湖北省宜昌市八年级下学期数学期末考试试卷
湖北省宜昌市八年级下学期数学期末考试试卷

湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各式成立是()A .B .C .D .2. (2分)(2017·潮安模拟) 如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线距离之和PE+PF是()A . 4.8B . 5C . 6D . 7.23. (2分)下列由线段a,b,c组成的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=2, b=3,c=C . a=12,b=10,c=20D . a=5,b=13,c=124. (2分)下列说法中,正确的是()A . 对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B . 某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C . 掷一枚硬币,正面朝上的概率为D . 若甲组数据的方差S甲2=0.1,乙组数据的方差S乙2=0.01,则甲组数据比乙组数据稳定5. (2分)(2018·丹江口模拟) 如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC= .其中正确的是()A . ①③B . ②③C . ①④D . ②④6. (2分)下列函数中,自变量x的取值范围是x≥2的是()A .B .C .D .7. (2分)已知(2,a)和(-3,b)在一次函数y=-x+8的图象上,则()A . a>bB . a<bC . a =bD . 无法判断8. (2分)在平面中,下列命题为真命题的是()A . 四边相等的四边形是正方形B . 对角线相等的四边形是菱形C . 四个角相等的四边形是矩形D . 对角线互相垂直的四边形是平行四边形9. (2分)如图矩形ABCD中,若AB=4,BC=9,E、F分别为BC,DA上的点,则S四边形AECF等于()A . 12B . 24C . 36D . 4810. (2分)某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A . 20mB . 25mC . 30mD . 35m11. (2分) (2017·海口模拟) 如图,在△ABC中,AB=AC,AD平分∠BAC,E为AC的中点,DE=3,则AB等于()A . 4B . 5C . 5.5D . 612. (2分)(2017·大石桥模拟) 如图,已知等边三角形ABC的边长为2,E、F、G分别是边AB、BC、CA的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y与x的函数图象大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2016·河池) 代数式在实数范围内有意义,则x的取值范围是________.14. (1分)一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为________.15. (1分) (2017八下·盐都期中) 如图,▱ABCD的对角线AC、BD相交于点O,点E、F分别是线段AO、BO 的中点,若AC+BD=22cm,△OAB的周长是16cm,则EF的长为________cm.16. (1分)将一次函数y=﹣2x+1的图象平移,使它经过点(﹣2,1),则平移后图象函数的解析式为________.17. (1分)(2019·苏州模拟) 如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD 边上一动点,将四边形APQD沿直线PQ折叠,A的对应点为A′,则CA′的长度最小值为________.18. (1分) (2017八下·抚宁期末) 已知一次函数y=kx+5的图象经过点(﹣1,2),则k=________.三、解答题 (共6题;共57分)19. (5分)已知α是锐角,且sin(α+15°)=.计算-4cosα-(π-3.14)0+tanα+()-1的值.20. (5分) (2019八下·淮安月考) 在平行四边形中,已知,周长为26,求其余三边的长及三个内角的度数.21. (11分)(2017·河南模拟) 为了丰富同学们的课余生活,某学校举行“亲近大自然”户外活动,现随机抽取了部分学生进行主题为“你最想去的景点是?”的问卷调查,要求学生只能从“A(植物园),B(花卉园),C (湿地公园),D(森林公园)”四个景点中选择一项,根据调查结果,绘制了如下两幅不完整的统计图.