光合作用知识点89330
光合作用知识点

光合作用知识点光合作用是指植物利用太阳能将二氧化碳和水转化成有机物的过程。
这个过程中,光能被光合色素吸收,通过光合电位活化电子传递链,产生的电子转移和能量转移最终促使NADPH的产生和ATP的合成,进而用于卡尔文循环。
光合作用发生在叶绿体中的叶绿体膜和光合体中。
光合作用是生物体的一个重要代谢过程,对整个生态系统有着重要的贡献。
下面是光合作用的一些主要知识点。
1.光合作用的反应方程式:光合作用的反应方程式可以简记为:6CO2+6H2O+光能→C6H12O6+6O2这个方程式表示了光合作用的基本过程,即通过光合作用,植物从二氧化碳和水中合成有机物(葡萄糖),同时释放出氧气。
2.光合作用的发生地点:光合作用主要发生在植物的叶绿体中。
叶绿体是植物细胞中的一种特殊细胞器,其中含有丰富的叶绿素,能够吸收光能并参与光合作用。
叶绿体内部有许多叶绿体膜,叶绿体膜上有光合色素(主要是叶绿素)和其他光合作用相关的蛋白质,它们共同组成了光合体。
3.光合作用的光合色素:光合作用中的光能主要由叶绿体中的光合色素吸收。
叶绿素是一种具有绿色的色素,主要存在于叶绿体的叶绿体膜中。
除了叶绿素外,还存在着其他的光合色素,如类胡萝卜素(如胡萝卜素和类黄酮素等)。
光合色素能够吸收不同波长的光,将光能转化为化学能。
4.光合作用的光合电位:光合电位是光合作用中的一环节,它是指通过光合色素吸收的光能产生的能量传递过程。
光合电位包括两个部分:光系统Ⅰ和光系统Ⅱ。
光系统Ⅰ位于光合色素的反射中心P700附近,它能将光能转化为能量带负电效应。
光系统Ⅱ位于反射中心P680附近,它可以将光能转化为能量带正电效应。
5.光合作用的电子传递链:光合作用的电子传递链是指光合电位产生的能量传递过程,其中光能转化为化学能。
电子传递链的过程中,光合电位通过叶绿体膜上的电子传递体传递,并经过一系列的反应将电子传递到NADPH。
在电子传递链中,还会产生一些能量来合成ATP,这个过程称为光合磷酸化。
光合作用必背知识点

光合作用必背知识点一、光合作用的概念。
1. 光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并释放出氧气的过程。
反应式为:6CO_2 + 12H_2O →(光能, 叶绿体) C_6H_12O_6+6O_2 + 6H_2O。
二、光合作用的场所 - 叶绿体。
1. 结构。
- 双层膜结构。
- 内部有许多基粒,基粒由类囊体堆叠而成。
类囊体薄膜上分布着光合色素(叶绿素和类胡萝卜素)和与光反应有关的酶。
- 叶绿体基质中含有与暗反应有关的酶,还有少量的DNA和RNA。
2. 光合色素。
- 叶绿素(叶绿素a和叶绿素b):主要吸收红光和蓝紫光。
叶绿素a呈蓝绿色,叶绿素b呈黄绿色。
- 类胡萝卜素(胡萝卜素和叶黄素):主要吸收蓝紫光。
胡萝卜素呈橙黄色,叶黄素呈黄色。
三、光合作用的过程。
1. 光反应阶段。
- 场所:叶绿体的类囊体薄膜上。
- 条件:光、色素、酶。
- 物质变化。
- 水的光解:2H_2O →(光能) 4[H]+O_2。
- ATP的合成:ADP + Pi+能量 →(酶) ATP(此能量来自光能)。
- 能量变化:光能转变为活跃的化学能(储存在ATP和[H]中)。
2. 暗反应阶段(卡尔文循环)- 场所:叶绿体基质。
