中考数学选择题专项训练5
中考数学选择题【15分钟课堂专项训练】(5套)(附答案)

中考数学选择题【15分钟课堂专项训练】(一)1. 下列各组数中,互为相反数的是【 】A .2和-2B .-21C .-21D 12 2. 初步核算,2016年全年国内生产总值519322亿元,按可比价格计算,比上年增长7.8%.请你以亿元为单位用科学记数法表示去年我国的国内生产总值为(结果保留两个有效数字)【 】 A .0.52×106B .5.2×1013 C.5.1×105 D .5.2×1053. 下列说法:①一组数据不可能有两个众数;②将一组数据中的每一个数据都加上(或都减去)同一个常数后,方差恒不变;③随意翻到一本书的某页,这页的数码是奇数,这个事件是必然发生的;④要反映郑州市某一天内气温的变化情况,宜采用折线统计图.其中正确的是【 】 A .①和③B .②和④C .①和②D .③和④4. 把抛物线y =x 2+b x +c 的图象向左平移3个单位,再向下平移2个单位,所得图象的关系式为y =x 2-3x +5,则有【 】A .b =3,c =7B .b =-9,c =25C .b =3,c =3D .b =-9,c =21 5. 函数y y =x 没有交点,那么k 的取值范围是【 】 A .k >1 B .k <1 C .k >-1 D .k <-16. 如图是一个正六棱柱的主视图和左视图,则图中的a =【 】A .2 D .17. 如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为【 】 A .11 B .5.5 C .7 D .3.58. 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为【 】A. B .9cm C D中考数学选择题【15分钟课堂专项训练】(二)1. 】A.33± B .33 C .3 D.3 2. 如图,a ∥b ,∠1=65°,∠2=140°,则∠3=【 】A .100° B.105° C.110° D.115°3. 下列各式运算正确的是【 】A .2a 2·3a 2=5a 2B .(-a 2)3=a 6C .32+23=55D .2210(0.1)1--⨯=4. 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了【 】个人A .12B .11C .10D .95. 某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均千克,亩产量的方差分别是229.6S =甲,2 2.7S =乙,则关于两种小麦推广种植的合理决策是【 】A .甲的平均亩产量较高,应推广甲B .甲、乙的平均亩产量相差不多,均可推广C .甲的平均亩产量较高,且亩产量比较稳定,应推广甲D .甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙 6. 已知一次函数y 1=x -1A ,B 两点,当y 1>y 2时,x 的取值范围是【 】A .x >2B .-1<x <0C .x >2或-1<x <0D .0<x <27. 如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为【 】 A .(5,2) B .(2,5)C .(2,1)D .(1,2)8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD-DC-CB以每秒3c m的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y 与x之间函数关系的是【】A. B.C.D.中考数学选择题【15分钟课堂专项训练】(三)1.3×(-4)的值是【】A .-12B .-7C .-1D .122. 若一个所有棱长都相等的三棱柱,它的主视图和俯视图分别是正方形和正三角形,则左视图是【 】A .矩形B .正方形C .菱形D .正三角形3. 某种鲸的体重约为1.36×105k g ,关于这个近似数,下列说法正确的是【 】A .精确到百分位,有3个有效数字B .精确到个位,有6个有效数字C .精确到千位,有6个有效数字D .精确到千位,有3个有效数字4. 如图,在等腰梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,下列结论不一定...正确..的是【 】 A .AC =BD B .∠OBC =∠OCB C .S △AOB =S △COD D .∠BCD =∠BDC5. 某校九年级有17名同学参加百米竞赛,预赛成绩各不相同,要取前9名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这17名同学成绩的【 】A .中位数B .众数C .平均数D .极差6. 如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A ,B ,O 三点,点C 为弧ABO 上的一点(不与O ,A 两点重合),则cos ∠C 的值是【 】 A 33447. 如图,D 是△ABC 内一点,BD ⊥CD ,AD =6,BD =4,CD =3,E ,F ,G ,H分别是AB ,AC ,CD ,BD 的中点,则四边形EFGH 的周长是【 】A.7B.9C.10D.118.如图,在△ABC中,∠ACB=90º,AC>BC,分别以AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△CGM,△BND的面积分别为S1,S2,S3,则下列结论正确的是【】A.S1=S2=S3B.S1=S2<S3C.S1=S3<S2D.S2=S3<S1中考数学选择题【15分钟课堂专项训练】(四)1.计算(-1)2+(-1)3的值为【】A.-2 B.-1 C.0 D.22.如图所示是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体块数最多是【】A .8B .10C .12D .153. 某中学九年级一班准备组织参加旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去海洋馆的学生数”的扇形圆心角为60°,则下列说法中正确的是【 】A .想去海洋馆的学生占全班学生的60%B .想去海洋馆的学生有12人C .想去海洋馆的学生肯定最多D 4. 某游泳池的横截面如图所示,用一水管向池内持续注水,若单位时间内注入的水量保持不变,则在注水过程中,下列图象能反映深水区水深h 与注水时间t 之间关系的是【 】5. 如图,直线l 和双曲线0ky k x=>()交于A ,B 两点,P 是线段AB 上的点(不与A ,B重合).