实验三二叉树的基本操作
二叉树的基本操作

二叉树的基本操作二叉树是一种常见的数据结构,它由节点组成,每个节点最多有两个子节点。
二叉树在计算机领域中得到广泛应用,它的基本操作包括插入、删除、查找、遍历等。
1.插入操作:二叉树的插入操作是将一个新的节点添加到已有的二叉树中的过程。
插入操作会按照一定规则将新节点放置在正确的位置上。
插入操作的具体步骤如下:-首先,从根节点开始,比较新节点的值与当前节点的值的大小关系。
-如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中。
-如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中。
-如果当前节点的左子树或右子树为空,则直接将新节点插入到该位置上。
-如果当前节点的左子树和右子树都不为空,则递归地对左子树或右子树进行插入操作。
2.删除操作:二叉树的删除操作是将指定节点从二叉树中删除的过程。
删除操作有以下几种情况需要考虑:-如果待删除节点是叶子节点,则直接将其从二叉树中删除即可。
-如果待删除节点只有一个子节点,则将其子节点替换为待删除节点的位置即可。
-如果待删除节点有两个子节点,则需要找到其左子树或右子树中的最大节点或最小节点,将其值替换为待删除节点的值,然后再删除最大节点或最小节点。
3.查找操作:二叉树的查找操作是在二叉树中查找指定值的节点的过程。
查找操作的具体步骤如下:-从根节点开始,将待查找值与当前节点的值进行比较。
-如果待查找值等于当前节点的值,则返回该节点。
-如果待查找值小于当前节点的值,则在当前节点的左子树中继续查找。
-如果待查找值大于当前节点的值,则在当前节点的右子树中继续查找。
-如果左子树或右子树为空,则说明在二叉树中找不到该值。
4.遍历操作:二叉树的遍历操作是按照一定规则依次访问二叉树中的每个节点。
有三种常用的遍历方式:- 前序遍历(Preorder Traversal):先访问根节点,然后递归地前序遍历左子树和右子树。
- 中序遍历(Inorder Traversal):先递归地中序遍历左子树,然后访问根节点,最后递归地中序遍历右子树。
(完整版)C++二叉树基本操作实验报告

一、实验目的选择二叉链式存储结构作为二叉树的存储结构,设计一个程序实现二叉树的基本操作(包括建立、输出、前序遍历、中序遍历、后序遍历、求树高、统计叶子总数等)二、实验开发环境Windows 8.1 中文版Microsoft Visual Studio 6.0三、实验内容程序的菜单功能项如下:1------建立一棵二叉树2------前序遍历递归算法3------前序遍历非递归算法4------中序遍历递归算法5------中序遍历非递归算法6------后序遍历递归算法7------后序遍历非递归算法8------求树高9------求叶子总数10-----输出二叉树11-----退出四、实验分析1、建立一棵二叉树2、输入二叉树各节点数据cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组3、递归前序遍历void BL1(ECS_data *t){if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}4、非递归前序遍历void preOrder2(ECS_data *t){stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}5、递归中序遍历void BL2(ECS_data *t){if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}6、非递归中序遍历void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}7、递归后序遍历void BL3(ECS_data *t){if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}8、非递归后序遍历void postOrder3(ECS_data *t){stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}9、求树高int Height (ECS_data *t){if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}10、求叶子总数int CountLeaf(ECS_data *t){static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}五、运行结果附:完整程序源代码://二叉树链式存储的实现#include<iostream>#include<cstring>#include <stack>using namespace std;struct ECS_data //先定义好一个数据的结构{char data;ECS_data *l;ECS_data *r;};class ECS{private://int level; //树高int n; //表示有多少个节点数int n1; //表示的是数组的总长度值,(包括#),因为后面要进行删除判断ECS_data *temp[1000];public:ECS_data *root;ECS() //初始化{ECS_data *p;char t[1000];int i;int front=0,rear=1; //front表示有多少个节点,rear表示当前插入的点的父母cout<<"请按正确顺序输入二叉树的数据:";cin.getline(t,1000); //先把输入的数据输入到一个t数组//cout<<t<<" "<<endl;int n1=strlen(t); //测量数据的长度n=0;for(i=0;i<n1;i++){if(t[i]!