paper has carried on the analysis to the current source driver principle,and take the BUCK circuit as the example,has realized current source driver circuit.Through compared with the conventional driver,had proven the current source driver might reduce the switching time,thus might effective decrease the loss,raised the working efficiency.Keyword:current source driver,switching time引言:目前随着微电子技术的发展,电力电子电路正走向高频化,已出现了各种各样的全控型器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
POWER MOSFET 隔离驱动
对于上下管占空比相等的隔离驱动,可以不需要隔直电 容,但必须保证在任何情况下,驱动变压器不饱和。
POWER MOSFET 隔离驱动
10 8 6
R12 10u R1 TX1 C1 P1 S1 Q1 10k R2
4
Vg / V
Vg V1
V2
2 0 -2 -4 -6 -8 -10 0 0.2 0.4 0.6 0.8 1 1.2
寄生参数对并联驱动的影响
25 20
A
15 10 5 -0 10 8
I(Q3-D)
I(Q4-D)
Q4-G
Q3-G
V
6 4 2 -0 270 Time/uSecs
270.1
270.2
270.3
270.4
270.5 100nSecs/div
10n L3
10n L4
R8
25 20 15 10 5 -0
I(Q4-D) I(Q3-D)
常用的加速关断电路
IC
U1 Ref v Vp Osc Vf b Vout Comp Sense Gnd D1 Q1
Comp Sense Gnd Ref v Vp Osc Vf b Vout D2 U2 R2 Q2 Q3
R1
• 电路简单 • 关断电流将流过芯片
• 关断电流通过Q3构成回 路,关断电流环路小 • 开关G极电位不能到0
CBOOT
QTOTAL QG ( I LK ,D IQ,LS IQ,DRV IGS ) toff max VBOOT VBOOT
其中:QG ----------栅极电荷 ILK,D -------自举二极管漏电流 IQ,LS ------- 内部电平转换静态电流 IQ,DRV ------自举电路静态电流 IGS ---------- G-S间漏电流
POWER MOSFET 开通过程
to-t1: 驱动通过Rgate 对Cgs充电, Vgs 电压以指数形式上升
POWER MOSFET 开通过程
I d (VGS Vth ) g fs
t1-t2: Vgs 达到MOSFET开启门槛电压, MOSFET 进入线性区,Id缓慢上升
POWER MOSFET 开通过程
A
620 Time/uSecs
625
630
635
640
645
650 5uSecs/div
POWER MOSFET 并联驱动
MOSFET 并联驱动的注意事项
• 并联MOSFET的特性应完全一致。 • 并联MOSFET的驱动布线应尽量对称。 • 并联MOSFET应有独立的驱动电阻或图腾柱,并尽量靠近 MOSFET栅极 • 如果并联MOSFET驱动发生震荡,可在MOSFET的栅极套磁 珠,并适当增大驱动电阻。
POWER MOSFET 隔离驱动
隔离驱动变压器的要求
• 信号延迟小,寄生电容小 • 漏感小,波形失真小 • 高低压侧可靠绝缘
POWER MOSFET 隔离驱动
隔离驱动变压器的设计
1. 选择合适的磁芯 2. 计算原边匝数
3. 选择线径,通常情况下,最好是能一层绕完一个绕组。
4. 确定绕组排布
POWER MOSFET 并联驱动
2)由于自举二极管工作在高频开关状态,因此需选用高压快恢复二极管
POWER MOSFET 自举驱动
占空比对自举电压的影响
POWER MOSFET 自举驱动
源极负压对于电路的影响
POWER MOSFET 自举驱动
减小源极负压对电路影响的方法
能一定程度缓解源极负压对电路 的影响,但是会使得自举电容充电时 间常数变长
A
2.2 V3 R10
100m R3 100m R4
10n L1 100n L2 10kQ3 R7 Q4 10k R6
Q4-G
V5
8 4 0 -4 655 655.02 655.04 655.06 655.08 655.1 655.12 655.14
V
Q3-G
Time/uSecs
20nSecs/div
MOSFET的关断过程是开通过程的反过程。