过点A ,B,P 分别向x 轴作垂线,垂足分别为C ,D ,E ,连接OA ,OB ,OP .设△AOC 的面积为1S ,△BOD 的面积为2S ,△POE 的面积为3S ,则【 】A .123S S S <<B .123S S S >>C .123S S S =>D .123S S S =<6. 如图,在平面直角坐标系中,线段AB 的端点坐标为A (-2,4),B (4,2),直线y =kx -2与线段AB 有交点,则k 的值不可能是【 】 A .-5 B .-2 C .2 D .57. 如图,四边形ABCD 中,∠BAD =∠ADC =90°,AB =AD CD P 在四边形ABCD 的边上,若P 到BD P 的个数为【 】 .1 B .2 C .3 D .48. 在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为【 】 A .64 B .49 C .36 D .25中考数学选择题【15分钟课堂专项训练】(五)1. 】A .3B .3±C .3D .3±2. 下列命题中,真命题是【 】A .对角线互相垂直且相等的四边形是正方形B .等腰梯形既是轴对称图形又是中心对称图形C .圆的切线垂直于经过切点的半径D .垂直于同一直线的两条直线互相垂直3. 将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有【 】 A .1种B .2种C .4种D .无数种4. 某公司共有51名员工(包括经理),经理的工资高于其他员工的工资.今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会【 】 A .平均数和中位数都不变B .平均数增加,中位数不变C .平均数不变,中位数增加D .平均数和中位数都增加5. 关于x 的方程12mx x -=的解为正实数,则m 的取值范围是【 】A .m ≥2B .m ≤2C .m >2D .m <26. 若等腰三角形一腰上的高等于腰长的一半,则这个等腰三角形的底角为【 】A .75°或15°B .36°或60°C .75°D .30°7. 如图,△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是【 】 A 1B 11D 18. 已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1);④(a +c )2<b 2;⑤a >1.其中正确的是【 】A.①⑤ B.①②⑤C.②⑤D.①③④中考数学选择题【15分钟课堂专项训练】参考答案中考数学选择题【15分钟课堂专项训练】(一)答案中考数学选择题【15分钟课堂专项训练】(二)答案中考数学选择题【15分钟课堂专项训练】(三)答案中考数学选择题【15分钟课堂专项训练】中考数学选择题【15分钟课堂专项训练】(五)11。
中考数学选择题、填空题专项训练

中考数学选择题、填空题专项训练一.选择题1.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤02.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130° D.140°3.聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米B.204米C.240米D.407米4.在平面直角坐标系中有三个点A(1,﹣1)、B(﹣1,﹣1)、C(0,1),点P (0,2)关于A的对称点为P1,P1关于B的对称点P2,P2关于C的对称点为P3,按此规律继续以A、B、C为对称中心重复前面的操作,依次得到P4,P5,P6,…,则点P2015的坐标是()A.(0,0) B.(0,2) C.(2,﹣4)D.(﹣4,2)5.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1 B.2 C.3 D.46.如图,在正方形ABCD的每个顶点上写一个数,把这个正方形每条边的两端点上的数加起来,将和写在这条边上,已知AB上的数是3,BC上的数是7,CD 上的数是12,则AD上的数是()A.2 B.7 C.8 D.157.从1开始得到如下的一列数:1,2,4,8,16,22,24,28,…其中每一个数加上自己的个位数,成为下一个数,上述一列数中小于100的个数为()A.21 B.22 C.23 D.998.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣19.如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边GD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A.B.C.D.10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x的值为()A.135 B.170 C.209 D.252二.填空题11.如图,随机地闭合开关S1,S2,S3,S4,S5中的三个,能够使灯泡L1,L2同时发光的概率是.12.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是.13.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距离是2;③tan ∠DCF=;④△ABF的面积为.其中一定成立的是(把所有正确结论的序号都填在横线上).14.如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC 与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)15.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=.16.如图,在一次数学活动课上,张明用17个边长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.17.如图,等腰直角三角形BDC的顶点D在等边三角形ABC的内部,∠BDC=90°,连接AD,过点D作一条直线将△ABD分割成两个等腰三角形,则分割出的这两个等腰三角形的顶角分别是度.18.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.。
数学初三中考专项训练练习题