请解答下列问题:(1)本次调查的样本容量是________;(2)补全条形统计图;(3)若该学校共有3600名学生,试估计该校最想去湿地公园的学生人数.22. (10分) (2019八下·如皋月考) 菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图①,若点E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.23. (15分)弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:所挂物体的质量(kg)01234567弹簧的长度(cm)1212.51313.51414.51515.5(1)如果物体的质量为x kg,弹簧长度为y cm,根据上表写出y与x的关系式;(2)当物体的质量为2.5kg时,根据(1)的关系式,求弹簧的长度;(3)当弹簧的长度为17cm时,根据(1)的关系式,求弹簧所挂物体的质量.24. (11分)(2017·玄武模拟) 如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1) M、N两地之间的距离为________km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共57分)19-1、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、第11 页共11 页。
人教版湖北省宜昌市八年级(下)期末数学试卷解析

湖北省宜昌市(城区)八年级(下)期末数学试卷一.选择题1.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤22.下列计算正确的是()A.=﹣3 B.=7 C.=2D.=×3.已知甲,乙两班学生一次数学测验的方差分别为S甲2=154,S乙2=92,这两个班的学生成绩比较整齐的是()A.乙班B.甲班C.两班一样D.无法确定4.关于正比例函数y=﹣2x,下列说法错误的是()A.图象经过原点B.图象经过第二,四象限C.y随x增大而增大D.点(2,﹣4)在函数的图象上5.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,2 B.1,2,C.5,12,13 D.1,,6.已知点A(﹣5,y1)和B(﹣4,y2)都在直线y=x﹣4上,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定7.如图,矩形ABCD的对角线AC,BD交于点O,∠AOB=45°AE⊥BD,垂足是点E,则∠BAE的大小为()A.15° B.22.5° C.30° D.45°8.一次函数y=﹣2x﹣4的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.1810.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.众数是80 B.平均数是80 C.中位数是75 D.极差是1511.已知a,b都是正数,化简,正确的结果是()A.a B.2C.2a D.2ab12.如图,菱形ABCD的周长为20,一条对角线AC长为8,另一条对角线BD长为()A.16 B.12 C.6 D.413.在下列命题中,真命题是()A.有两边平行的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有一个角是直角的四边形是矩形D.有一个角是直角且有一组邻边相等的四边形是正方形14.面积为16cm2的正方形,对角线的长为()cm.A.4 B.4C.8 D.815.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣1二.解答题16.计算:(﹣)+(+1)2.17.求如图的Rt△ABC的面积.18.蜡烛燃烧时余下的长度y(cm)和燃烧的时间x(分钟)的关系如图.(1)求燃烧50分钟后蜡烛的长度;(2)这支蜡烛最多能燃烧多长时间.19.正方形ABCD中,AB=4,对角线交于点O,F是BO的中点,连接AF,求AF的长度.20.翔志学校抽样调查后得到n名学生年龄情况,将结果绘制成如下的扇形统计图.(1)被调查学生年龄的中位数是岁;(2)通过计算求该学校学生年龄的平均数(精确到1岁);(3)被调查的学生中12岁学生比16岁学生多30人,通过计算求14岁学生的人数.21.如图,在平行四边形ABCD中,F是对角线的交点,E是边BC的中点,连接EF.(1)求证:2EF=CD;(2)当EF与BC满足时,四边形ABCD是矩形;(3)当EF与BC满足时,四边形ABCD是菱形,并证明你的结论;(4)当EF与BC满足时,四边形ABCD是正方形.22.翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低.