='#'){p=NULL;if(t[i]!=',') //满足条件并开辟内存{n++;p=new ECS_data;p->data=t[i];p->l=NULL;p->r=NULL;}front++;temp[front]=p;if(1 == front){root=p;}else{if((p!=NULL)&&(0==front%2)){temp[rear]->l=p;//刚开始把这里写成了==}if((p!=NULL)&&(1==front%2)){temp[rear]->r=p;}if(1==front%2)rear++; //就当前的数据找这个数据的父母}}}}~ECS() //释放内存{int i;for(i=1;i<=n;i++)if(temp[i]!=NULL)delete temp[i];}void JS() //记录节点的个数{int s;s=n;cout<<"该二叉树的节点数为:"<<s<<endl;}void BL1(ECS_data *t)//递归前序遍历{if(NULL!=t){cout<<t->data<<",";BL1(t->l);BL1(t->r);}}void preOrder2(ECS_data *t) //非递归前序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){cout<<p->data<<" ";s.push(p);p=p->l;}if(!s.empty()){p=s.top();s.pop();p=p->r;}}}void BL2(ECS_data *t)//递归中序遍历{if(NULL!=t){BL2(t->l);cout<<t->data<<",";BL2(t->r);}}void inOrder2(ECS_data *t) //非递归中序遍历{stack<ECS_data*> s;ECS_data *p=t;while(p!=NULL||!s.empty()){while(p!=NULL){s.push(p);p=p->l;}if(!s.empty()){p=s.top();cout<<p->data<<" ";s.pop();p=p->r;}}}void BL3(ECS_data *t)//递归后序遍历{if(NULL!=t){BL3(t->l);BL3(t->r);cout<<t->data<<",";}}void postOrder3(ECS_data *t) //非递归后序遍历{stack<ECS_data*> s;ECS_data *cur; //当前结点ECS_data *pre=NULL; //前一次访问的结点s.push(t);while(!s.empty()){cur=s.top();if((cur->l==NULL&&cur->r==NULL)||(pre!=NULL&&(pre==cur->l||pre==cur->r))){cout<<cur->data<<" "; //如果当前结点没有孩子结点或者孩子节点都已被访问过s.pop();pre=cur;}else{if(cur->r!=NULL)s.push(cur->r);if(cur->l!=NULL)s.push(cur->l);}}}int Height (ECS_data *t) //求树高{if(t==NULL) return 0;else{int m = Height ( t->l );int n = Height(t->r);return (m > n) ? (m+1) : (n+1);}}int CountLeaf(ECS_data *t) //求叶子总数{static int LeafNum=0;//叶子初始数目为0,使用静态变量if(t)//树非空{if(t->l==NULL&&t->r==NULL)//为叶子结点LeafNum++;//叶子数目加1else//不为叶子结点{CountLeaf(t->l);//递归统计左子树叶子数目CountLeaf(t->r);//递归统计右子树叶子数目}}return LeafNum;}};int main(){ECS a;a.JS();cout<<"递归前序遍历:";a.BL1(a.root);cout<<endl;cout<<"非递归前序遍历:";a.preOrder2(a.root);cout<<endl;cout<<"递归中序遍历:";a.BL2(a.root);cout<<endl;cout<<"非递归中序遍历:";a.inOrder2(a.root);cout<<endl;cout<<"递归后序遍历:";a.BL3(a.root);cout<<endl;cout<<"非递归后序遍历:";a.postOrder3(a.root);cout<<endl;cout<<"树高为:"<<a.Height(a.root)<<endl;cout<<"叶子总数为:"<<a.CountLeaf(a.root)<<endl;return 0;}。