数学初三中考专项训练练习题一、选择题1. 已知直角三角形的三边分别为5cm、12cm和13cm,则该三角形的面积是:A. 10cm²B. 24cm²C. 30cm²D. 60cm²2. 若A、B两点的坐标分别为A(3, 4)、B(7, 6),则线段AB的长度是:A. 2B. 4C. 5D. 83. 若要把一个边长为2cm的正方形放大成面积为32cm²的正方形,边长放大为原来的几倍?A. 2倍B. 4倍C. 6倍D. 8倍4. 若直线y = 2x + 3与x轴和y轴交点分别为A、B,那么点A的坐标是:A. (1, 0)B. (0, 1)C. (3, 0)D. (0, 3)5. 若a:b = 3:4,且b:c = 2:5,那么a:c = ?A. 3:8B. 6:10C. 3:5D. 6:20二、填空题6. 已知直角三角形的一条直角边长为5cm,斜边长为13cm,那么另一条直角边长是__cm。
7. 若一个正方形的面积是64cm²,则其边长是__cm。
8. 若a:b = 2:3,且b:c = 4:5,那么a:b:c = __:__:__。
9. 直线y = -2x + 6与x轴的交点坐标是(__, 0)。
10. 若两个数的比为5:7,其中较小的数为35,那么较大的数是__。
三、解答题11. 一辆汽车以每小时60公里的速度行驶,则45分钟后所走过的路程是多少千米?12. 已知平行四边形ABCD中,AB的长度为7cm,高为4cm,求平行四边形的面积。
13. 某商品原价为120元,打折后的价格为原价的80%,则打折后的价格是多少元?14. 某年男生占全校人数的3/4,女生人数为600人,求全校的人数。
15. 一个矩形的长是9cm,宽是5cm,求其周长和面积。
四、应用题16. 一条直线的斜率为2,过点A(3, 4),求该直线的方程。
17. 一种商品原价为80元,现在打折8折出售,若小明用100元买了该商品,小明应找回多少元?18. 若一个正方形的面积增加到原来的9倍,边长增加到原来的几倍?19. 小明的年龄是小红的1.5倍,小红的年龄是小雅的1.25倍,若小雅的年龄为20岁,求小明的年龄。
中考数学复习专题训练精选试题及答案

中考数学复习专题训练精选试题及答案一、选择题1. 以下哪一个数是最小的无理数?A. √2B. πC. 3.14D. √9答案:A2. 若一个等差数列的首项是2,公差是3,则第8项是多少?A. 17B. 18C. 19D. 20答案:A3. 一个二次函数的图像开口向上,顶点坐标为(3,-4),则该二次函数的一般式为:A. y = x² + 6x - 13B. y = x² - 6x + 13C. y = -x² + 6x - 13D. y = -x² - 6x + 13答案:B4. 在三角形ABC中,a = 5,b = 7,C = 60°,则边c 的长度等于:A. 6B. 8C. 10D. 12答案:C二、填空题1. 已知a = 3,b = 4,则a² + b² = _______。
答案:252. 已知一个等差数列的前5项和为35,首项为7,求公差d = _______。
答案:23. 在梯形ABCD中,AB // CD,AB = 6,CD = 8,AD = BC = 5,求梯形的高h = _______。
答案:34. 若函数f(x) = x² - 2x + 1的最小值为m,求m =_______。
答案:0三、解答题1. 已知一元二次方程x² - 4x - 12 = 0,求解该方程。
解:首先,将方程因式分解为(x - 6)(x + 2) = 0。
然后,解得x = 6或x = -2。
答案:x = 6或x = -22. 已知一个长方体的长为a,宽为b,高为c,且a、b、c成等差数列。
若长方体的体积为V,求V的表达式。
解:由题意可知,a + c = 2b,所以c = 2b - a。
长方体的体积V = abc = ab(2b - a)。
答案:V = ab(2b - a)3. 已知三角形ABC,AB = AC,∠BAC = 40°,BC = 6,求三角形ABC的周长。
专练05 三角形中的最值问题-2021年中考数学压轴题专项高分突破训练(全国通用)(解析版)

专练05三角形中的最值问题1.几何探究题(1)发现:在平面内,若AB=a,BC=b,其中b>a.当点A在线段BC上时,线段AC的长取得最小值,最小值为________;当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为________.(2)应用:点A为线段BC外一动点,如图2,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=5,AB=2,则线段BE长度的最大值为________.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(7,0),点P为线AB 外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)∵当点A在线段BC上时,线段AC的长取得最小值,最小值为BC-AB,∵BC=b,AB=a,∴BC-AB=b-a,当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为BC+AB,∵BC=b,AB=a,∴BC+AB=b+a,故答案为:b-a,b+a;(2)解:①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,{AD=AB∠CAD=∠EABAC=AE,∴△CAD≌△EAB(SAS),∴CD=BE;7 ②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BE=CD=BD+BC=AB+BC=5+2=7;故答案为:7.(3)解:最大值为5+2 √2;∴P(2- √2,√2).如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(7,0),∴AO=2,OB=7,∴AB=5,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN= √2AP=2 √2,∴最大值为 5+2 √2;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE= √2,∴OE=OA-AE=2- √2,∴P(2- √2,√2).2.阅读下列材料,解决提出的问题:【最短路径问题】如图(1),点A,B分别是直线l异侧的两个点,如何在直线l上找到一个点C,使得点C到点A,点B 的距离和最短?我们只需连接AB,与直线l相交于一点,可知这个交点即为所求.如图(2),如果点A,B分别是直线l同侧的两个点,如何在l上找到一个点C,使得这个点到点A、点B 的距离和最短?我们可以利用轴对称的性质,作出点B关于的对称点B’,这时对于直线l上的任一点C,都保持CB=CB’,从而把问题(2)变为问题(1).因此,线段AB’与直线l的交点C的位置即为所求.