修筑公路的里程y(千米)和所用时间x(天)的关系用图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=x+2的图象.(1)求点A的坐标;(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度.23.已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA 为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处.(1)求证:四边形OECH是平行四边形;(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;(3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标.24.直线y=x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4.(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.2014-2015学年湖北省宜昌市(城区)八年级(下)期末数学试卷参考答案与试题解析一.选择题1.要使代数式有意义,则x的取值范围是()A.x≥2 B.x≥﹣2 C.x≤﹣2 D.x≤2考点:二次根式有意义的条件.分析:二次根式的被开方数x﹣2是非负数.解答:解:根据题意,得x﹣2≥0,解得,x≥2;故选:A.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列计算正确的是()A.=﹣3 B.=7 C.=2D.=×考点:二次根式的性质与化简.分析:根据二次根式的性质,可判断A、B,根据二次根式的除法,可判断C,根据二次根式的乘法,可判断D.解答:解:A、=3,故A错误;B、==5,故B错误;C、,故C错误;D、=×,故D正确.故选:D.点评:本题考查了二次根式的性质与化简,二次根式的性质、二次根式的乘除发是解题关键.3.已知甲,乙两班学生一次数学测验的方差分别为S甲2=154,S乙2=92,这两个班的学生成绩比较整齐的是()A.乙班B.甲班C.两班一样D.无法确定考点:方差.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解答:解:∵S甲2=154,S乙2=92,∴S甲2>S乙2,∴两个班的学生成绩比较整齐的是乙班;故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.关于正比例函数y=﹣2x,下列说法错误的是()A.图象经过原点B.图象经过第二,四象限C.y随x增大而增大D.点(2,﹣4)在函数的图象上考点:正比例函数的性质.分析:分别利用正比例函数的性质分析得出即可.解答:解:A、正比例函数y=﹣2x,图象经过原点,正确,不合题意;B、正比例函数y=﹣2x,图象经过第二,四象限,正确,不合题意;C、正比例函数y=﹣2x,y随x增大而减小,故此选项错误,不合题意;D、当x=2时,y=﹣4,故点(2,﹣4)在函数的图象上正确,不合题意;故选:C.点评:此题主要考查了正比例函数的性质,熟练掌握正比例函数的性质是解题关键.5.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,2 B.1,2,C.5,12,13 D.1,,考点:勾股定理的逆定理.分析:将各选项中长度最长的线段长求出平方,剩下的两线段长求出平方和,若两个结果相等,利用勾股定理的逆定理得到这三条线段能组成直角三角形;反之不能组成直角三角形.解答:解:A、∵12+()2=22,∴能组成直角三角形;B、∵12+22=()2,∴能组成直角三角形;C、∵52+122≠=132=81,∴能组成直角三角形;D、∵12+()2≠()2,∴不能组成直角三角形.故选D.点评:此题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.6.已知点A(﹣5,y1)和B(﹣4,y2)都在直线y=x﹣4上,则y1与y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定考点:一次函数图象上点的坐标特征.分析:首先把A、B两点坐标分别代入y=x﹣4中可得y1、y2的值,进而可比较大小.解答:解:∵点A(﹣5,y1)和B(﹣4,y2)都在直线y=x﹣4上,∴y1=﹣5﹣4=﹣9,y2=﹣4﹣4=﹣8,∵﹣9<﹣8,∴y1<y2,故选:C.点评:此题主要考查了一次函数图象上点的坐标特征,关键是掌握凡是函数图象经过的点,必能满足解析式.7.如图,矩形ABCD的对角线AC,BD交于点O,∠AOB=45°AE⊥BD,垂足是点E,则∠BAE的大小为()A.15° B.22.5° C.30° D.45°考点:矩形的性质.