数据结构实验 二叉树的操作

实验三二叉树的操作一、实验目的1、掌握二叉树的逻辑结构;2、掌握二叉树的二叉链表存储结构;3、掌握基于二叉链表存储的二叉树的遍历操作的实现。
二、实验内容1、采用二叉链表存储建立一棵含有n个结点的二叉树;2、前序打印该二叉树的所有叶子结点;3、统计该二叉树的结点个数;4、计算该二叉树的深度;5、交换该二叉树的所有左右子树。
三、程序实现1、二叉链表结点类型BiNode.htemplate<class T>struct BiNode{T data;BiNode<T> *lchild,*rchild;};2、二叉树的建立及操作BiTree.htemplate<class T>struct BiNode{T data;BiNode<T> *lchild,*rchild;};template <class T>class BiTree{public:BiTree( ); //构造函数,初始化一棵二叉树,其前序序列由键盘输入~BiTree(); //析构函数,释放二叉链表中各结点的存储空间BiNode<T>* Getroot(); //获得指向根结点的指针void PreOrder(BiNode<T> *root); //前序遍历二叉树void InOrder(BiNode<T> *root); //中序遍历二叉树void PostOrder(BiNode<T> *root); //后序遍历二叉树void LevelOrder(BiNode<T> *root); //层序遍历二叉树private:BiNode<T> *root; //指向根结点的头指针BiNode<T>* Creat(); //有参构造函数调用void Release(BiNode<T> *root); //析构函数调用};template<class T>BiTree<T>::BiTree(){cout<<"请按前根序输入该二叉树的各个结点(#号表示为空):\n";this->root=Creat();}template <class T>BiNode<T>* BiTree<T>::Creat(){BiNode<T> *root;T ch;cin>>ch;if (ch=='#') root = NULL;else{root = new BiNode<T>; //生成一个结点root->data=ch;root->lchild=Creat(); //递归建立左子树root->rchild=Creat(); //递归建立右子树}return root;}template<class T>BiTree<T>::~BiTree(){Release(root);}template<class T>BiNode<T>* BiTree<T>::Getroot( ){return root;}template<class T>void BiTree<T>::PreOrder(BiNode<T> *root){if(root==NULL) return;else{cout<<root->data<<" ";PreOrder(root->lchild);PreOrder(root->rchild);}}template <class T>void BiTree<T>::InOrder (BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{InOrder(root->lchild); //中序递归遍历root的左子树cout<<root->data<<" "; //访问根结点的数据域InOrder(root->rchild); //中序递归遍历root的右子树}}template <class T>void BiTree<T>::PostOrder(BiNode<T> *root){if (root==NULL) return; //递归调用的结束条件else{PostOrder(root->lchild); //后序递归遍历root的左子树PostOrder(root->rchild); //后序递归遍历root的右子树cout<<root->data<<" "; //访问根结点的数据域}}template <class T>void BiTree<T>::LevelOrder(BiNode<T> *root){const int MaxSize = 100;int front = 0;int rear = 0; //采用顺序队列,并假定不会发生上溢BiNode<T>* Q[MaxSize];BiNode<T>* q;if (root==NULL) return;else{Q[rear++] = root;while (front != rear){q = Q[front++];cout<<q->data<<" ";if (q->lchild != NULL) Q[rear++] = q->lchild;if (q->rchild != NULL) Q[rear++] = q->rchild;}}}template<class T>void BiTree<T>::Release(BiNode<T>* root){if (root != NULL){Release(root->lchild); //释放左子树Release(root->rchild); //释放右子树delete root;}}3、主程序实现#include<iostream.h>#include "BiTree.h"int SumNode(BiNode<char> *root)//统计二叉树结点个数{int sum;if(root==NULL)return 0;else{sum=SumNode(root->lchild)+1;sum+=SumNode(root->rchild);return sum;}}void PrePrint(BiNode<char> *root)//前序打印二叉树叶子结点{if(root==NULL) return;else{if(root->lchild==NULL&&root->rchild==NULL)cout<<root->data<<' ';PrePrint(root->lchild);PrePrint(root->rchild);}}int TreeDeepth(BiNode<char> *root)//计算二叉树的深度{int deepth;if(root==NULL) return 0;else{deepth=(TreeDeepth(root->lchild)+1)>(TreeDeepth(root->rchild)+1)?(TreeDeepth(root->lchi ld)+1):(TreeDeepth(root->rchild)+1);return deepth;}}void Changechild(BiNode<char> *root)//交换二叉树的所有左右子树{BiNode<char> *temp;if(root==NULL||(root->lchild==NULL&&root->rchild==NULL)) return;else{Changechild(root->lchild);Changechild(root->rchild);if(root->lchild==NULL){root->lchild=root->rchild;root->rchild=NULL;}if(root->rchild==NULL){root->rchild=root->lchild;root->lchild=NULL;}else{temp=root->lchild;root->lchild=root->rchild;root->rchild=temp;}}}void main(){BiTree<char> Q;int deepth,sum;cout<<"Q的前序遍历为:\n";Q.PreOrder(Q.Getroot());cout<<"\nQ的中序遍历为:\n";Q.InOrder(Q.Getroot());cout<<"\nQ的后序遍历为:\n";Q.PostOrder(Q.Getroot());cout<<"\nQ的层序遍历为:\n";Q.LevelOrder(Q.Getroot());sum=SumNode(Q.Getroot());cout<<"\n结点个数为:"<<sum<<endl;deepth=TreeDeepth(Q.Getroot());cout<<"该二叉树的深度为:"<<deepth<<endl;cout<<"该二叉树叶子结点的前序打印顺序为:"<<'\n';PrePrint(Q.Getroot());cout<<"\n交换前二叉树的层序遍历为:\n";Q.LevelOrder(Q.Getroot());Changechild(Q.Getroot());cout<<"\n交换后二叉树的层序遍历为:\n";Q.LevelOrder(Q.Getroot());cout<<endl;}四、运行结果输入的二叉树结点的前根序序列为:ABDG##H##E#I##CF#J###二叉树形式为 AB CD E FG H I运行结果:五、实验心得体会通过本次实验过程,自己熟悉了二叉树的一些基本操作,掌握二叉树的逻辑结构;二叉树的二叉链表存储结构;熟悉了基于二叉链表存储的二叉树的遍历操作。
二叉树的基本操作实验报告

二叉树的基本操作实验报告学号姓名实验日期 2012-12-26实验室计算机软件技术实验指导教师设备编号 401实验内容二叉树的基本操作一实验题目实现二叉树的基本操作的代码实现二实验目的1、掌握二叉树的基本特性2、掌握二叉树的先序、中序、后序的递归遍历算法3、通过求二叉树的深度、度为2的结点数和叶子结点数等算法三实习要求(1)认真阅读书上给出的算法(2)编写程序并独立调试四、给出二叉树的抽象数据类型ADT BinaryTree{//数据对象D:D是具有相同特性的数据元素的集合。