- 条件:酶、[H]、ATP、CO_2。
- 物质变化。
- CO_2的固定:CO_2 + C_5 →(酶) 2C_3。
- C_3的还原:2C_3 →([H]、ATP、酶) (CH_2O)+C_5。
- 能量变化:活跃的化学能转变为稳定的化学能(储存在有机物中)。
四、影响光合作用的因素。
1. 光照强度。
- 在一定范围内,光合作用强度随光照强度的增强而增强。
当光照强度达到一定值时,光合作用强度不再随光照强度的增强而增加,此时达到光饱和点。
- 光照强度较低时,植物只进行呼吸作用,随着光照强度增强,光合作用强度与呼吸作用强度相等时的光照强度称为光补偿点。
2. 温度。
- 温度通过影响酶的活性来影响光合作用。
生物光合作用知识点

生物光合作用知识点1.光合作用的化学方程式:光合作用的化学方程式可以表示为:6CO2+12H2O+光能→C6H12O6+6O2+6H2O。
这个方程式描述了光合作用中的两个主要过程,光反应和暗反应。
2.光反应:光反应发生在叶绿体内的“光合体”中。
在光反应中,光能被吸收,并转化为高能化学物质ATP和NADPH。
光能被叶绿素吸收后,电子从叶绿素分子被激发并传递给电子传递链,最终产生ATP和NADPH。
在此过程中,水分子也被分解,产生氧气作为副产品释放到空气中。
3.暗反应:暗反应发生在叶绿体中的基质内。
在暗反应中,ATP和NADPH提供能量和电子,将二氧化碳转化为有机物质,最常见的是葡萄糖。
暗反应中最重要的过程是碳同化,通过鲍斯-卡尔文循环进行。
暗反应的终产物为三碳糖(三磷酸甘油),它可以进一步合成葡萄糖。
4.光合色素:光合色素包括叶绿素、类胡萝卜素和蓝藻素等。
其中叶绿素是最重要的光合色素,它的主要作用是吸收光能。
叶绿素分子的结构使其能够吸收可见光中的蓝色和红色光,而反射绿色光,因此植物的叶子呈现出绿色。
5.光合作用的条件:光合作用需要适宜的光照、温度和二氧化碳浓度等条件。
光照是光合作用发生的关键因素,光照强度过强或过弱都会抑制光合作用。
适宜的温度范围也能提高光合作用效率,但过高的温度会破坏蛋白质结构,导致光合作用受阻。
6.光合作用的调节:植物对光照强度和二氧化碳浓度的变化有自我调节机制。
当光照强度较强时,植物会关闭气孔,减少水分蒸发和二氧化碳流失,以避免过度脱水。
当二氧化碳浓度较低时,植物会加大二氧化碳的吸收和浓缩,以增加光合作用的效率。
7.生物光合作用的意义:生物光合作用是地球上维持生命的重要过程之一、通过光合作用,植物可以将太阳能转化为化学能,并将二氧化碳转化为有机物,维持了生态系统中的能量流。
光合作用还产生氧气,维持了大气中的氧气含量,为动物呼吸提供了必要的氧气。
总结起来,生物光合作用是一种利用光能将二氧化碳和水合成有机物质的过程。
高中生物光合作用知识点总结

高中生物光合作用知识点总结光合作用是生物体通过利用光能驱动的化学反应将二氧化碳和水转化为有机物和氧气的过程。
光合作用是生命活动的基础,对维持地球上所有生命物种的生存和进化起着重要作用。
1. 光合作用的概念光合作用是生物体利用光能将无机物转化为有机物的过程。
植物、藻类和一些细菌都能进行光合作用。
光合作用分为光化反应和暗反应两个阶段,光化反应需要光能驱动,暗反应则不需要光能直接参与。
2. 光合作用的过程光合作用的过程可以分为光化反应和暗反应两个阶段。
