高一上学期数学必修1测试题(很好的一套高中数学必修一试题)绝对经典

合集下载

高一必修一考试卷数学

高一必修一考试卷数学

高一必修一考试卷数学高一必修一数学考试卷一、选择题(每题3分,共30分)1. 函数\( f(x) = 2x^2 - 3x + 1 \)的对称轴方程是:A. \( x = 1 \)B. \( x = -1 \)C. \( x = \frac{3}{4} \)D. \( x = 0 \)2. 若\( a \),\( b \),\( c \)是三角形的三边长,且满足\( a^2 + b^2 = c^2 \),则三角形是:A. 直角三角形B. 钝角三角形C. 锐角三角形D. 等边三角形3. 已知\( \sin \alpha = \frac{3}{5} \),\( \alpha \)为锐角,求\( \cos \alpha \)的值:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{4} \)D. \( -\frac{3}{4} \)4. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \):A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)5. 已知\( x \),\( y \)满足约束条件\( \begin{cases} x + y\leq 3 \\ x - y \geq 0 \end{cases} \),目标函数\( Z = 2x + y \)的最大值是:A. 4B. 5C. 6D. 76. 函数\( f(x) = x^3 - 3x \)的导数是:A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)7. 已知等差数列\( \{a_n\} \)的首项为\( a_1 = 3 \),公差为\( d = 2 \),求第5项:A. 11B. 13C. 15D. 178. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 29. 已知\( \frac{1}{a} + \frac{1}{b} = \frac{5}{6} \),\( a >0 \),\( b > 0 \),求\( a + b \)的值:A. \( \frac{6}{5} \)B. \( \frac{5}{6} \)C. \( \frac{7}{5} \)D. \( \frac{6}{7} \)10. 函数\( y = x^2 \)在点\( (1, 1) \)处的切线斜率是:A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)11. 若\( \cos \theta = \frac{\sqrt{3}}{2} \),则\( \sin\theta \)的值为________。

高中高一数学必修一试卷习题及含答案

高中高一数学必修一试卷习题及含答案

高一数学必修一试卷及答案一、选择题(本大题共 12 小题 , 每题 5 分 , 共 60 分 . 在每题给出的四个选项中是切合题目要求的 , 请把正确答案的代号填入答题卡中), 只有一项1. 已知全集U0,1,2,3,4 , M0,1.2 , N2,3 ,则 C U M NA.2B.3C.2,3,4D.0。