分析:易证∠BAE=∠ADE,根据矩形对角线相等且互相平分的性质,可得∠OAB=∠OBA,在Rt△ABD中,已知∠OBA即可求得∠BAE的大小.解答:解:∵四边形ABCD是矩形,AE⊥BD,∴∠BAE+∠ABD=90°,∠ADE+∠ABD=90°,∴∠BAE=∠ADE∵矩形对角线相等且互相平分,∴∠OAB=∠OBA==67.5°,∴∠BAE=∠ADE=90﹣67.5°=22.5°,故选B.点评:本题考查了矩形对角线相等且互相平分的性质,考查了等腰三角形底角相等的性质,本题中计算∠OAB的值是解题的关键.8.一次函数y=﹣2x﹣4的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:因为k=﹣3=2<0,b=﹣4<0,根据一次函数y=kx+b(k≠0)的性质得到图象经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=﹣2x﹣4的图象不经过第一象限.解答:解:对于一次函数y=﹣2x﹣4,∵k=﹣2<0,∴图象经过第二、四象限;又∵b=﹣4<0,∴一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,∴一次函数y=﹣3x﹣2的图象不经过第一象限.故选A.点评:本题考查了一次函数y=kx+b(k≠0)的性质:当k<0,图象经过第二、四象限,y 随x的增大而减小;当k>0,经图象第一、三象限,y随x的增大而增大;当b>0,一次函数的图象与y轴的交点在x轴上方;当b<0,一次函数的图象与y轴的交点在x轴下方.9.如图,在三角形纸片ABC中,∠C=90°,AC=18,将∠A沿DE折叠,使点A与点B重合,折痕和AC交于点E,EC=5,则BC的长为()A.9 B.12 C.15 D.18考点:翻折变换(折叠问题).分析:AC=18,EC=5可知AE=13,再根据折叠的性质可得BE=AE=5,在Rt△BCE中,由勾股定理即可求得BC的长.∴AE=13,∵将∠A沿DE折叠,使点A与点B重合,∴BE=AE=5,在Rt△BCE中,由勾股定理得:BC=,故选:B.点评:本题主要考查了翻折变换的性质:折叠前后的两图形全等,还用到勾股定理,难度适中.10.某班抽取6名同学进行体育达标测试,成绩如下:80,90,75,80,75,80.下列关于对这组数据的描述错误的是()A.众数是80 B.平均数是80 C.中位数是75 D.极差是15考点:算术平均数;中位数;众数;极差.分析:根据平均数,中位数,众数及极差的概念进行判断.解答:解:将6名同学的成绩从小到大排列,第3、4个数都是80,故中位数是80,∴答案C是错误的.故选C.点评:本题重点考查平均数,中位数,众数及极差的概念及其求法.11.已知a,b都是正数,化简,正确的结果是()A.a B.2C.2a D.2ab考点:二次根式的性质与化简.分析:根据二次根式的乘法,可得答案.解答:解:=2a,故选:C.点评:本题考查了二次根式的性质与化简,二次根式的乘法运算是解题关键.12.如图,菱形ABCD的周长为20,一条对角线AC长为8,另一条对角线BD长为()A.16 B.12 C.6 D.4考点:菱形的性质.分析:根据菱形的周长可以计算菱形的边长,菱形的对角线互相垂直平分,已知AB,AO 根据勾股定理即可求得BO的值,进而求出对角线BD的长.∴AB=5,∵菱形对角线互相垂直平分,∴AO=4,∴BO==3,∴BD=2BO=6,故选C.点评:本题考查了菱形对角线互相垂直平分的性质,注意菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.13.在下列命题中,真命题是()A.有两边平行的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有一个角是直角的四边形是矩形D.有一个角是直角且有一组邻边相等的四边形是正方形考点:命题与定理.分析:根据平行四边形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据矩形的判定方法对C进行判断;根据正方形的判定方法对D进行判断.解答:解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、对角线互相垂直平分的四边形是菱形,所以B选项正确;C、有一个角是直角的平行四边形是矩形,所以C选项错误;D、有一个角是直角且有一组邻边相等的平行四边形是正方形,所以D选项错误.故选B.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.面积为16cm2的正方形,对角线的长为()cm.A.4 B.4C.8 D.8考点:正方形的性质.分析:根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.解答:解:设对角线长是xcm.