2.1 光化反应光化反应发生在叶绿体的光合膜内,通过叶绿体中的叶绿体色素分子吸收光能,激发电子,形成高能化学物质ATP和NADPH。
2.1.1 光能的吸收叶绿素是植物中的光合色素,它能吸收蓝色和红色光线,而反射和透过绿色光线,因此植物呈现绿色。
叶绿体膜中的叶绿素分子吸收光能后,电子会被激发到高能态,从而开始光合作用的过程。
2.1.2 光合色素集合体叶绿体膜中的叶绿素分子会组成光合色素集合体,其中的光合单位包括两个类型的反应中心:光系统I和光系统II。
光系统I主要吸收700nm附近的红光,而光系统II主要吸收680nm附近的红光。
2.1.3 光系统I和光系统II的作用光系统I和光系统II各自有特定的光敏色素,它们吸收光能后会激发电子,并传递到电子传递链中。
光系统II先被激发,产生高能电子,并生成ATP。
随后,电子通过电子传递链传递到光系统I,激发光敏色素并产生NADPH。
2.1.4 水的光解和氧气的释放光系统II在光化反应中的最后一步是水的光解,即将水分子分解为氧气和氢离子。
这是光合作用中产生氧气的重要过程。
2.2 暗反应暗反应发生在叶绿体基质中,是一系列以光化反应生成的ATP 和NADPH为能量和还原力来源的化学反应。
暗反应主要包括碳固定、还原和再生三个阶段。
2.2.1 碳固定暗反应的第一步是碳固定,即将二氧化碳与含有5个碳的化合物——磷酸核糖(RuBP)反应,生成稳定的6碳分子。
光合作用知识总结

高考热点——光合作用一.基础知识1.反应方程式:226126226CO+12H O C H O+6O+6H O−−→光2.过程:光反应暗反应条件光、色素、酶CO2、ATP、[H]、多种酶场所类囊体薄膜上叶绿体基质中物质变化22H O[H]+O−−→光酶水的光解:2ATP ADP+Pi+ATP+H O−−→酶的合成:光能2253CO CO+C2C−−→酶的固定:ATP[H]3352C2C C+CH O−−−−→、酶的还原:能量变化光能转化为ATP中活跃的化学能ATP中活跃的化学能转化为糖类等有机物中稳定的化学能联系光反应为暗反应提供ATP和[H],暗反应为光反应提供ADP、Pi、NADP+过程图如下:(同学们试着去判断图中各个字母代表的含义)注:①色素的功能与分布:吸收、传递、转化光能;只分布在类囊体薄膜上②光反应产生的ATP只用于暗反应,不用于其它的生命活动。
③与光反应相比,暗反应需要的酶更多,因此受温度的影响更大。
3.元素转移:(对于绿色植物,要同时分析光合作用和呼吸作用)66126222C H O+6O+6H O CO+12H O+−−→酶有氧呼吸:能量226126226CO+12H O C H O+6O+6H O−−→光光合作用:关键:有氧呼吸中先考虑第三阶段;光合作用中先考虑H 2O 的光解 若给绿色植物提供H 218O ,则O 2,CO 2,H 2O ,C 6H 12O 6都会出现18O 的标记。
4. C 3、C 5、ATP 、[H]的含量变化( 4种情况)53ATP [H]C C ↑↑↑↑↓光照:、、、 53ATP [H C C ↓↓↓↓↑光照:、、、 235CO C C ATP [H]↑↑↓↓↓浓度:、、、 235CO C C ATP [H]↓↓↑↑↑浓度:、、、从做题来看,很多同学还是掌握不好,4种情况容易混淆,不能快速有效的解题。
那么我们来观察一下,这4种情况实际上只是两种变化:光照或者CO 2的变化。
