复变函数课件5-2-1利用留数求积分
高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法

0
的去心邻域内的罗朗展开式为:
sin z
1 z2
z4
L
1n z2n
L
z
3! 5!
2n 1!
故负幂次项 z1的系数 C1 0 ,即
Res
sin z
z
, 0
0
若孤立奇点z0为f (z)的可去奇点,则
Res f (z), z0 0
例1.3
函数
f
(z)
1 z(z 1)2
在
z
1 处有一个
二级极点,这个函数又有下列罗朗展开式:
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
Cm 0
Байду номын сангаас
g z Cm Cm1 z z0 L C1 z z0 m1
C0 z z0 m L
在点 z0 是解析的,且 g z0 Cm 0
由
f
z
gz z z0 m
,有 z
z0 m
f
z
gz
上式两端对 z 求导 m 1 次,并取极限(z z0),
得
lim
在 z 1的去心邻域
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z
《复变函数》第5章

例: 对 f (z) z3 1.
f (1) 0, f (1) 3z 2 z 1 3 0
z 1 是 f (z)的一级零点.
2020/4/6
《复变函数》(第四版) 第五章
第7页
定理: z0 是 f (z)的m级极点
证:
f
(z)
(z
1 z0
)m
g
(z)
z0
是
f
1 的m级零点. (z)
f
复 变 函 数(第四版)
第五章 留 数
§1 孤立奇点 §2 留数 §3 留数在定积分计算上的应用 *§4 对数留数与辐角原理
2020/4/6
《复变函数》(第四版) 第五章
第1页
§1 孤立奇点
1. 定 义
如果函数 f (z)在 zo处不解析, 但在 zo的某 一去心邻域 0 < | z-zo |<δ处处解析, 则称zo 为函数 f (z)的孤立奇点. 例:z 0 为 f (z) sin 1 的孤立奇点 .
5
2020/4/6
《复变函数》(第四版) 第五章
第4页
∴
z = 0 分别是 本性奇点.
sin z
z
,
sin z4
z
,
sin
1 z
的可去、3极、
(1) zo为 f(z)的可去奇点
相当于实函可去间断点
lim f (z)存在且有限
zz0
f (z)在zo点的某去心邻域内有界.
(2) zo为 f (z)的极点
例:
z
0
是
ez 1 z2
的一级极点.
z
1
是
(z 1)3 sin( z 1)
的二级零点.
南大复变函数与积分变换课件(PPT版)5.2 留数

lim
z 1
d z
5
( z sin z )
1 5!
lim ( cos z )
z 1
. 巧合?
(非也!)
注 (1) 此类函数求留数,可考虑利用洛朗展式。
(2) 若此类函数求闭路积分,则可考虑利用高阶导公式,
而不一定非得使用下面即将介绍的留数定理。
16
§5.2 留数 第 三、留数定理 五 章 定理 设 f ( z ) 在区域 D 内除有限个孤立奇点 z1 , z2 , , zn 外 处处解析,在边界 C 上连续, 则 留 n 数 及 C f ( z ) d z 2π i Res [ f ( z ) , zk ] . k 1 其 应 用 证明 如图,将孤立奇点用含于 D 内且
13
§5.2 留数 第 五 章 留 数 及 其 应 用
解 方法一 利用洛朗展式求留数 将 f (z ) 在 z 0 的去心邻域展开, 得
f (z) 1 z
6
[ z (z 1 5! z
1 3! 1
z
3
1 5!
z
5
1 7!
z ) ]
7
1 3! z
3
7!
z ,
Res [ f ( z ) , z 0 ] lim ( z z 0 )
z z0
P(z) Q(z)
lim
z z0
P ( z0 ) P(z) . Q ( z ) Q ( z0 ) Q ( z 0 ) z z0
6
§5.2 留数 第 五 章 留 数 解 (1) z 0 是 f1 ( z ) 的可去奇 点, 及 Res [ f1 ( z ) , 0 ] 0 . 其 应 用 (2) z 0 和 z 1均为 f 2 ( z ) 的一阶极点,
高等数学课件-复变函数与积分变换 第五章 留数 §5.2 用留数定理计算实积分