为了说明点C的位置即为所求,我们不妨在直线上另外任取一点C’,连接AC’,BC’,B’C’.因为AB’≤AC’+C’B’,∴AC+CB≤AC’+C’B,即AC+BC最小.(1)【数学思考】材料中划线部分的依据是________.(2)材料中解决图(2)所示问题体现的数学思想是.(填字母代号即可)A.转化思想B.分类讨论思想C.整体思想(3)【迁移应用】如图3,在Rt△ABC中,∠C=90°,∠BAC=15°,点P为C边上的动点,点D为AB边上的动点,若AB =6cm,求BP+DP的最小值.【答案】(1)两点之间线段最短或者三角形任何两边的和大于第三边(2)A(3)解:如图,作点B关于点C的对称点B′,连接AB′.作BH⊥AB′于H.作点D关于AC的对称点D′,则PD=PD′,∴PB+PD=PB+PD′,根据垂线段最短可知,当点D′与H重合,B,P,D′共线时,PB+PD的最小值=线段BH的长,∵BC=CB′,AC⊥BB′,∴AB=AB′,∴∠BAC=∠CAB′=15°,∴∠BAH=30°,在Rt△ABH中,∵AB=3cm,∠BAH=30°,∴BH=12AB=3cm,∴PB+PD的最小值为3cm3.如图(1)性质:角平分线上的点到角两边的距离相等,如图1:OP平分∠MON,PC⊥OM于C,PB⊥ON于B,则PB________PC(填“ >”“ <”或“=”);(2)探索:如图2,小明发现,在△ABC中,AD是∠BAC的平分线,则S△ABDS△ADC =ABAC,请帮小明说明原因.(3)应用:如图3,在小区三条交叉的道路AB,BC,CA上各建一个菜鸟驿站D,P,E,工作人员每天来回的路径为P→D→E→P,①问点P应选在BC的何处时,才能使PD+DE+PE最小?②若∠BAC=30°,S△ABC=10,BC=5,则PD+DE+PE的最小值是多少?【答案】(1)∵OP平分∠MON,PC⊥OM于C,PB⊥ON于B,∴PB=PC(2)解:理由:过点D作DE⊥AB于E,DF⊥AC于F∵AD是∠BAC的平分线,∴DE=DF∴S△ABDS△ADC =12DE·AB12DF·AC=ABAC;(3)解:①过点A作AP⊥BC于P,分别作点P关于AB、AC的对称点P1、P2 ,连接P1P2分别交AB、AC于D、E,连接PD、PE、AP1、AP2 ,由对称的性质可得AP1=AP=AP2 ,DP1=DP,EP2=EP,∴PD+DE+PE= DP1+DE+ EP2= P1P2 ,根据两点之间,线段最短和垂线段最短,即可得出此时PD+DE+PE最小,即P1P2的长即当AP⊥BC于P时,PD+DE+PE最小;②∵S△ABC=10,BC=5,∴12BC·AP=10解得:AP=4由对称的性质可得AP1=AP=AP2=4,DP1=DP,EP2=EP,∠DAP1=∠DAP,∠EAP2=∠EAP∴∠DAP1+∠EAP2=∠DAP+∠EAP=∠DAE=30°∴∠P1AP2=60°∴△P1AP2是等边三角形∴P1P2= AP1=4即PD+DE+PE的最小值是4.4.如图(1)探索1:如图1,点A 是线段BC 外一动点,若AB=2,BC=4,填空:当点A 位于________线段AC 长取得最大值,且最大值为________;(2)探索2:如图2,点A 是线段BC 外一动点,且AB=1,BC=3,分别以AB、BC 为直角边作等腰直角三角形ABD 和等腰直角三角形CBE,连接AC、DE.①请找出图中与AC 相等的线段,并说明理由;②直接写出线段DE 长的最大值;(3)如图3,在平面直角坐标系中,已知点A(2,0)、B(5,0),点P、M 是线段AB 外的两个动点,且PA=2,PM=PB,∠BPM=90°,求线段AM 长的最大值及此时点P 的坐标.(提示:在图 4 中作PN⊥PA,PN=PA,连接BN 后,利用探索 1 和探索2中的结论,可以解决这个问题)【答案】(1)∵点A为线段BC外一动点,且AB=2,BC=4,∴当点A位于CB的延长线上时,线段AC的长取最大值,最大值为2+4=6,故答案是:CB的延长线上,6;(2)解:①∵△ABD和△CBE是等腰直角三角形,∴AB=DB,CB=EC,∠ABD=∠CBE=90°,∴∠ABD−∠ABE=∠CBE−∠ABE,即∠DBE=∠ABC,在△BAC和△BDE中,{BA=BD∠ABC=∠DBEBC=BE,∴△BAC≅△BDE(SAS),∴AC=DE;②由(1)知AC的最大值是AB+BC=4,∵DE=AC,∴DE长的最大值是4;类比应用:(3)解:如图,过点P作PN⊥PA,PN=PA,连接BN,根据(2)中的方法,同理可以证明△AMP≅△NBP,∴AM=BN,当点N在线段BA的延长线上时,线段BN取最大值,也就是线段AM取最大值,最大值是AB+AN,∵A(2,0),B(5,0),∴AB=3,∵△APN是等腰直角三角形,∴AN=√2AP=2√2,∴最大值是2√2+3,如图,过点P作PE⊥x轴于点E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO−AB−AE=5−3−√2=2−√2,∴P(2−√2,√2),如图,点P也有可能在x轴下方,与刚刚的点P关于x轴对称,P(2−√2,−√2),综上:点P的坐标是(2−√2,√2)或(2−√2,−√2).5.在等腰Rt△ABC中,∠BAC=90°,AB=AC=6 √2,D是射线CB上的动点,过点A作AF⊥AD(AF始终在AD上方),且AF=AD,连接BF(1)如图1,当点D在线段BC上时,BF与DC的关系是________.(2)如图2,若D、E为线段BC上的两个动点,且∠DAE=45°,连接EF,DC=3,求ED的长.(3)若在点D的运动过程中,BD=3,则AF=________.(4)如图3,若M为AB中点,连接MF,在点D的运动过程中,当BD=________时,MF的长最小?最小值是________.【答案】(1)当点D在线段BC上时,∵AF=AD,∠BAF=90°−∠BAD=∠DAC,AB=AC∴△FAB≅△DAC(SAS)∴BF=DC(2)解:∵AE=AE,∠EAF=90°−∠DAE=45°=∠EAD,AF=AD,∴△FAE≅△DAE(SAS)∴ED=EF=3( 3 )BD=3,设AG为BC边上的高,G为垂足,在等腰Rt△ABC中,G为BC的中点,∴AF=AD=√AG2+DG2=√62+(6−3)2=3√5( 4 )点F的轨迹是过点B,且垂直于BC的射线,根据垂线段最短的性质,当MF⊥BF时,线段MF 最短,又因为BC⊥BF,∠ABC=45°,∠FBD=90°∴△BFM为等腰直角三角形,MF=BF=√22BM=√22×AB2=√24×6√2=3BD=BC-DC=12-3=9此时MF=3.6.(1)发现如图①所示,点A为线段BC外的一个动点,且BC=a,AB=b.填空:当点A位于________时,线段AC 的长取得最大值,且最大值为________(用含a、b 的式子表示).