光合作用知识点

光合作用1.因为对绿光吸收最少,绿光做反射出来,所以叶片呈现绿色2叶绿体具有大量基粒和类囊体的意义在于:极大的扩展了受光面积。
3光合作用的强度是:植物在单位时间内通过光合作用制造糖类的数量4提高光合作用强度的措施:控制光照强度和温度的高低、适当增加作物环境中CO 2浓度5影响光合作用的因素:光照强度、光质、CO 2浓度、水、温度、无机盐等6光合作用的强度可用:测定一定时间内原料消耗或产物生成的数量来定量地表示。
7将叶片置于注射器内处理的目的:使气体逸出,小叶片上浮是因为:光合作用产生了O 2概念:微生物利用体外环境中的某些无机物氧化时所释放的能量制造有机物的合成作用举例:硝化细菌9光反应和暗反应的关系:光反应为暗反应提供还原剂[H]、能量ATP ;暗反应为光反应提供ADP 和Pi 。
没有光反应,暗反应无法进行.没有暗反应,有机物无法合成。
②光合作用的总反应式:CO 2 + H 2O ——→ (CH 2O) + O 2 6CO 2 + 12H 2O ——→C 6H 12O 6 + 6O 2 + 6H 2O【要点四】影响光合作用的因素影响光合作用的因素主要包括光、温度、CO 2浓度、H 2O 、矿质元素。
1、光:光是光合作用的能量来源.对光合作用的影响最大,其影响主要表现在三个方面:(1)光照时间:光照时间越长.光合作用合成的有机物越多。
延长光照时间可以提高光能利用率。
延长光照时间的方法主要是通过轮作。
(2)光质(波长):由于光合色素主吸收红光和蓝紫光,所以通常在红光下光合作用最快.蓝紫光下次之,绿光下最差。
(3)光照强度:在一定范围内随光强度的增加.光合作用速率加快,光强度增强到一定程度后光合作用速率就不再增加(受酶、光合色素和CO 2浓度等因素的限制)。
【画龙点睛】光照强度对光合速率(通常用单位时间内单位叶面积的植物体吸收CO 2的量或放出O 2的量表示)的影响可用下面曲线表示光补偿点:光合作用吸收的CO 2量等于呼吸作用放出CO 2量时的光照强度,在A 点以前光合速率小于呼吸作用速率;A —B 光合作用速率大于呼吸作用速率·且随光照强度的增强而增大。
高中生物|《光合作用》知识点

⾼中⽣物|《光合作⽤》知识点知识点1:⾃养、异养⽣物思考:绿⾊植物是怎样获得各种营养物质的?⼀般把能以⼆氧化碳和⽔为原料,合成有机物质,供给其⾃⾝⽣长、发育和繁殖所需的物质和能量的⽣物都称为⾃养⽣物。
绿⾊植物是通过光合作⽤⾃⾝合成有机物的,所以绿⾊植物是⾃养⽣物。
思考:⼈和动物是怎样获得各种营养物质的?⼈和动物、营腐⽣或寄⽣⽣活的真菌、⼤多数种类的细菌都是依靠摄取外界环境中的有机物来获得各种营养物质的,这样的⽣物都称为异养⽣物。
知识点2:光合作⽤的概念及光合作⽤的发现1、光合作⽤的概念绿⾊植物通过叶绿体,利⽤光能,把CO2和H2O合成储存能量的有机物,并且释放出氧⽓的过程,叫做光合作⽤。
2、光合作⽤的发现(1)17世纪⽐利时海尔蒙特柳苗栽培实验公元前3世纪,古希腊学者亚⾥⼠多德曾经提出,植物⽣长在⼟壤中,⼟壤是构成植物体的原材料。
这⼀观点长期被奉为经典,直到17世纪初布鲁塞尔的医⽣Van Helmont做了⼀个简单⽽有意义的实验,才把这个观点推翻了。
Van Helmont将⼀株2.3kg重的⼩柳树种在重 90.8 kg的⼲⼟中,⽤⾬⽔浇灌 5年,⼩柳树长成重 76.7kg的植株,⽽⼟壤重量只⽐实验开始时减少 57g。