则有x2=16,解得x=±4(负值舍去).故选B.点评:本题考查了正方形的性质,解题时注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.15.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),关于x的不等式x+m>kx ﹣1的解集是()A.x≥﹣1 B.x>﹣1 C.x≤﹣1 D.x<﹣1考点:一次函数与一元一次不等式.专题:数形结合.分析:观察函数图象得到当x>﹣1时,直线y1=x+m都在直线y2=kx﹣1上方,即x+m>kx﹣1.解答:解:根据题意得当x>﹣1时,y1>y2,所以不等式x+m>kx﹣1的解集为x>﹣1.故选B.点评:本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二.解答题16.计算:(﹣)+(+1)2.考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的乘法运算得到原式=3﹣3+2+2+1,然后合并即可.解答:解:原式=3﹣3+2+2+1=5.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.17.求如图的Rt△ABC的面积.考点:勾股定理.分析:首先利用勾股定理得到三边关系,进而建立关于x的方程,解方程求出x的值,再利用三角形的面积公式计算即可.解答:解:由勾股定理得:(x+4)2=36+x2,解得:x=,所以△ABC的面积=×6×=7.5.点评:本题考查了勾股定理的运用以及三角形面积公式的运用,解题的关键是利用勾股定理建立方程.18.蜡烛燃烧时余下的长度y(cm)和燃烧的时间x(分钟)的关系如图.(1)求燃烧50分钟后蜡烛的长度;(2)这支蜡烛最多能燃烧多长时间.考点:一次函数的应用.分析:设一次函数解析式为y=kx+b,代入点(0,30),(20,20)求得函数解析式:(1)代入x=50,求得y即可;(2)代入y=0,求得x即可.解答:解:设一次函数解析式为y=kx+b,代入点(0,30),(20,20)得:,解得,所以一次函数解析式为y=﹣x+30.(1)当x=50时,y=5,即:蜡烛燃烧50分钟后的长度是5cm.(2)当y=0时,x=60,即最多能烧60分钟.点评:此题考查一次函数的实际运用,利用待定系数法求的函数解析式是解决问题的关键.19.正方形ABCD中,AB=4,对角线交于点O,F是BO的中点,连接AF,求AF的长度.考点:正方形的性质.分析:首先根据勾股定理可求出BO和AO的长,因为正方形的对角线互相垂直,所以再利用勾股定理即可求出AF的长.解答:解:∵四边形ABCD是正方形,∴AO=OD=AO=CO,BD⊥AC,∵AB=4,∴AO2+BO2=42,∴OA=OB=2,∵F是BO的中点,∴OF=,∴AF==.点评:本题考查了正方形的性质以及勾股定理的运用,解题的关键是熟记正方形的各种性质并且灵活运用.20.翔志学校抽样调查后得到n名学生年龄情况,将结果绘制成如下的扇形统计图.(1)被调查学生年龄的中位数是14岁;(2)通过计算求该学校学生年龄的平均数(精确到1岁);(3)被调查的学生中12岁学生比16岁学生多30人,通过计算求14岁学生的人数.考点:扇形统计图.分析:(1)根据中位数的定义即可求解;(2)利用加权平均数公式即可求解;(3)求得总人数,然后乘以对应的百分比即可求解.解答:解:(1)中位数是14岁,故答案是:14;(2)该学校学生年龄的平均数是:15×20%+14×40%+13×25%+12×10%+16×5%≈14(岁)(3)30÷5%×40%=600×40%=240.点评:本题为统计题,考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.21.如图,在平行四边形ABCD中,F是对角线的交点,E是边BC的中点,连接EF.(1)求证:2EF=CD;(2)当EF与BC满足EF⊥BC时,四边形ABCD是矩形;(3)当EF与BC满足BC=2EF时,四边形ABCD是菱形,并证明你的结论;(4)当EF与BC满足EF⊥BC且BC=2EF时,四边形ABCD是正方形.考点:正方形的判定;三角形中位线定理;平行四边形的性质;菱形的判定;矩形的判定.分析:(1)利用三角形中位线定理以及其性质判断得出即可;(2)利用矩形的判定方法得出即可;(3)利用菱形的判定方法得出即可;(4)利用正方形的判定方法得出即可.解答:(1)证明:∵平行四边形ABCD,∴点F为AC,BD的中点,又∵E是BC的中点,∴EF为△DBC的中位线,∴2EF=CD;(2)EF⊥BC;理由:∵EF为△DBC的中位线,EF⊥BC,∴∠ABC=90°,∴平行四边形ABCD是矩形;故答案为:EF⊥BC;(3)BC=2EF,理由:∵点E为BC的中点,且BC=2EF∴EF=BE=EC,∴∠EBF=∠BFE,∠EFC=∠ECF又∵∠EBF+∠BFE+∠EFC+∠ECF=180°∴∠BFC=∠BFE+∠EFC=90°,∴平行四边形ABCD是菱形;故答案为:BC=2EF;(4)EF⊥BC且BC=2EF.