1,2,3,42.以下各组两个会合 A 和 B, 表示同一会合的是A.A=,B= 3.14159B. A=2,3 ,B=(2,3)C. A= 1,3,,B=,1,3D. A=x 1x 1, x N ,B=13.函数 y x 2的单一递加区间为A.(,0]B. [0, )C.(0, )D. (, )4.以下函数是偶函数的是1A.y xB.y 2x 23C.y x 2D. y x2 , x[ 0,1]5.已知函数f x x1, x 1,则 f(2) =x3, x1B,26. 当0 a 1 时,在同一坐标系中,函数y a x与 y log a x 的图象是.y y y y1x 111x x xo o11o11oA B C D7.假如二次函数y x2mx( m 3) 有两个不一样的零点, 则 m的取值范围是A. ( -2,6)B.[-2,6]C.2,6D., 26.8.若函数 f ( x)log a x(0 a1) 在区间a,2 a 上的最大值是最小值的2倍,则a的值为()A 、2 B、2 C、1D、142429. 三个数 a 0.32 , b log 2 0.3, c 20 .3 之间的大小关系是A a c b .B.a b cC.b a cD.b c a10. 已知奇函数 f ( x) 在 x 0 时的图象如下图,则不等式xf ( x)0 的解集为A. (1, 2)B. ( 2, 1)C. ( 2, 1) U (1, 2) D. ( 1, 1)11. 设 f x3 x 3x 8 , 用二分法求方程 3x3x 8 0在 x 1,2 内近似解的过程中得f 1 0, f1.50, f 1.250, 则方程的根落在区间A. ( 1, )B.( , )C.( ,2 )D.不可以确立12. 计算机成本不停降低 , 若每隔三年计算机价钱降低1, 则此刻价钱为 8100 元的计算机 93年后价钱可降为元元元元二、填空题 (每题 4 分 , 共 16 分 . )13. 若 幂 函 数 y = fx 的 图 象 经 过 点 ( 9,1) ,则 f(25)的 值 是 _________-314. 函数 f x4 x log 3 x 1 的定义域是x 115. 给出以下结论( 1) 4( 2) 42(2) 1log 312 log 3 2 122(3)函数 y=2x-1 , x[1 ,4] 的反函数的定义域为[1 ,7 ]1(4)函数 y= 2 x 的值域为 (0,+) 此中正确的命题序号为16. 定义运算 a ba ab , 则函数 f (x)1 2x的最大值为.b ab .三、解答题 (本大题共6 小题 ,共 74分 . 解答应写出文字说明, 证明过程或演算步骤)17. ( 12 分) 已知会合A{ x | 2x40}, B{ x | 0x 5} , 全集 UR ,求:(Ⅰ) AI B ;(Ⅱ)(C U A) I B.18.计算 : (每题 6 分 , 共 12 分)( 1) 2 361233219.( 12 分)已知函数 f ( x) x 1,( Ⅰ )证明 f ( x)在[1,)上是增函数;x( Ⅱ) 求f (x)在[1,4]上的最大值及最小值.20.已知 A、B 两地相距地 , 在 B 地逗留一小时后离 y(千米)表示为时间象 . (14 分)150 千米 , 某人开车以 60 千米/小时的速度从 A 地到 B , 再以 50 千米/小时的速度返回 A地 . 把汽车与 A地的距 t (小时)的函数(从 A 地出发时开始) , 并画出函数图21.(本小题满分 12 分)二次函数 f (x)知足且 f (0)=1.(1)求 f (x)的分析式 ;(2)在区间上 , y=f(x) 的图象恒在 y=2x+m的图象上方 , 试确立实数 m的范围 .22. 已知函数 f (x)对一确实数x, y R 都有 f ( x y) f ( y) x(x 2 y1) 建立,且f (1) 0 .(Ⅰ)求 f (0) 的值;(Ⅱ)求 f ( x) 的分析式;(Ⅲ)已知 a R ,设 P :当0 x 12x a恒建立;时,不等式 f ( x) 32Q:当x[2,2] 时, g (x) f ( x)ax 是单一函数。

数学必修一考试题及答案

数学必修一考试题及答案

数学必修一考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集ID. 复数集C答案:B2. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 以下哪个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A4. 已知集合A={1,2,3},B={2,3,4},则A∩B等于?A. {1,2,3}B. {2,3}C. {4}D. {1,2,3,4}答案:B5. 计算下列极限:lim(x→0) (sin(x)/x)的值是?A. 0B. 1C. 2D. ∞答案:B6. 已知等差数列{a_n}的首项a_1=3,公差d=2,则a_5的值是?A. 9B. 11C. 13D. 15答案:B7. 以下哪个选项是双曲线的标准方程?A. x^2 - y^2 = 1B. x^2 + y^2 = 1C. x^2 - y^2 = -1D. x^2 + y^2 = -1答案:A8. 计算行列式|1 2 3||4 5 6||7 8 9|的值。

A. 0B. 1C. -3D. 3答案:C9. 已知函数f(x) = x^2 - 6x + 8,求f(3)的值。

A. -1B. 1C. 5D. 9答案:A10. 以下哪个选项是二项式定理的展开式?A. (a+b)^n = a^n + nb^nB. (a+b)^n = a^n + n*a^(n-1)*b + ...C. (a-b)^n = a^n - nb^nD. (a-b)^n = a^n - n*a^(n-1)*b + ...答案:B二、填空题(每题4分,共20分)1. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x)的值。