他由此得出结论,即植物是从⽔中取得⽣长所需的物质的。
现在看来,他只说对了⼀半。
结论:植物的物质积累不是来⾃于⼟壤,⽽是完全来⾃于⽔。
(2)1771年,英,普⾥斯特利的实验结论:植物可以更新空⽓。
(3)1779年,荷,英根豪斯的实验结论1:只有在光下,植物才能更新空⽓。
结论2:植物体的绿叶在光下才能更新空⽓。
(4)1864年,德,萨克斯的实验结论:绿⾊叶⽚在光合作⽤下产⽣了淀粉。
(5)1880年,美,恩吉尔曼的实验结论:氧是叶绿体所释放的,叶绿体是绿⾊植物光合作⽤的场所(6)20世纪30年代,美,鲁宾和卡门的实验结论:光合作⽤释放的氧全部来⾃于⽔知识点3:光合作⽤的场所1、叶绿体:分布于叶⾁细胞(主要)、保卫细胞、幼嫩茎的⽪层细胞、某些果实的表⽪细胞等。
高中生物知识点:光合作用

高中生物知识点:光合作用
1. 光合作用的定义
光合作用是指植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。
它是地球生物圈中最为重要的能量转化过程之一。
2. 光合作用的反应方程式
光合作用的反应方程式如下:
光合作用:6CO2 + 6H2O + 光能→ C6H12O6 + 6O2
该方程式表示,光合作用将光能转化为葡萄糖(C6H12O6)和氧气(O2),同时消耗二氧化碳(CO2)和水(H2O)。
3. 光合作用的过程
光合作用可以分为光能捕捉和光化学反应两个阶段。
光能捕捉阶段
光能捕捉阶段发生在叶绿素分子中的光合色素复合物中。
在这个阶段中,叶绿素分子吸收光能并将其转化为化学能,进而激发电子。
光化学反应阶段
光化学反应阶段发生在叶绿体中的光合体系中。
在这个阶段中,激发的电子经过光合色素分子间的传递,最终用于还原NADP+和
生成ATP。
4. 光合作用的条件
光合作用需要一定的条件才能正常进行:
- 光能:光合作用依赖于阳光提供的光能,因此只能在光照充
足的环境中进行。
- 光合色素:植物细胞内的叶绿素是光合作用的关键色素,它
能够吸收光能并驱动光合作用的进行。
- 二氧化碳和水:光合作用需要二氧化碳和水作为反应物质。
二氧化碳在植物叶片的气孔中进入叶绿体,水则从植物根部吸收,
并通过管道输送到叶绿体中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合作用和呼吸作用
考点一光合作用与呼吸作用
1.光合作用和细胞呼吸关系图解
图中①~⑩依次为 O 2
、 叶绿体 、 [H] 、 C 5
、 C 6
H 12
O 6
、 O 2
、
C 2
H 5
OH 、 乳酸 、 细胞质基质
、 ATP 。
3、光照和CO 2
浓度变化对光合作用物质含量变化的影响
考点二影响光合作用的环境因素及其应用
1.影响光合作用的环境因素
(1)光照强度
②应用:阴生植物的光补偿点和光饱和点都较阳生植物低,如图中虚线所示。
间作套种农作物,可合理利用光能;欲使植物正常生长,则必须使光照强度大于B点对应的光照强度;适当提高光照强度可增加大棚作物产量。
(2)CO2浓度
①曲线分析:图1中A点表示CO
2
补偿点,即光合速率等于
呼吸速率时的CO
2浓度,图2中A'点表示进行光合作用所需CO
2
的最
低浓度。
B和B'点都表示CO
2
饱和点。
②应用:在农业生产上可以通过“正其行,通其风”,增施农家肥等增