(2)应用点A为线段BC外一个动点,且BC=4,AB=1.如图②所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值_▲ .(3)拓展如图③所示,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P为线段AB外一个动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM的最大值________及此时点P的坐标________.【答案】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上;a+b;(2)解:①CD=BE;理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,{AD=AB∠CAD=∠EABAC=AE,∴△CAD≌△EAB,②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5故答案为:5;( 3 )∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN= √2AP=2 √2,∴AM长的最大值为2 √2+4;如图2,当点P在第一象限时,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE= √2,∴OE=OA-AE=2- √2,∴P(2- √2,√2);如图3,当点P在第四象限时,根据对称性可知,P(2- √2,- √2)也符合题意综上:点P的坐标为(2- √2,√2)或(2- √2,- √2)故答案为:2 √2+4;(2- √2,√2)或(2- √2,- √2).7.在等腰Rt△ABC中,∠BAC=90°,AB=AC=6√2,D是射线CB上的动点,过点A作AF⊥AD(AF始终在AD上方),且AF=AD,连接BF.(1)如图1,当点D在线段BC上时,BF与DC的关系是________;(2)如图2,若点D,E为线段BC上的两个动点,且∠DAE=45°,连接EF,DC=3,求ED 的长;(3)若在点D的运动过程中,BD=3,则AF=________;(4)如图3,若M为AB中点,连接MF,在点D的运动过程中,当BD=________时,MF的长最小?最小值是________.【答案】(1)长度相等(2)5(3)3√5(4)9;3【解析】(1)∵AF⊥AD∴∠DAF=90°∵∠BAC=90°∴∠CAD=∠BAC-∠BAD=∠DAF-∠BAD=∠BAF 即∠CAD =∠BAF∵AB=AC,AF=AD∴△ADC≌△AFB,∴BF= DC故答案为:长度相等;(2)由(1)可知△ADC≌△AFB,∵∠DAE=45°,∠BAC=90°∴∠CAD+∠BAE=45°∵∠CAD =∠BAF∴∠BAF +∠BAE=45°∴∠FAE=45°= ∠DAE∵AD=AF,AE=AE∴△AED≌△AEF,得到EF=DE,设DE=x,∵∠BAC=90°,AB=AC=6√2,∴BC= √AB2+AC2=12,∠C=∠ABC=45°,∴∠ABF=∠C=45°∴∠FBE=90°∴△BEF是直角三角形,∵EF=DE =x,CD=3∴BE=9-x,BF=CD=3在Rt△BEF中,EF2=BF2+BE2,即x2=32+(9-x)2,解得x=5即DE的长为5;(3)如图,过A点作AH⊥BC于H点,∵△ABC为的等腰直角三角形∴AH是△ABC的中线,BC=6∴AH= 12∵BD=3,∴DH=BH-BD=3∴AD= √AH2+DH2=3√5∴AF= 3√5故答案为:3√5;(4)如图,取AC中点M’,故BM=CM’∵∠FBM=∠C,BF=CD∴△FBM≌△DCM’∴MF=M’D,故当M’D最短时,则MF最短,作M’D⊥BC于D’点,AC=3√2则△CD’M’是等腰直角三角形,M’C= 12设CD’=D’M’=a∴a2+a2=(3√2)2解得a=3(负值舍去)∴CD’=3故此时BD=12-3=9,MF=D’M’=3故答案为:9;3.8.如图1,已知直线l的同侧有两个点A,B,在直线l上找一点P,使P点到A,B两点的距离之和最短的问题,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点就是所要找的点,通过这种方法可以求解很多问题(1)如图2,在平面直角坐标系内,点A的坐标为(1,1),点B的坐标为(5,4),动点P在x轴上,求PA+PB的最小值;(2)如图3,在锐角三角形ABC中,AB=8,∠BAC=45°,∠BAC的角平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值为________(3)如图4,∠AOB=30°,OC=4,OD=10,点E,F分别是射线OA,OB上的动点,则CF+EF+DE的最小值为________。
中考数学总复习《选择、填空题》专项练习题含有答案

中考数学总复习《选择、填空题》专项练习题含有答案(测试时间:30分钟;总分:45分)一、选择题(每小题3分,共30分) 1. -14的相反数是( )A. -14B. 14C. -4D. 42. 下列图形中,既是轴对称图形,又是中心对称图形的是( )3. 不等式组的解集在数轴上表示为( )4. 下列几何体是由大小相同的小正方体组成,其中主视图和俯视图相同的是( )5. 如图,四个长和宽分别为x +2和x 的矩形拼接成大正方形.若四个矩形和中间小正方形的面积和为4×35+22,则根据题意能列出的方程是( )A. x 2+2x -35=0B. x 2+2x +35=0C. x 2+2x -4=0D. x 2+2x +4=0 第5题图24030x x -<⎧⎨+≥⎩6. 如图,一次函数y 1=-x +1与反比例函数y 2=-2x 的图象都经过A ,B 两点,则当y 1<y 2时,x 的取值范围是( )A. x <-1B. x <-1或0<x <2C. -1<x <2D. -1<x <0或x >2 第6题图7. 某校的5名同学在“国学经典诵读”比赛中,成绩(分)分别是93,96,91,93,87,关于这组数据,下列说法正确的是( )A. 平均数是92.5B. 中位数是91C. 众数是93D. 方差是08. 在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( )A. y =-xB. y =x +2C. y =2xD. y =x 2-2x9. 如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若AE =20,CE =15,CF =7,AF =24,则BE 的长为( )A. 10B. 254C. 15D. 252第9题图10. 