POWER MOSFET 驱动电流
Qg Qgs Qgd Qod
Qg Qg ig dt Qg I g ts I g t s
0
V R C ig dr e g eff Rg t
ts
V dr i gpk Rg
等效电路中的 Ceff 为等效输入电容,并 不等于 Ciss
500.1
500.15
500.2
500.25
500.3
500.35
Time/uSecs 30 25
20 15 10 5 -0 8
50nSecs/div
V
并联MOSFET使用单独的驱动 电阻可以改善并联均流问题
A
4 0 -4 605 Time/uSecs 605.05 605.1 605.15 605.2 605.25 605.3 605.35
MOSFET的驱动电压与占空比有关, 应确保在最大ห้องสมุดไป่ตู้空比时有足够的驱 动电压。
VGS
VDRV VC VDRV D VDRV 1 D VDRV n n n
POWER MOSFET 隔离驱动
变压器匝比为1,MOSFET的G-S间电 压与占空比无关。
VGS
VDRV VC n 1 VC VD VGS VDRV VD n
开关模型: 描述了MOSFET的重要寄生参数
POWER MOSFET 寄生参数
CRSS ,ave 2 CRSS ,spec VDS , spec VDS ,off VDS ,spec VDS ,off
COSS ,ave 2 COSS ,spec
CGD CRSS ,ave CGS CISS CRSS CDS COSS ,ave C RSS ,ave
POWER MOSFET 并联驱动
Vth对并联驱动的影响 如果Vth1<Vth2
10n L8 10n L11 R11
12 10
S1-CP / V
8 6 4 2 0 40 30 20 10 0 -10 -20
10 V4 R10 10 R16
S1
S2 V6
MOSFET并联驱动时,应尽可 能保证MOSFET的Vth一致: • MOSFET 特性完全一致 • MOSFET的温度一致
V5
V
310
310.05
310.1
310.15
310.2
310.25
310.3
310.35
310.4
Time/uSecs
20 16
50nSecs/div
A
12 8 4
在MOSFET的栅极串联一个磁 珠并增大驱动电阻可以很好 的改善MOSFET的并联效果。
-0 8 4
V
0 -4 -8 615 Time/uSecs 615.1 615.2 615.3 615.4 615.5 100nSecs/div
ZVS 电路中POWER MOSFET 开通过程
在ZVS电路或同步整流电路中,MOSFET驱 动没有米勒平台。
POWER MOSFET 驱动电阻的影响
增大驱动电阻的影响
12
10
8
D1
V2 Q1-G V1 R1 Q1 I1
Q1-G / V
Rgate 增大
6 4
2
-0 240 Time/uSecs 240.1 240.2 240.3 240.4 100nSecs/div
POWER MOSFET 驱动技术
1
2 3
POWER MOSFET 直接驱动
POWER MOSFET自举驱动
POWER MOSFET隔离驱动
4
POWER MOSFET 并联驱动
POWER MOSFET 的结构
N-MOSFET 结构示意图
POWER MOSFET 等效模型
动态模型: 描述了dV/dt的影响
能有效减小源极负压的影响, 但是同样使得自举电容充电时间变 长
POWER MOSFET 自举驱动
减小寄生电感的方法 • 开关之间的走线不形成回路
• 减小开关管的走线长度 • 自举二极管应尽可能靠近自举电容 • 去耦电容和栅极驱动电阻应尽可能靠近栅极驱动集成电 路。
POWER MOSFET 隔离驱动
10
2MHertz/div
Spectrum(Q1-G (tran19)) / V
1 100m 10m 1m 100u 10u
Rgate 增大
2 -0 450
0 0.5 1 1.5 2 2.5 3 3.5 4
450.02 450.04 450.06 450.08
450.1
450.12 450.14 450.16 20nSecs/div
驱动上升变慢,开关过程延长,开关损耗增大。
POWER MOSFET 驱动电阻的影响
减小驱动电阻的影响
10 1 100m
Spectrum(Q1-G) / V
10m 1m 100u 10u 1u 100n 0 2 4 6 8 10 12 14 16
16 14 12
Q1-G / V
10 8 6 4
Frequency/MHertz
t2-t3: Id达到稳定值,Vgs固定不变,Vds 电压开 始下降,VDD给Cgd提供放电电流。(米勒效应)
POWER MOSFET 开通过程
t3-t4: Vds下降到0V,MOSFET完全导通,VDD继续给Cgs充 电,直至Vgs=Vdd,MOSFET完成开通过程。