答案:3x^2 - 6x2. 计算定积分∫(0到1) x^2 dx的值。

高一数学必修一测试题

高一数学必修一测试题

高一数学必修一测试题一、选择题(每题4分,共20分)1. 已知函数 f(x) = 2x + 3,求 f(4) 的值是多少?A) 7 B) 11 C) 10 D) 92. 两个数的和是48,它们的差是14,求这两个数分别是多少?A) 31和17 B) 29和19 C) 27和21 D) 26和223. 已知直角三角形两直角边的长度分别为3和4,求斜边的长度。

A) 6 B) 7 C) 5 D) 104. 若 a + b = 10,且 a^2 + b^2 = 52,求 a 和 b 的值。

A) 2和8 B) 3和7 C) 4和6 D) 5和55. 某商店原售价150元的商品打8折出售,现售价是多少?A) 12元 B) 15元 C) 120元 D) 105元二、简答题(每题10分,共30分)1. 已知 a:b = 3:5,b:c = 4:7,求 a:b:c 的比值。

2. 某数与84的比是2:5,这个数与70的比是多少?3. 已知两个角的和为180度,其中一个角的补角是另一个角的3倍,求这两个角的度数。

三、解答题(每题30分,共50分)1. 已知直线 l1 过点 A(1, 2),斜率为1/3。

求直线 l1 的解析式,并画出其图像。

2. 某地去年的人口是20万,今年增长了5%,求今年的人口数。

3. 若 a:b = 2:3,且 a:b:c = 4:6:9,求 c 的值。

四、证明题(每题20分,共50分)1. 已知三角形 ABC,其中 AB = AC,过点 B 作 AC 的垂线,交于点 D。

证明:BD = CD。

2. 若 a + b = b + c,证明 a = c。

答案与解析:一、选择题1. A) 7解析:将 x = 4 代入 f(x) = 2x + 3,得到 f(4) = 2(4) + 3 = 8 + 3 = 11。

2. B) 29和19解析:设其中一个数为 x,则另一个数为 48 - x,根据题意可列出方程 x - (48 - x) = 14,解得 x = 29,那么另一个数为 48 - 29 = 19。

高中数学必修一测试题

高中数学必修一测试题

高中数学必修一测试题一. 填空题1. 已知函数 f(x) = 2x² + 3x - 5,求 f(2) 的值。

解: 将 x = 2 代入函数 f(x) 得 f(2) = 2(2)² + 3(2) - 5 = 4(4) + 6 - 5 = 16+ 6 - 5 = 17。

2. 已知平行四边形 ABCD 的边长分别为 AB = 5cm,BC = 8cm,CD = 5cm,求对角线 AC 的长度。

解: 由平行四边形的性质可知,对角线互相平分且相等,因此 AC的长度等于 BD 的长度。

而 BD = AB = 5cm,所以 AC 的长度也为 5cm。

3. 解方程 2x + 3 = 7。

解: 通过移项和化简得 2x = 7 - 3 = 4,再除以 2 得 x = 2。

二. 计算题1. 计算3π + 2π - π。

解: 合并同类项得3π + 2π - π = 4π - π = 3π。

2. 简化下列代数式:(3x - 2y)²。

解: 将代数式展开得 (3x - 2y)² = (3x - 2y)(3x - 2y) = (3x)(3x) + (3x)(-2y) + (-2y)(3x) + (-2y)(-2y)= 9x² - 6xy - 6xy + 4y² = 9x² - 12xy + 4y²。

三. 解答题1. 解方程组:{ x - y = 5,2x + y = 9.解: 方程组可通过消元法求解。

首先将第一条方程两边同乘以 2,得到 2x - 2y = 10。

然后将第二条方程与该式相加,消去 y,得到 (2x + y) + (2x - 2y) = 9 + 10即 4x = 19,再除以 4 得 x = 19/4。

将 x 的值代入第一条方程得 (19/4) - y = 5,移项得 y = (19/4) - 5 = 19/4 - 20/4 = -1/4。

高一数学必修1测试题(分单元测试_含详细答案_强烈推荐)