如图,Rt △ABC 中,∠C =90°,AC =6,BC =8,以点A 为圆心,BC 的长为半径作弧交AB 于点D ,再分别以点A ,D 为圆心,AB ,AC 的长为半径作弧交于点E ,连接AE ,DE ,若点F 为AE 的中点,则DF 的长为( )A. 4B. 5C. 6D. 8 第10题图 二、填空题(每小题3分,共15分)11. 对于任意两个不相等的数a ,b ,定义一种新运算“⊕”如下:a ⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________.12. 方程x 2x -4-12-x=1的解为________.13. 2020年6月21日,第二届全球文旅创作者大会在河南省云台山举行,现从2位文旅大咖,2位文旅创作者中随机抽取2人分享经验,则抽取的2人中,一位是文旅大咖,一位是文旅创作者的概率是________.14. 如图,在扇形OAB 中,∠AOB =90°,C 是OA 的中点,D 是AB ︵的中点,连接CD 、C B.若OA =2,则阴影部分的面积为________.(结果保留π)第14题图15. 如图,已知Rt △ABC 中,∠C =90°,AC =4,AB =a ,点M 在边AB 上,且AM =14a ,点N 是AC上一动点,将△AMN 沿MN 折叠,使点A 的对应点A ′恰好落在BC 上,若△BMA ′是直角三角形,则a 的值为________.第15题图参考答案1. B2. D 【解析】逐项分析如下:3. C 【解析】⎩⎪⎨⎪⎧2x -4<0①x +3≥0②,解不等式①,得x <2,解不等式②,得x ≥-3,∴不等式组的解集为-3≤x <2,表示在数轴上如选项C .4. C 【解析】逐项分析如下:5. A 【解析】依题意,得(x +x +2)2=4×35+22,即x 2+2x -35=0.6. D 【解析】联立⎩⎪⎨⎪⎧y =-x +1y =-2x ,解得⎩⎪⎨⎪⎧x =-1y =2或⎩⎪⎨⎪⎧x =2y =-1.∴A (-1,2),B (2,-1),y 1<y 2即一次函数的图象在反比例函数图象的下方,结合题图可知,当y 1<y 2时,x 的取值范围是-1<x <0或x >2.7. C 【解析】这组数据的平均数=15×(93+96+91+93+87)=92(分),∴A 选项错误;这组数据按从小到大的顺序排列为:87、91、93、93、96,∴这组数据的中位数为93分,∴B 选项错误;∵93出现的次数最多,∴这组数据的众数为93分,∴C 选项正确;∵这组数据有变化,∴方差不为0,∴D 选项错误.8. B 【解析】根据“好点”的定义,好点即为直线y =x 上的点,令各函数中y =x ,x =-x ,解得x =0,即“好点”为(0,0),故A 选项不符合;x =x +2,无解,即该函数图象中不存在“好点”,故B 选项符合;x =2x ,解得x =±2,经检验x =±2是原方程的解,即“好点”为(2,2)和(-2,-2),故C选项不符合;x =x 2-2x ,解得x =0或3,即“好点”为(0,0)和(3,3),故D 选项不符合.9. C 【解析】∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△AEB ∽△AFD ,∴BE DF =AE AF =2024=56,设BE =5x ,则DF =6x ,AB =CD =7+6x ,在Rt △ABE 中,(7+6x )2=(5x )2+202,即11x 2+84x -351=0,解得x =3或x =-11711(舍去),∴BE =5x =15.10. B 【解析】由作图可知△ADE ≌△BCA .∴∠ADE =∠C =90°,AE =AB .又∵AC =6,BC =8,∠C =90°,∴AB =10=AE .∵点F 为AE 的中点,∴DF =12AE =12AB =5.11. 2 【解析】由题意得12⊕4=12+412-4=422= 2.12. x =6 【解析】去分母得x -(-2)=2x -4,去括号得x +2=2x -4,移项得x -2x =-4-2,合并同类项得-x =-6,解得x =6,检验:当x =6时,2x -4≠0,2-x ≠0,∴原方程的解为x =6.13. 23【解析】2名文旅大咖记为A 1、A 2,2名文旅创作者记为B 1、B 2,列表如下:由表格可知,共有12种等可能的结果,其中抽到一位文旅大咖,一位文旅创作者的情况有8种,∴P (抽取的2人中,一位是文旅大咖,一位是文旅创作者)=812=23. 14.π2+22-1 【解析】如解图,连接OD ,过点D 作DH ⊥OA 于点H ,∵∠AOB =90°,D 是AB ︵的中点,∴∠AOD =∠BOD =45°,∵OD =OA =2,∴DH =22OD =2,∵C 是OA 的中点,∴OC =1,∴S 阴影=S 扇形DOB +S △CDO -S △BCO =45×π×22360+12×2×1-12×1×2=π2+22-1.第14题解图15. 410或12 【解析】由折叠性质可得A ′M =AM =14a ,分两种情况:①如解图①,当∠BMA ′=90°时,△BMA ′是直角三角形,tanB=A ′M BM =AC BC ,即14a 34a =4BC,解得BC =12,由勾股定理得a =BC 2+AC 2=42+122=410;②如解图②,当∠BA ′M =90°时,△BMA ′是直角三角形,sin B =A ′M BM =ACAB ,即14a 34a =4a,解得a =12,∴a 的值为410或12.第15题解图。
【精选试卷】(必考题)中考数学专项练习经典练习卷(含答案解析)

一、选择题1.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1B .0,1C .1,2D .1,2,32.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-3.如果关于x 的分式方程11222ax x x-+=--有整数解,且关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4,那么符合条件的所有整数a 的值之和是( ) A .7 B .8 C .4 D .54.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( ) A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)5.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a6.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃7.