大CO
2
浓度,提高光合速率。
①温度主要通过影响与光合作用有关的酶的活性而影响光合速率。
②曲线分析:低温使酶的活性降低,导致植物的光合速率降低;在一定范围内随着温度的升高,酶活性升高,进而导致光合速率增大;温度过高会使酶活性降低,导致植物光合速率减小。
③应用:冬季,温室栽培可适当提高温度;晚上可适当降低温度,以降低细胞呼吸消耗有机物。
(4)矿质元素
①曲线分析:在一定浓度范围内,增大必需矿质元素的供应,可提高光合速率,但当超过一定浓度后,会因土壤溶液浓度过高
使植物吸水困难,而导致光合速率下降。
②应用:在农业生产上,根据植物的需肥规律,合理施肥,可以提高作物的光合作用。
(5)温度、光照强度、CO
2
浓度综合因素对光合速率的影响
关键点含义:P 点时,限制光合速率的因素应为横坐标所表示的因子,随该因子的不断加强,光合速率不断提高。
当到Q 点时,横坐标所表示的因子,不再是影响光合速率的因素,要想提高光合速率,可采取适当提高其他因子的措施。
2.自然环境及密封容器中植物光合作用曲线分析
(1)图1中各点含义及形成原因分析
①A 点:凌晨3时左右,温度降低,细胞呼吸 减弱 ,CO 2
释放 减少 。
②B 点:上午5时左右,太阳出来,开始进行 光合作用 。
③BC 段:光合作用 < 细胞呼吸。
④C 点:上午7时左右,光合作用 = 细胞呼吸。
⑤CE 段:光合作用 > 细胞呼吸。
⑥D 点:温度过高,部分气孔 关闭 ,出现“光合午休”现象。
⑦E 点:下午6时左右,光合作用 = 细胞呼吸。
⑧EF 段:光合作用 < 细胞呼吸。
⑨FG 段:太阳落山,停止光合作用,只进行细胞呼吸。
图1 夏季一昼夜CO 2吸收和释放变化曲线
(2)图2中各点含义及形成原因分析
①AB段:无光照,植物只进行细胞呼吸。
②BC段:温度降低,细胞呼吸减弱。
③CD段:5时左右,开始进行光合作用,但光合作用强度<细胞呼吸强度。
④D点:光合作用强度=细胞呼吸强度。
⑤DH段:随着光照不断增强,光合作用强度>细胞呼吸强度,其中FG段表示“光合午休”现象。
⑥H点:光合作用强度=细胞呼吸强度。
⑦HI段:光照继续减弱,光合作用强度<细胞呼吸强度,直至光合作用完全停止。
(3)图2中植物生长与否的判断
①I点低于A点,说明一昼夜,密闭容器中CO
浓度减小,即光合作用>细胞
2
呼吸,植物生长。
②若I点高于A点,说明光合作用<细胞呼吸,植物体内有机物总量减少,植物不能生长。
③若I点等于A点,说明光合作用=细胞呼吸,植物体内有机物总量不变,植物不生长。
考点三光合作用与细胞呼吸的关系
1.净光合作用速率、呼吸速率与真正光合作用速率的表示方法
(1)净(表观)光合速率:绿色植物组织在有光的条件下,光合作用与细胞呼吸同
时进行时,测得的实验容器中O
2的增加量或CO
2
的减少量。
(2)呼吸速率:绿色植物组织在黑暗条件下,测得的实验容器中O
2
的减少量
或CO
2
的增加量。
(3)真正光合速率=净光合速率+呼吸速率。
表示方法
①光合作用产生的O
2量=实测的O
2
释放量+细胞呼吸消耗的O
2
量
②光合作用固定的CO
2量=实测的CO
2
吸收量+细胞呼吸释放
的CO
2
量
③光合作用产生的葡萄糖量=葡萄糖的积累量(增重部分)+细胞呼吸消耗的葡萄糖量
(5)净光合作用速率与真正光合作用速率的关系
①