//数据关系R:// 若D=Φ,则R=Φ,称BinaryTree为空二叉树;// 若D?Φ,则R={H},H是如下二元关系;// (1)在D中存在惟一的称为根的数据元素root,它在关系H下无前驱; // (2)若D-{root}?Φ,则存在D-{root}={D1,Dr},且D1?Dr =Φ; // (3)若D1?Φ,则D1中存在惟一的元素x1,<root,x1>?H,且存在D1上的关系H1 ?H;若Dr?Φ,则Dr中存在惟一的元素xr,<root,xr>?H,且存在上的关系Hr ?H;H={<root,x1>,<root,xr>,H1,Hr};// (4)(D1,{H1})是一棵符合本定义的二叉树,称为根的左子树;(Dr,{Hr})是一棵符合本定义的二叉树,称为根的右子树。
//基本操作:CreateBiTree( &T, definition ) // 初始条件:definition给出二叉树T的定义。
// 操作结果:按definiton构造二叉树T。
BiTreeDepth( T )// 初始条件:二叉树T存在。
// 操作结果:返回T的深度。
PreOrderTraverse( T, visit() ) // 初始条件:二叉树T存在,Visit是对结点操作的应用函数。
实验二 二叉树的基本操作

实验三二叉树的基本操作一、实验目的1、进一步掌握树的结构及非线性特点,递归特点和动态性。
2、掌握二叉树的建立算法。
3、掌握二叉树的三种遍历方法以及基于遍历的几种基本操作。
二、实验内容1、二叉树的链式存储结构的建立;2、二叉树的三种遍历算法以及基于遍历的几种操作的实现。
三、实验要求1、学生用C++/C完成算法设计和程序设计并上机调试通过;2、撰写实验报告,提供实验测试数据和实验结果;3、分析算法,要求给出具体的算法分析结果,包括时间复杂度和空间复杂度,并简要给出算法设计小结和心得。
四、实验准备1、了解树的结构特点及概念、二叉树的概念及结构特点。
2、了解树和二叉树的基本概念和术语。
3、二叉树的三种遍历方法(先序、中序、后序遍历)先序遍历:若二叉树为空,则空操作,否则①访问根结点;②先序遍历左子树;③先序遍历右子树。
中序遍历:若二叉树为空,则空操作,否则①中序遍历左子树;②访问根结点;③中序遍历右子树。
后序遍历:若二叉树为空,则空操作,否则①后序遍历左子树;②后序遍历右子树;③访问根结点。
4、二叉树的各种存储结构及其适用范围,特别是链式存储结构。
五、实验步骤1、编程实现二叉树的建立、遍历以及基于遍历的几种基本操作。
(1)采用二叉链表存储结构创建一个二叉树;(2)用递归方法实现二叉树的三种遍历算法(3)求二叉树中叶子结点的个数,度为1 的结点个数和度为2 的结点个数;(4)求二叉树的深度。
六、实验参考代码#include "iostream.h"#include "stdio.h"#include "stdlib.h"#define OK 1#define ERROR 0#define OVERFLOW -2#define NULL 0typedef char TElemType; //限定元素的数据类型typedef int Status;typedef struct BiTNode // 定义二叉树结点结构{TElemType data;BiTNode *lchild, *rchild; // 左右孩子指针} BiTNode, *BiTree;//按扩展的前序序列建立二叉树存储结构的算法Status CreateBiTree(BiTree &T){char ch;scanf("%c",&ch);if (ch=='#') T = NULL;else{if (!(T = (BiTNode *)malloc(sizeof(BiTNode)))) exit(OVERFLOW);T->data = ch; // 生成根结点CreateBiTree(T->lchild); // 构造左子树CreateBiTree(T->rchild); // 构造右子树}return OK;} // CreateBiTree// 先序遍历二叉树void PreOrder (BiTree T){if (T) {printf("%4c",T->data); // 访问结点PreOrder(T->lchild); // 遍历左子树PreOrder(T->rchild) ; // 遍历右子树}}// 中序遍历二叉树void InOrder (BiTree T){if (T){InOrder(T->lchild); // 遍历左子树printf("%4c",T->data); // 访问结点InOrder(T->rchild);// 遍历右子树}}// 后序遍历二叉树void PostOrder (BiTree T){if (T) {PostOrder (T->lchild); // 遍历左子树PostOrder (T->rchild);// 遍历右子树printf("%4c",T->data); // 访问结点}}//求二叉树的叶子结点数void CountLeaf (BiTree T, int& count){if(T){if((!T->lchild)&&(!T->rchild)) count++;CountLeaf(T->lchild,count);CountLeaf(T->rchild,count);}}//求二叉树中度为1的结点和度为2 的结点的数void CountBT(BiTree T,int &m,int &n){if(T){if((T->lchild!