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒8.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( )A .10°B .15°C .18°D .30°9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .10.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 11.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 12.下列二次根式中的最简二次根式是( )A 30B 12C 8D 0.513.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( )A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣3414.如图,是由四个相同的小正方体组成的立体图形,它的左视图是()A.B.C.D.15.如图,直线l1∥l2,将一直角三角尺按如图所示放置,使得直角顶点在直线l1上,两直角边分别与直线l1、l2相交形成锐角∠1、∠2且∠1=25°,则∠2的度数为()A.25°B.75°C.65°D.55°16.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个17.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分18.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y =ax 2+bx +c 的开口向下;③二次函数y =ax 2+bx +c 的对称轴在y 轴的左侧; ④不等式4a+2b+c>0一定成立. A .①②B .①③C .①④D .③④19.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A 点到B 点,甲虫沿大半圆弧ACB 路线爬行,乙虫沿小半圆弧ADA 1、A 1EA 2、A 2FA 3、A 3GB 路线爬行,则下列结论正确的是 ( )A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定20.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .2521.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=22.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数 0 1 2 3 4 人数41216171关于这组数据,下列说法正确的是( ) A .中位数是2 B .众数是17C .平均数是2D .方差是223.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°24.如图,矩形ABCD 的顶点A 和对称中心均在反比例函数y =kx(k≠0,x >0)上,若矩形ABCD 的面积为12,则k 的值为( )A .12B .4C .3D .625.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( )A .B .C .D .26.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠27.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A.60°B.50°C.45°D.40°28.下列各式化简后的结果为2的是()A6B12C18D3629.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x万元,那么下列方程符合题意的是()A.1069605076020500x x-=+B.5076010696020500x x-=+C.1069605076050020x x-=+D.5076010696050020x x-=+30.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A.众数是100B.中位数是30C.极差是20D.平均数是30【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.C3.C 4.A 5.C 6.B 7.B 8.B 9.D 10.A 11.B 12.A 13.B 14.A 15.C 16.C 17.B 18.C 19.C 20.B 21.D 22.A 23.C 24.D 25.A 26.B 27.D 28.C 29.A 30.B2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k,由方程有实数根,得(-4)2-4×3k≥0,解得k≤43,由于一元二次方程的二次项系数不为零,所以k≠0,所以k的取值范围为k≤43且k≠0,即k的非负整数值为1,故选A.2.C解析:C【解析】【分析】【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C .考点:菱形的性质;反比例函数图象上点的坐标特征.3.C解析:C 【解析】 【分析】解关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩,结合解集为x >4,确定a 的范围,再由分式方程11222ax x x-+=--有整数解,且a 为整数,即可确定符合条件的所有整数a 的值,最后求出所有符合条件的值之和即可. 【详解】由分式方程11222ax x x-+=--可得1﹣ax+2(x ﹣2)=﹣1 解得x =22a-, ∵关于x 的分式方程11222ax x x-+=--有整数解,且a 为整数 ∴a =0、3、4关于x 的不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)x ax x -⎧>⎪⎨⎪+<-⎩的解集为x >4∴a≤4于是符合条件的所有整数a 的值之和为:0+3+4=7 故选C . 【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.4.A解析:A 【解析】 【分析】把点(3,1)代入直线y =kx ﹣2,得出k 值,然后逐个点代入,找出满足条件的答案. 【详解】把点(3,1)代入直线y =kx ﹣2,得1=3k ﹣2, 解得k =1, ∴y =x ﹣2,把(2,0),(0,2),(1,3),(3,﹣1)代入y =x ﹣2中,只有(2,0)满足条件. 