绿色组织在黑暗条件下或非绿色组织测得的数值为呼吸速率(A点)。
②绿色组织在有光条件下,光合作用与细胞呼吸同时进行,测得的数据为净光合速率。
2.影响净光合速率的因素
所有能影响呼吸速率和光合速率的因素都可以影响净光合速率,
如光照强度、CO
2浓度、O
2
浓度、温度等。
3.净光合速率与植物生长
(1)当净光合速率>0时,植物因积累有机物而生长。
(2)当净光合速率=0时,植物不能生长。
(3)当净光合速率<0时,植物不能生长,长时间
处于此种状态,植物将死亡。
4.净光合速率测定方法的图示及其解读
(1)NaHCO
3溶液作用:保证容器内CO
2
浓度的恒定,满足绿色
植物光合作用的需求。
(2)植物光合速率指标:植物光合作用释放氧气,使容器内气体压强增大,毛细管内的水滴右移。
单位时间内水滴右移的体积就能表示净光合速率。
(3)条件:整个装置必须放在光下。
5.植物光合速率与呼吸速率的实验测定常用方法
(1)装置中溶液的作用:在测细胞呼吸速率时NaOH溶液可吸收
容器中的CO
2;在测净光合速率时NaHCO
3
溶液可提供CO
2
,保证了
容器内CO
2
浓度的恒定。
(2)测定原理
①在黑暗条件下甲装置中的植物只进行细胞呼吸,由于NaOH溶
液吸收了细胞呼吸产生的CO
2
,所以单位时间内红色液滴左移的距离
表示植物的O
2
吸收速率,可代表呼吸速率。
②在光照条件下乙装置中的植物进行光合作用和细胞呼吸,由于
NaHCO
3溶液保证了容器内CO
2
浓度的恒定,所以单位时间内红色液
滴右移的距离表示植物的O
2
释放速率,可代表净光合速率。
③真光合速率=净光合速率+呼吸速率。
(3)测定方法
①将植物(甲装置)置于黑暗中一定时间,记录红色液滴移动的距离,计算呼吸速率。
②将同一植物(乙装置)置于光下一定时间,记录红色液滴移动的距离,计算净光合速率。
③根据呼吸速率和净光合速率可计算得到真光合速率。
(4)物理误差的校正:为防止气压、温度等物理因素所引起的误差,应设置对照实验,即用死亡的绿色植物分别进行上述实验,根据红色液滴的移动距离对原实验结果进行校正。
3、光合作用、细胞呼吸曲线中关键点的移动
(或光)补偿点和饱和点的移动方向:一般有左移、右(1)CO
2
移之分,其中CO
(或光)补偿点(B)是曲线与横轴的交
2
(或光)饱和点(C)则是达到最大光合速率对应的点,CO
2
最小CO
浓度(或最弱光照强度),位于横轴上。
2
①呼吸速率增加,其他条件不变时,CO2(或光)补偿点B应右移,反之左移。
②呼吸速率基本不变,相关条件的改变使光合速率下降时,CO2(或光)补偿点B应右移,反之左移。
③阴生植物与阳生植物相比,CO2(或光)补偿点和饱和点都应向左移动。
(2)曲线上其他点(补偿点之外的点)的移动方向:在外界条件的影响下,通过分析光合速率和呼吸速率的变化,进而对曲线上某一点的纵、
横坐标进行具体分析,确定横坐标左移或右移,纵坐标上移或下移,最后得到该点的移动方向。
①呼吸速率增加,其他条件不变时,曲线上的A点下移,其他点向左
下方移动,反之A点上移,其他点向右上方移动。
②呼吸速率基本不变,相关条件的改变使光合速率下降时,曲线上的
A点不动,其他点向左下方移动,反之向右上方移动。
考点四叶绿素的提取与分离
以上知识点自己再分析一下,想明白了
叶绿素的实验看书上,色素条带自己画书上,
含量也要体现出来。