引言
在实际问题中,往往会遇到求一些实 积分的值,计算比较复杂。但是,如果把 它们化为复变函数的积分,运用留数定理 计算可能要简捷的多。
首先,被积函数必须要与某个解析函 数密切相关。
其次,定积分的积分域是区间,而用 留数来计算要牵涉到把问题化为沿闭曲线 的积分。
一、形如
积分限化为从 到 ,又显然 lim f z 0 z
于是积分属于上述类型,可由(2.4)式计算
f z 可写成
f z
1 z2 a2
2
z
ia
1
2
z
ia
2
易见,f z 在上半平面只有一个二级极点
z ia,计算 f zeipz在 z ia 点的留数
Re s f
z eipz ,ia
Re s
f
z eiz , 2i
lim z
z2i
2i
f
z eiz
zeiz
1
lim
z2i z 2i
z2 1
6e2
Re
s
f
z eiz ,i
lim z
zi
i
f
z eiz
lim
zeiz
1
zi z2 4 z i 6e
将所得留数代入(2.5)式得:
I
xsin x dx
(x2 4)(x2 1)
奇点?在实轴上是否无奇点?
c.等式 lim zf z 0 是否成立? z
(2)计算 f z在上半平面奇点处的留数,
然后代入上述公式就得结果。显然结果必然
是实数,如果是复数,说明计算有误。
例2.3计算积分
x2
I
x2 1 2 dx
复变函数留数PPT课件

1
1 z2
1 1 2! z4
Res[ f (z),0] 0
I0
工程数学---------复变函数
目录 上页 下页 返回 结束
4. 无穷远点的留数 定义:设 f (z)在H : R z 内解析,C为H内绕原点的 任何一条简单正向闭曲线,则积分
2i
k 1
Res[
f
(z), zk ]
工程数学---------复变函数
目录 上页 下页 返回 结束
以 (z z0 )m 乘上式的两端,得 (z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0 (z z0 )m c1(z z0 )m1
两边求 m 1阶导数,并乘以 1 , 得 (m 1)!
{ z
1 }
z2
(1)m1
(m 1)! (z z2)m
1 Res[ f (z), z1] (z2 z1)m
工程数学---------复变函数
目录 上页 下页 返回 结束
z2为f (z)的一级极点,
Res[
f
( z ),
z2 ]
lim ( z
zz2
z2 )
f
(z)
1
lim
zz2
(z
z1 ) m
(z z2 z3 )3
z2 z3
1 z2 z4 ) 3! 5!
(1 z z2 )3
2! 3!
2! 3!
1(z)
z
工程数学---------复变函数
目录 上页 下页 返回 结束
1 z2 z4 )
其中(z)
(1
3! z
5! z2
)3
,
且(0) 1,(z)在z 0
留数定理计算积分

留数定理计算积分留数定理(Residue Theorem)是复变函数论中的一个重要定理,用于计算恰当积分(狭义上的积分)。
留数定理是由法国数学家庞加莱(Henri Poincaré)首次提出的,后来由数学家埃伯特(Augustin-Louis Cauchy)进一步发展和推广。
留数定理的基本思想是:将一个复变函数在复平面上的奇点(pole)附近进行留数运算,可以得到函数在这些奇点处的留数(Residue),而这些留数又与函数的积分值有着密切的关系。
具体来说,留数定理是基于复变函数的洛朗级数展开定理(Laurent series expansion),将复变函数表示为有限项幂级数的形式。
留数定理的表述如下:设f(z)是在以z0为中心的一个除去z0的可去奇点的域D上的解析函数,若沿着C所绕一圈的积分为I,则I=2πi∑Ci=1Res[f(z),zi],其中Ci表示D中唯一一种类型的奇点,zi是沿C所绕一圈所取的这种类型的奇点。
简单来说,就是对于一个解析函数f(z),如果它的奇点及其类型都已知,并且积分路径C能包围这些奇点,那么C绕这些奇点一圈的积分值就等于这些奇点处留数的和的2πi倍。
这个定理在计算积分时非常有效,因为通过计算奇点处留数,就能把积分问题转化为简单的代数运算。
下面我们通过一个具体的例子来说明留数定理的应用。
例子:计算函数f(z)的积分∮Cf(z)dz,其中C是圆周,z,=2的路径,函数f(z)=sin(1/z)。
解:首先,函数f(z)在z=0处有一个非孤立奇点,因此奇点处的留数需要通过级数展开来计算。
将函数f(z)展开为洛朗级数,得到:f(z)=sin(1/z)=1/z-1/(3!z^3)+1/(5!z^5)-1/(7!z^7)+…对于sin(1/z)来说,其除0外的所有整数次幂项的系数都为0,因此只需要计算奇点处的1/z系数即可。
由于我们只需要计算z=0处的留数,所以只需要取展开式的第一项,即留数为1根据留数定理,积分∮Cf(z)dz=2πi×留数=2πi×1=2πi。
复变函数第五章 留数理论及其应用