故选A . 【点睛】本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.5.C解析:C 【解析】 【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a bab b --=-+,故该选项计算错误,C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.6.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤. 故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.7.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.8.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键.9.D解析:D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a >0,∵对称轴为直线02b x a=->, ∴b <0, 二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】 考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.10.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.12.A解析:A【解析】【分析】根据最简二次根式的概念判断即可.【详解】A30B12=23C8=22,不是最简二次根式;D2 0.5=故选:A.【点睛】此题考查最简二次根式的概念,解题关键在于掌握(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.13.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.14.A解析:A【解析】【分析】【详解】从左面看,这个立体图形有两层,且底层有两个小正方形,第二层的左边有一个小正方形.故选A.15.C解析:C【解析】【分析】依据∠1=25°,∠BAC=90°,即可得到∠3=65°,再根据平行线的性质,即可得到∠2=∠3=65°.【详解】如图,∵∠1=25°,∠BAC=90°,∴∠3=180°-90°-25°=65°,∵l1∥l2,∴∠2=∠3=65°,故选C.【点睛】本题考查的是平行线的性质,运用两直线平行,同位角相等是解答此题的关键.16.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C .考点:轴对称图形.17.B解析:B【解析】【分析】根据平均数的定义进行求解即可得.【详解】根据折线图可知该球员4节的得分分别为:12、4、10、6,所以该球员平均每节得分=1241064+++=8, 故选B .【点睛】本题考查了折线统计图、平均数的定义等知识,解题的关键是理解题意,掌握平均数的求解方法. 18.C解析:C【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确;根据二次函数的对称轴为x =-2b a,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.故选:C.19.C解析:C【解析】12π(AA 1+A 1A 2+A 2A 3+A 3B)= 12π×AB ,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B 点。
初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。
某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。
现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学选择题专项训练(五)
做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日
1.[A ] [B ] [C ] [D ]2.[A ] [B ] [C ] [D ]3.[A ] [B ] [C ] [D ]4.[A ] [B ] [C ] [D ] 5.[A ] [B ] [C ] [D ] 6.[A ] [B ] [C ] [D ]7.[A ] [B ] [C ] [D ]8.[A ] [B ] [C ] [D ]
一、选择题(每小题3分,共24分)
1. 如图所示,将数轴上-2和-1之间的部分用小隔线分成八等份,则图中A 点
表示的数是【 】
A .54-
B .74-
C .94-
D .114
-
2. 若点A (n ,2)与B (-3,m )关于原点对称,则n -m 等于【 】 A .-1B .-5C .1 D .5
3. 如图,将正方体的相邻两个面各划分成九个全等的小正方形,并分别标上
“○”、“×”两符号.若下列有一图形为此正方体的展开图,则此图为【 】
A .
B .
C .
D . 4. 如图所示,直线l 表示地图上的一条直线型公路,其中A ,B 两点分别表示
公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第几公里处【 】
A .17
B .55
C .72
D .85
D C B
A l
B A 第157公里
第140公里
5. 如图所示,将正五边形ABCDE 的C 点固定,并按顺时针方向旋转,则旋转
多少度,可使得新五边形A ′B ′CD ′E ′的顶点D ′落在直线BC 上【 】 A .108B .72
C .54
D .36 6. 如图,直线y =kx +b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b <0
的解集为【 】
A .x >-3
B .x <-3
C .x >3
D .x <3
7. 如图,已知矩形纸片ABCD ,点E 是AB 的中点,点G 是BC 上的一点,
8. 如图所示,△ABC 中,∠B =90°,AB =21,BC =20.若有一半径为10的圆分
别与AB ,BC 相切,则下列何种方法可找到此圆的圆心【 】
A .∠
B 的角平分线与A
C 的交点 B .AB 的中垂线与BC 中垂线的交点
C .∠B 的角平分线与AB 中垂线的交点
D .∠B 的角平分线与BC 中垂线的交点
D B'A'E
E'
D'
A C
B 21
C
B
A。