理由:由(2)(3)可得:当EF与BC满足EF⊥BC且BC=2EF时,四边形ABCD是正方形.故答案为:EF⊥BC且BC=2EF.点评:此题主要考查了三角形中位线定理以及菱形和矩形以及正方形的判定等知识,熟练掌握相关判定定理是解题关键.22.翔志琼公司修筑一条公路,开始修筑若干天以后,公司抽调了一部力量去完成其他任务,所以施工速度有所降低.修筑公路的里程y(千米)和所用时间x(天)的关系用图所示的折线OAB表示,其中OA所在的直线是函数y=0.1x的图象,AB所在直线是函数y=x+2的图象.(1)求点A的坐标;(2)完成修路工程后,公司发现如果一直按开始的速度修筑此公路,可提前20天完工,求此公路的长度.考点:一次函数的应用.分析:(1)把OA所在的直线是函数y=0.1x和AB所在直线y=x+2联立方程组求得交点坐标就是点A;(2)由两个函数解析式,分别求出完成此公路需要的时间,根据提前20天完工,列方程解答即可.解答:解:(1)由题意得解得:,点A的坐标为(60,6);(2)由y=0.1x,y=x+2得x=10y,x=15(y﹣2),根据题意得:15(y﹣2)﹣10y=20解得y=10答:此公路的长度为10千米.点评:此题考查一次函数的实际运用,注意理解函数解析式表示的意义,找出等量关系,进一步建立方程或方程组解决问题.23.已知O是坐标原点,点A的坐标是(5,0),点B是y轴正半轴上一动点,以OB,OA 为边作矩形OBCA,点E,H分别在边BC和边OA上,将△BOE沿着OE对折,使点B落在OC上的F点处,将△ACH沿着CH对折,使点A落在OC上的G点处.(1)求证:四边形OECH是平行四边形;(2)当点B运动到使得点F,G重合时,求点B的坐标,并判断四边形OECH是什么四边形?说明理由;(3)当点B运动到使得点F,G将对角线OC三等分时,求点B的坐标.考点:四边形综合题.专题:综合题.分析:(1)如图1,根据矩形的性质得OB∥CA,BC∥OA,再利用平行线的性质得∠BOC=∠OCA,然后根据折叠的性质得到∠BOC=2∠EOC,∠OCA=2∠OCH,所以∠EOC=∠OCH,根据平行线的判定定理得OE∥CH,加上BC∥OA,于是可根据平行四边形的判定方法得四边形OECH是平行四边形;(2)如图2,先根据折叠的性质得∠EFO=∠EBO=90°,∠CFH=∠CAF=90°,由点F,G重合得到EH⊥OC,根据菱形的判定方法得到平行四边形OECH是菱形,则EO=EC,所以∠EOC=∠ECO,而∠EOC=∠BOE,根据三角形内角和定理可计算出∠EOB=∠EOC=∠ECO=30°,在Rt△OBC中,根据含30度的直角三角形三边的关系得OB=BC=,于是得到点B的坐标是(0,);(3)分类讨论:当点F在点O,G之间时,如图3,根据折叠的性质得OF=OB,CG=CA,则OF=CG,所以AC=OF=FG=GC,设AC=m,则OC=3m,在Rt△OAC中,根据勾股定理得m2+52=(3m)2,解得m=,则点B的坐标是(0,);当点G在O,F之间时,如图4,同理可得OF=CG=AC,设OG=n,则AC=GC=2n,在Rt△OAC中,根据勾股定理得(2n)2+52=(3n)2,解得n=,则AC=OB=2,所以点B的坐标是(0,2).解答:(1)证明:如图1,∵四边形OBCA为矩形,∴OB∥CA,BC∥OA,∴∠BOC=∠OCA,又∵△BOE沿着OE对折,使点B落在OC上的F点处;△ACH沿着CH对折,使点A落在OC上的G点处,∴∠BOC=2∠EOC,∠OCA=2∠OCH,∴∠EOC=∠OCH,∴OE∥CH,又∵BC∥OA,∴四边形OECH是平行四边形;(2)解:点B的坐标是(0,);四边形OECH是菱形.理由如下:如图2,∵△BOE沿着OE对折,使点B落在OC上的F点处;△ACH沿着CH对折,使点A落在OC上的G点处,∴∠EFO=∠EBO=90°,∠CFH=∠CAF=90°,∵点F,G重合,∴EH⊥OC,又∵四边形OECH是平行四边形,∴平行四边形OECH是菱形,∴EO=EC,∴∠EOC=∠ECO,又∵∠EOC=∠BOE,∴∠EOB=∠EOC=∠ECO=30°,又∵点A的坐标是(5,0),∴OA=5,∴BC=5,在Rt△OBC中,OB=BC=,∴点B的坐标是(0,);(3)解:当点F在点O,G之间时,如图3,∵△BOE沿着OE对折,使点B落在OC上的F点处;△ACH沿着CH对折,使点A落在OC上的G点处,∴OF=OB,CG=CA,而OB=CA,∴OF=CG,∵点F,G将对角线OC三等分,∴AC=OF=FG=GC,设AC=m,则OC=3m,在Rt△OAC中,OA=5,∵AC2+OA2=OC2,∴m2+52=(3m)2,解得m=,∴OB=AC=,∴点B的坐标是(0,);当点G在O,F之间时,如图4,同理可得OF=CG=AC,设OG=n,则AC=GC=2n,在Rt△OAC中,OA=5,∵AC2+OA2=OC2,∴(2n)2+52=(3n)2,解得n=,∴AC=OB=2,∴点B的坐标是(0,2).