高一数学必修1测试题(分单元测试_含详细答案_强烈推荐)

迄今为止最全,最适用的高一数学试题(必修1)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5MNAMNB NMCMN D9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,, C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .25 3.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞) 5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( ) A .至少有一实根 B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高中数学必修一测试题及答案

高中数学必修一测试题及答案

高中数学必修一测试题及答案高中数学必修一检测试题考试时间为100分钟,满分为150分。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求。

1.已知集合A={x|x-1≥0},B={x|x≤2},则AB=1.A。

{ } B。

{1} C。

{1,2} D。

{2}2.下列函数与y=|x|为同一函数的是A。

y=x^2 B。

y=x^3 C。

y=|x| D。

y=log_a|x|3.指数函数y=2的图象只可能是下列图形中的A。

B。

C。

D。

4.下列幂函数中图象经过两点(0,1),(1,1),且为偶函数的是A。

y=x^4-2 B。

y=x^2 C。

y=x^(-1/2) D。

y=x^(1/3)5.若函数y=x+(2a-1)x^2在(-∞,2]上是减函数,则实数a的取值范围是A。

( -∞,-2/3 ] B。

[ -2/3,0 ] C。

[ 0,1/2 ) D。

[ 1/2,+∞)6.下列各式错误的是A。

30.8>30.7 B。

log_0.5 0.4>log_0.5 0.6 C。

0.75-0.1lg1.47.奇函数f(x)在区间[1,4]上为减函数,且有最小值2,则它在区间[-4,-1]上A。

是减函数,有最大值-2 B。

是增函数,有最大值-2 C。

是减函数,有最小值-2 D。

是增函数,有最小值-28.已知函数f(t)=log_a t(a>0且a≠1),对任意的x>0,y>0,下列等式XXX成立的是A。

f(x+1)=f(x)+1 B。

f(x+y)=f(x)×f(y) C。

f(xy)=f(x)+f(y) D。

f(2x)=2f(x)9.函数f(x)对于任意实数x满足f(x+2)=1/x,若f(1)=-5,则f(f(5))等于A。

2 B。

5 C。

-5 D。

-1/510.客车从甲地以60km/h的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h的速度匀速行驶1小时到达丙地。

高一数学必修一试卷及答案

高一数学必修一试卷及答案

高一数学必修一试卷及答案
高一数学必修一是一堂全面涵盖几何、算术的数学课程,学生必须在考试中熟练运用已掌
握的知识技能。

高一数学必修一试卷具有重要教学意义,它是考核学生学习成果的重要依据。

以下是高一数学必修一试卷及答案:
试卷:
1. 已知点A(2,3),点B(5,8),求直线AB的斜率。

A. 2/3
B. -3/2
C. 3/2
D. -2/3
答案:D. -2/3
2. 已知△ABC的三边长分别为a,b,c,当△ABC的三个内角A、B、C满足A>B>C时,则有
A. a<b+c
B. a>b+c
C. b<a+c
D. b>a+c
答案:A. a<b+c
3. 若x=2cosα+1, y=2sinα-2,则α的值是
A. 30°
B. 45°
C. 60°
D. 120°
答案:A. 30°
以上就是高一数学必修一试卷及答案的相关内容,该试卷的题目覆盖了线性函数、坐标几何、三角形的角和弦等内容,全面考察学生的数学基础知识和专业技能。