=0)&&(T->rchild!=0))n++; //度为2的结点else if(((T->lchild!=0)&&(T->rchild==0))||((T->lchild==0)&&(T->rchild!=0)))m++; //度为1 的结点CountBT (T->lchild,m,n);CountBT (T->rchild,m,n);}}//以下是求二叉树的深度int Depth (BiTree T ){int m,n;if(!T) return 0;else{m = Depth(T->lchild);n = Depth(T->rchild);return (m>n?m:n)+1;}}//主函数void main(){BiTree T;int s=0,m=0,n=0,d=0;T=NULL;int select;while(1) {printf("\n 请选择要执行的操作:\n");printf("1.创建二叉树\n");printf("2.二叉树的递归遍历算法(前、中、后)\n");printf("3.求二叉树的叶子结点数\n");printf("4.求二叉树的深度\n");printf("0.退出\n");scanf("%d",&select);getchar();switch(select) {case 0:return;case 1:printf("\n 请按先序次序输入各结点的值,以#表示空树:\n");CreateBiTree(T);printf("二叉树已建立完毕!\n");break;case 2:if(!T) printf("\n 未建立树,请先建树!\n");else {printf("\n 先序遍历:");PreOrder(T);printf("\n 中序遍历:");InOrder(T);printf("\n 后序遍历:");PostOrder(T);printf("\n");}break;case 3:if(!T) printf("\n 未建立树,请先建树!\n");else{CountLeaf(T,s);printf("\n 叶子结点数为:%d\n",s);CountBT(T,m,n);printf("度为1的结点数为:%d\n",m);printf("度为2 的结点数为:%d\n",n);}break;case 4:if(!T) printf("\n 未建立树,请先建树!\n");else{d=Depth(T);printf("\n 二叉树的深度为:%d\n",d);}break;default:printf("请确认选择项:\n");}//end switch}//end while}七、测试数据教材138 页,图7-10所示的二叉树按展的前序序列输入序列为:A B D # G # # # C E # # F H # # #。
数据结构实验3:二叉树的操作

TextFile中。
(4) P:打印代码文件(Print)。
将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrin中。
(5) T:打印哈夫曼树(Tree printing)。
将已在内存中的哈夫曼树以直观的方式显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
3) 实现提示:(1) 文件CodeFile的基类型可以设为字节型。
(2) 用户界面可以设计为“菜单”方式:显示上述功能符号,再加上“Q”,表示退出运行Quit。
请用户键入一个选择功能符。
此功能执行完毕后再显示此菜单,直至某次用户选择了“E”为止。
(3) 在程序的一次执行过程中,第一次执行I、D或C命令之后,哈夫曼树已经在内存了,不必再读入。
每次执行中不一定执行I命令,因为文件hfmTree可能早已建好。
三、实验过程与实验结果实验3-01:以二叉链表为存储结构,实现二叉树的创建、遍历数据结构定义:typedef struct BiTNode{char data;BiTNode *lchild, *rchild;}BiTNode;typedef BiTNode *BiTree;算法设计思路简介:本实验需要实现以下操作:二叉树的初始化、前中后序遍历等基本操作1.利用递归实现前后序遍历,思路简洁,仅需要调整递归体的执行顺序即可实现。
2.利用非递归实现中序遍历,需要利用栈操作,按照中序遍历规则将节点依次入栈后出栈实现。
算法描述:图1 中序遍历(非递归)实现算法的实现和测试结果(参考OJ)实验3-02:编写算法交换二叉树中所有结点的左、右子树数据结构定义:typedef struct BiTNode{char data;BiTNode *lchild, *rchild;}BiTNode;typedef BiTNode *BiTree;算法设计思路简介:本实验需要实现以下操作:二叉树的初始化、前中后序遍历等基本操作1.利用递归实现前后序遍历,思路简洁,仅需要调整递归体的执行顺序即可实现。
二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告
一、实验目的
实验目的为了深入学习二叉树的各种基本运算,通过操作实现二叉树的建立、存储、查找、删除、遍历等各种基本运算操作。