由规则3
P( z) z 1 = 3= 2, Q ( z ) 4 z 4z
此法在很多情况下此法更为简单.
z dz , C为正向圆周: z = 2 . 例5 计算积分 4 z 1 C z 在 z = 2 的外部, 除 点外没有 解 函数 4 z 1
其他奇点. 根据定理 5.2与规则4: z z 4 1 dz = 2iRes f ( z ), C 1 1 = 2iRes f 2 ,0 z z z = 0. = 2iRes , 0 4 1 z
k =1
n
C
Res[ f ( z ), zk ] f ( z )dz = 2i k =1
= 2iRes[ f ( z ), ].
n
(留数定理)
计算积分
C
f ( z )dz
计算无穷远点的留数.
优点: 使计算积分进一步得到简化. (避免了计算诸有限点处的留数)
3.在无穷远点处留数的计算 •规则4
z = 0是p( z )的 三 级 零 点 , 是f (z)的三级极点。
1 z sin z z sin z 由规则2 Re s ,0 = lim " 6 3 z (3 1)! z0 z
若将f ( z )作Laurent级数展开 :
z sinz 1 1 3 1 5 = 6 [ z ( z z z )] 6 z z 3! 5! 1 1 11 = 3 3! z 5! z
1 故 Re s[ f ( z ), z0 ] = c1 = f ( z )dz 2i c
( 2)
二、利用留数求积分
1. 留数定理 设函数 f(z)在区域D内除有限个孤立奇点
复变函数第五章2留数的一般理论