学生在参加考试前,应熟练掌握高一数学必修一考纲要求的相关知识,做好充分的准备,以便在考试中、
取得良好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上学期数学必修1测试题
一、选择题: 本卷共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集{}{}{}
()====N M C ,N M U U 则3,2,2.1,0,4,3,2,1,0 ( ) A. {}2 B. {}3 C. {}432,,
D. {}4321,0,,, 2.设0.32
22,0.3,log 0.3a b c ===,则,,a b c 的大小关系是 ( )
A .a b c <<
B .c b a <<
C .c a b <<
D .a c b <<
3、设A={|02x x ≤≤}, B={|02y y ≤≤}, 下列各图中能表示集合A 到集合B 的映射是( )
4.设⎭⎬⎫⎩
⎨⎧
-∈
3,21,1,1α,则使函数αx y =的定义域为R 的所有α的值为( )
A .1,3
B .-1,1
C .-1,3
D .-1,1,3
5、与函数y x =有相同图象的一个函数是( )
A .2x y =
B . 2
)(x y = C . x
x y 2
= D .)1,0(log ≠>=a a a y x a 6.设函数()log (0,1)a f x x a a =>≠,若12
2010()8f x x x =,则22
12
()()f x f x ++
2
2010()f x +
的值等于
A .4
B .8
C .16
D .2log 8a
7.下列图像表示的函数能用二分法求零点的是( )
x
y
1231
23 B.
x
y
1231
23 C.
y
1231
23x
y
123123o
1
y x
x
o
y x
o
y x
o
y
A B C D
8.给定函数①12
y x =,②12
log (1)y x =+,③|2|2x x y -=,④x
x y 1
+
=,其中在区间(0,1)上单调递减的函数序号是 ( )
A .①③
B .②③
C .②④
D .①④
9.设f (x )是R 上的偶函数, 且在[)∞+,
0上递增, 若f (21
)=0, 0)(log 4
1<x f ,那么x 的取值范围是 ( )
A .x >2或
21<x <1 B .21<x <2 C .2
1
<x <1 D .x >2 10.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是
A .(0,1)
B .(1,2)
C .(0,2)
D .∞[2,+)
二、填空题:(本大题共5小题,每小题5分,共25分。

) 11、若212
a y a x
-
=⋅是幂函数,则该函数的值域是__________;
12、若函数)(x f 的定义域是[)2,2-,则函数)1(+=x f y 的定义域是__________;
13、函数8
,0()(2)0x f x x x x x ⎧≥⎪
=⎨⎪-<⎩, ,则)2(-f =_________,)]2([-f f =__ ______
14.设集合M ={x |x 2<a},集合N ={x |21<<x },若集合N 是集合M 的子集,
则实数a 的取值范围是_________________.
15.函数f(x)= a x+1-a 在区间[0,2]上的函数值恒大于0,则a 的取值范围
是 .
三、解答题:本大题共6小题,共75分。

16.(本题满分12分)
(1)计算3
log 15.222ln 01.0lg 25.6log ++++e ;(2)设,3log 2=x 求x
x x
x ----222233的
值.
17、(本小题满分12分).设全集U=R ,集合{}|13A x x =-≤<,{}|242B x x x =-≥-
(1)求()U C A
B ;
(2)若集合C ={|20}x x a +>,满足B C C =,求实数a 的取值范围.
18.(本小题满分12分)求函数的值域.
19.(本小题满分12分)已知函数1
21
21)(++-
=x
x f (1) 证明:函数f (x )是奇函数. (2) 证明:对于任意的非零实数x 恒有x f (x )<0成
立.
20. (本小题13分)设函数()f x 的定义域为R ,当0x >时,()1f x >,且对任意,x y R ∈,都有()()()f x y f x f y +=⋅,且(2)4f =。

(1)求(0),(1)f f 的值;
(2)证明:()f x 在R 上为单调递增函数;
(3)若有不等式1
()(1)2f x f x
⋅+<成立,求x 的取值范围。

21.(本小题14分)当x在实数集R上任取值时,函数)
f相应的值等于x2、2 、
(x
三个之中最大的那个值.
x2
(1)求)0(f与)3(f;(2分)
(2)画出)
(x
f的解析式;(6分)
f的图象,写出)
(x
(3)证明)
f是偶函数;(3分)
(x
(4)写出)
f的值域.(3分)
(x。

相关文档
最新文档