二、实验内容
1、构造一个二叉树。
我们首先用一定的节点来构建一棵二叉树,包括节点的左子节点和右子节点。
2、实现查找二叉树中的节点。
在查找二叉树中的节点时,我们根据二叉树的特点,从根节点开始查找,根据要查找的节点的值与根节点的值的大小的关系,来决定接下来查找的方向,直到找到要查找的节点为止。
3、实现删除二叉树中的节点。
在删除二叉树节点时,我们要做的是找到要删除节点的父节点,然后让父节点的链接指向要删除节点的子节点,有可能要删除节点有一个子节点,有可能有两个极点,有可能没有子节点,我们要根据每种情况进行处理,来保持二叉树的结构不变。
4、对二叉树进行遍历操作。
二叉树的遍历有多种方法,本实验使用的是先序遍历。
首先从根节点出发,根据先序遍历的顺序,先访问左子树,然后再访问右子树,最后访问根节点。
三、实验步骤
1、构建二叉树:
我们用一个数组代表要构建的二叉树,第一项为根节点,第二项和第三项是根节点的子节点。
数据结构与算法实验——二叉树基本操作

二叉树基本操作实验报告实验名称二叉树基本操作实验目的1.熟悉二叉树结点的结构和二叉树的基本操作;2.掌握二叉树每种操作的具体实现;3.学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法;4.在二叉树基本操作的基础上掌握对二叉树的一些其它操作的具体实现方法;5.掌握构造哈夫曼树以及哈夫曼编码的方法。
实验内容编制一个演示二叉树创建、遍历、计算等操作的程序。
问题描述用数据结构相关知识,实现二叉树的定义和操作。
该程序包括二叉树结构类型以及对二叉树操作的具体的函数定义(包括:初始化二叉树、清空二叉树、检查二叉树是否为空、遍历二叉树(先序、后序、中序、层次)、求二叉树的深度、求二叉树所有节点数)。
问题分析该实验是基于C语言和数据结构知识基础的对二叉树的基本操作的检验,无需设计复杂的算法,程序语句也相对简单。
因此,我直接按要求定义了对二叉树操作的具体函数,并于主函数中实现对应的功能调用,其中,功能选择靠switch语句实现。
实验步骤1.需求分析本演示程序用VC++编写,完成二叉树的生成、遍历、计算等基本操作。
①输入的形式和输入值的范围:以字符(其中‘#’表示虚节点)的形式输入,以创建二叉树;在输入二叉树节点前,必须先确定该序列能正确创建二叉树。
②输出的形式:在所有三种操作中都显示操作是否正确以及操作后二叉树的内容。
③程序所能达到的功能:完成二叉树的生成、遍历(包括先序、后序、中序、层次四种方式)、计算等基本操作。
④测试数据:创建操作中依次输入a,b,d,#,g,#,#,#,c,e,#,#,f,#,#生成一个二叉树。
2.概要设计1)为了实现上述程序功能,需要定义二叉树的抽象数据类型:ADT BitTree {数据对象:由一个根节点和两个互不相交的左右子树构成数据关系:结点具有相同的数据类型及层次结构基本操作:Void BinTreeInit(BitTree *T)初始条件:无操作结果:初始化一棵二叉树Void BinTreeCreat(BitTree *T)初始条件:二叉树T已存在操作结果:按先序次序创建一棵二叉树2)本程序包含7个函数:①主函数main() ②初始化二叉树函数BinTreeInit() ③建立一棵二叉树函数BinTreeCreat() ④先序遍历函数PreOrderTraverse() ⑤中序遍历函数InOrderTraverse()⑥后序遍历函数PostOrderTraverse()⑦层次遍历函数LevelOrderTraverse()⑧求二叉树深度函数Countlevel()⑨检验空树函数BinTreeEmpty()⑩求节点数函数 Countnode()函数说明#include<stdio.h>#include<stdlib.h>typedef char Datatype;typedef struct NodeType{Datatype data;struct NodeType *lchild;struct NodeType *rchild;}BiTNode;typedef BiTNode * BinTree;//初始化二叉树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三二叉树的基本运算
一、实验目的
1、使学生熟练掌握二叉树的逻辑结构和存储结构。
2、熟练掌握二叉树的各种遍历算法。
二、实验内容
题目一:二叉树的基本操作实现(必做题)
[问题描述]
建立一棵二叉树,试编程实现二叉树的如下基本操作:
1. 按先序序列构造一棵二叉链表表示的二叉树T;
2. 对这棵二叉树进行遍历:先序、中序、后序以及层次遍历,分别输出结点的遍历序列;
3. 求二叉树的深度/结点数目/叶结点数目;(选做)
4. 将二叉树每个结点的左右子树交换位置。
(选做)
[基本要求]
从键盘接受输入(先序),以二叉链表作为存储结构,建立二叉树(以先序来建立),
[测试数据]
如输入:ABCффDEфGффFффф(其中ф表示空格字符)
则输出结果为
先序:ABCDEGF
中序:CBEGDFA
后序:CGEFDBA
层序:ABCDEFG
[选作内容]
采用非递归算法实现二叉树遍历。
三、算法设计
1、主要思想:根据二叉树的图形结构创建出二叉树的数据结构,然后