2020/6/3
1 !z idz
1 4 e12
定理5.5(留数定理) 设D是复平面上一个有界闭区域,
若函 f(z)数 在区 D内 域除有限个 z1,z2,孤 ,zn立 外 处 奇处 点解
且它D 在的边C界上也解析n ,则
f(z)d z2iRefs(z)[,zk].
C
k1
证明:分别z围 1,z2, 绕 ,zn构造小c1的 ,c2,圆 ,cn 周
z0是 f(z)的一阶 zi极 是 f(z)的 点二 ,阶
Re f(zs )0 [,]lifm (z)z z 0
lim
z0
eiz (z2 1)2
1
Rfe(z)si],[1lid m {f(z)(z i)2}
1 !z idz
d
eiz
lim { zi dz z(z
i)2}
3 4e
类似地,Rfe (z)s ,i] [1lim d{f(z)(z i)2 }
z0
f(z)在z0的去心 0邻 z域 上的罗朗级数
1
(fn( z0)zn11z)e(zzn 0n1z!1(11z)zn)e 1z(z zz 2 (n 0zz3 n ) (n) 01 ( n 1!1 z( 1z)2 1 n!)z 1 2 3 1 !z 1 3 )
z1的系数 c1
1 2!
解:ez在z 0的去心邻域内的罗 数朗 为级 :
1
ez
1 (1)n
n0 n! z
ce1 zd zc {n 0n 1 !(1 z)n}d zc { 11 z2 !1 z2 }d z
2i
2020/6/3
2
二.留数定义
(一般情 计形 算) 积 cf(z分 )d, z 其 c为 中 z0去心邻
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见, 利用无穷远点的留数更简单.
例6
计算积分
C
(
z
dz i)10(z 1)(z
, 3)
C为正向圆周 : z 2.
解
被积函数
f (z)
(
z
i
)10
(
1 z
1)(
z
3)
除
点外, 其他奇点为 i , 1, 3 .
26
则 Res[ f (z),i] Res[ f (z),1] Res[ f (z),3] Res[ f (z),] 0 .
所以 z 0是 f (z)的三级极点, 由规则3得
Res[
f
(z),0]
(3
1 lim
1)! z0
d2 dz 2
z
3
z
sin z6
z
.
计算较麻烦.
19
解 如果利用洛朗展开式求c1 较方便:
z
sin z6
z
1 z6
z
z
z3 3!
z5 5!
z
C
z4
dz 1
2iRes[ f (z),1] Res[ f (z),1]
Res[ f (z), i] Res[ f (z),i]
由规则3
P(z) Q( z )
z 4z3
1 4z2
,
25
C
z
4
z
1
dz
2i 14
1 4
1 4
14
0
.
1
2
d
Res
f
1 z
1 z2
,0.
( 1 为正向).
在 1内除 0
外无其他奇点 .
[证毕]
17
四、典型例题
例1
求
f
(z)
ez zn
在
z
0 的留数.
解 因为 z 0 是 f (z)的n阶极点,
所以
Res
ez zn
点的一条正向简单闭曲线, 那末
n
f (z)dz 2i Res[ f (z), zk ].
C
k 1
说明: 1. f (z)在C上及C内部处处解析;
2. 留数定理将沿封闭曲线C积分转化为求 被积函数在C内各孤立奇点处的留数.
5
证 如图
f (z)dz f (z)dz f (z)dz f (z)dz
计算无穷远点的留数.
C
优点: 使计算积分进一步得到简化.
(避免了计算诸有限点处的留数)
14
3.在无穷远点处留数的计算
•规则4
Res[
f
( z ),
]
Res
f
1 z
1 z2
,0
说明: 定理二和规则4提供了计算函数沿闭曲线
积分的又一种方法:
C
f
(z)dz
2iRes
m
1
[(
z
z0 )m
f
(z)].
[证毕]
9
•规则3
设
f
(z)
P(z) Q(z)
,
P(z)
及
Q(z)
在
z0都解析,
如果 P(z0 ) 0,Q(z0 ) 0,Q(z0 ) 0, 那末 z0 为
f (z) 的一级极点,
且有
Res[
f
( z ),
z0 ]
P(z0 ) Q(z0 )
.
C
C
C
0 (柯西-古萨基本定理)
2ic1 洛朗级数中负幂项c1(z z0 )1的系数
3
即
1
c1
2i C
f
(z)dz
Res[ f (z), z0 ] f (z)在 z0的留数
定义 如果 z0 为函数 f (z) 的一个孤立奇点, 则沿
在 z0的某个去心邻域0 z z0 R内包含 z0 的
那末积分 1 f (z)dz的值与C无关,则称此定值
2 i C1
为 f (z)在点的留数,
记作
Res[
f
(z),]
1 2i
C
f
(z)dz
1 2i
C
f
(z)dz
注意积分路线取顺时针方向
说明 Res[ f (z),] c1
c1
12
2.定理二 如果函数 f (z) 在扩充复平面内只有有限个
取得比实际的级数高. 但有时把m取得比实际的
级数高反而使计算方便. 如上例取 m 6 :
Res
f
(z),0
(6
1 lim 1)! z0
d5 dz5
z6
z
sin z6
z
1 5!
.
21
例4
计算积分
C
z
(
ez z
1)2
dz
,
C为正向圆周: z 2.
解 z 0 为一级极点, z 1为二级极点,
c1(z z0 )1 c0 c1(z z0 )
(z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0(z z0 )m c1(z z0 )m1
8
两边求 m 1 阶导数,
任意一条简单闭曲线 C 的积分 f (z)dz 的值除
C
以 2i 后所得的数称为 f (z)在 z0 的留数.
记作 Res[ f (z), z0 ]. (即 f (z)在 z0 为中心的圆环
域内的洛朗级数中负幂项c1(z z0 )1的系数.)
4
二、利用留数求积分
1.留数定理 函数 f (z) 在区域 D内除有限个孤 立奇点 z1 , z2 ,, zn 外处处解析, C 是 D内包围诸奇
Res[
f
(
z
),0]
lim
z0
z
z(
ez z
1)2
dz
lim
z0
(
z
ez 1)2
,
Res[
f
( z ),1]
(2
1 lim
1)! z1
d dz
( z
1)2
ez z(z
1)2
22
lim
z1
d dz
ez z
lim
z1
e
z
(z z2
,0
(n
1
dn1
1)!
lim
z0
dz
n1
zn
ez zn
1. (n 1)!
18
例2
求
f
(z)
P(z) Q(z)
z
sin z6
z
在
z
0
的留数.
分析 P(0) P(0) P(0) 0, P(0) 0.
z 0 是 z sin z 的三级零点
1)
0,
所以
ez C z(z 1)2dz
2iRes[ f (z),0] Res[ f (z),1]
2i(1 0) 2i.
23
例5
计算积分
C
z
4
z
1
dz
,
C为正向圆周:
z 2.
解
函数
z在 z4 1
z
2 的外部, 除
点外没有
其他奇点. 根据定理 2与规则4:
证 因为 Q(z0 ) 0, Q(z0 ) 0
所以z0为 Q(z) 的一级零点, 1
z0 为 Q(z) 的一级极点.
10
因此 1 1 (z),
Q(z) z z0
其中 (z)在 z0 解析且 (z0 ) 0,
f (z) 1 P(z) (z) . z z0 在 z0 解析且 P(z0 ) (z0 ) 0.
c1(z z0 ) cn(z z0 )n
2
积分 f (z)dz
C
cn (z z0 )ndz c1 (z z0 )1dz
C
C
(高阶导数公式)
2i
0
c0dz c1(z z0 )dz cn(z z0 )ndz
z3 z5 , 3! 5!
Res
z
sin z6
z
,0
c1
1 . 5!
20
说明: 1. 在实际计算中应灵活运用计算规则. 如 z0 为 m 级极点,当 m 较大而导数又难以计算时,
可直接展开洛朗级数求 c1 来计算留数 .
2. 在应用规则2时, 为了计算方便一般不要将m
第二节 留 数
一、留数的引入 二、利用留数求积分 三、在无穷远点的留数 四、典型例题 五、小结与思考
一、留数的引入
设 z0 为 f (z)的一个孤立奇点;