用指针对树进行操作,重点掌握二叉树的结构和性质。
2、本程序包含四个模块:
(1)结构体定义
(2)创建二叉树
(3)对树的几个操作
(4)主函数
四、调试分析
这是一个比较简单程序,调试过程中并没有出现什么问题,思路比较清晰
五、实验结果
六、总结
此次上机实验对二叉树进行了以一次实际操作,让我对二叉树有了更深的了解,对二叉树的特性有了更熟悉的认知,让我知
道了二叉树的重要性和便利性,这对以后的编程有更好的帮助。
七、源程序
#include<iostream>
#include<queue>
using namespace std;
#define TElemType char
#define Status int
#define OK 1
#define ERROR 0
typedef struct BiTNode{
TElemType data;
struct BiTNode * lchild, *rchild;
}BiTNode,* BiTree;
Status CreateBiTree(BiTree &T)
{
TElemType ch;
cin >> ch;
if (ch == '#')
T = NULL;
else
{
if (!(T = (BiTNode *)malloc(sizeof(BiTNode))))
exit(OVERFLOW);
T->data = ch;
CreateBiTree(T->lchild);
CreateBiTree(T->rchild);
}
return OK;
}
Status PreOrderTraverse(BiTree T)
{
if (T)
{
cout << T->data;
if (PreOrderTraverse(T->lchild))
if (PreOrderTraverse(T->rchild))
return OK;
return ERROR;
}
else
return OK;
}
Status InOrderTraverse(BiTree T)
{
if (T)
{
InOrderTraverse(T->lchild);
cout << T->data;
InOrderTraverse(T->rchild);
}
return OK;
}
Status PostOrderTraverse(BiTree T) {
if (T)
{
PostOrderTraverse(T->lchild);
PostOrderTraverse(T->rchild);
cout << T->data;
}
return OK;
}
Status leOrderTraverse(BiTree T)
{
std::queue<BiTree> Q;
if (T == NULL)return ERROR;
else{
Q.push(T);
while (!Q.empty())
{
T = Q.front();
Q.pop();
cout << T->data;
if (T->lchild != NULL)
Q.push(T->lchild);
if (T->rchild != NULL)
Q.push(T->rchild);
}
}
return OK;
}
Status change(BiTree T)
{
BiTree temp = NULL;
if (T->lchild == NULL && T->rchild == NULL) return OK;
else{
temp = T->lchild;
T->lchild = T->rchild;
T->rchild = temp;
}
if (T->lchild)
change(T->lchild);
if (T->rchild)
change(T->rchild);
return OK;
}
int FindTreeDeep(BiTree T){
int deep = 0;
if (T){
int lchilddeep = FindTreeDeep(T->lchild);
int rchilddeep = FindTreeDeep(T->rchild);
deep = lchilddeep >= rchilddeep ? lchilddeep + 1 : rchilddeep + 1;
}
return deep;
}
int main()
{
BiTree T;
CreateBiTree(T);
cout << "先序遍历顺序为:";
PreOrderTraverse(T);
cout << endl;
cout << "中序遍历顺序为:";
InOrderTraverse(T);
cout << endl;
cout << "后序遍历顺序为:";
PostOrderTraverse(T);
cout << endl;
cout << "层序遍历顺序为:";
leOrderTraverse(T);
cout << endl;
cout << "二叉树深度为:" << FindTreeDeep(T)<<endl;
cout << "左右子树交换后:";
change(T);
cout << "先序遍历顺序为:";
PreOrderTraverse(T);
cout << endl;
return 0;
}。