点评:本题考查了四边形的综合题:熟练掌握矩形的性质、平行四边形和菱形的判定方法和折叠的性质;理解坐标与图形的性质;会运用勾股定理进行几何计算;能运用分类讨论的思想解决数学问题.24.直线y=x+6和x轴,y轴分别交于点E,F,点A是线段EF上一动点(不与点E重合),过点A作x轴垂线,垂足是点B,以AB为边向右作矩形ABCD,AB:BC=3:4.(1)当点A与点F重合时(图1),求证:四边形ADBE是平行四边形,并求直线DE的表达式;(2)当点A不与点F重合时(图2),四边形ADBE仍然是平行四边形?说明理由,此时你还能求出直线DE的表达式吗?若能,请你出来.考点:一次函数综合题.专题:综合题.分析:对于直线y=x+6,分别令x与y为0求出y与x的值,确定出E与F坐标,(1)当A与F重合时,根据F坐标确定出A坐标,进而确定出AB的长,由AB与BC的比值求出BC的长,确定出AD=BE,而AD与BE平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据AB与BC的长确定出D坐标,设直线DE解析式为y=kx+b,将D与E坐标代入求出k与b的值,即可确定出直线DE解析式;(2)当点A不与点F重合时,四边形ADBE仍然是平行四边形,理由为:根据直线y=x+6解析式设出A坐标,进而表示出AB的长,根据A与B横坐标相同确定出B坐标,进而表示出EB的长,发现EB=AD,而EB与AD平行,利用一组对边平行且相等的四边形为平行四边形得到四边形AEBD为平行四边形;根据BC的长求出OC的长,表示出D坐标,设直线DE解析式为y=k1x+b1,将D与E坐标代入求出k1与b1的值,即可确定出直线DE解析式.解答:解:对于直线y=x+6,令x=0,得到y=6;令y=0,得到x=﹣8,即E(﹣8,0),F(0,6),(1)当点A与点F重合时,A(0,6),即AB=6,∵AB:BC=3:4,∴BC=8,∴AD=BE=8,又∵AD∥BE,∴四边形ADBE是平行四边形;∴D(8,6),设直线DE解析式为y=kx+b(k、b为常数且k≠0),将D(8,6),E(﹣8,0)代入得:,解得:b=3,k=.则直线DE解析式为y=x+3;(2)四边形ADBE仍然是平行四边形,理由为:设点A(m,m+6)即AB=m+6,OB=﹣m,即B(m,0),∴BE=m+8,又∵AB:BC=3:4,∴BC=m+8,∴AD=m+8,∴BE=AD,又∵BE∥AD,∴四边形ADBE仍然是平行四边形;又∵BC=m+8,∴OC=2m+8,∴D(2m+8,m+6),设直线DE解析式为y=k1x+b1(k1、b1为常数且k1≠0),将D与E坐标代入得:,解得:k1=,b1=3,则直线DE解析式为y=x+3.点评:此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,坐标与图形性质,待定系数法确定一次函数解析式,平行四边形的判定,熟练掌握待定系数法是解本题的关键.。
湖北省宜昌市2023-2024学年八年级下学期期末数学试题

湖北省宜昌市2023-2024学年八年级下学期期末数学试题一、单选题1.我国是最早了解勾股定理的国家之一,它被记载于我国古代著名的数学著作《周髀算经》中,下列各组数中,是“勾股数”的是( )A .2,3,4B .3,4,6C .7,8,9D .6,8,102.函数y ( ) A .-2≤x ≤2 B .2x ≥-且x ≠1 C .x >-2 D .-2≤x ≤2且x ≠1 3.21名学生比赛成绩各不相同,若某选手想知道自己能否进入前10名,则他不仅要知道自己的成绩,还应知道这21名学生成绩的( )A .平均数B .众数C .方差D .中位数 4.已知一组数据的方差为()()()622221*********S x x x ⎡⎤=-+-++-⎣⎦L ,则( ) A .这组数据有12个B .这组数据的平均数是6C .方差是一个非负数D .每个数据加5,方差的值增加5 5.下列各式中,运算正确的是( )A .x 3+x 3=x 6B .x 2•x 3=x 5C .(x +3)2=x 2+9 D6.如图,正方形ABCD 的周长为28cm ,则矩形MNGC 的周长是( )A .24cmB .14cmC .18cmD .7cm7.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .8.在数学活动课上,为探究四边形瓷砖是否为菱形,以下拟定的测量方案,正确的是( ) A .测量一组对边是否平行且相等B .测量四个内角是否相等C .测量两条对角线是否互相垂直D .测量四条边是否相等9.已知直线y =kx +b 经过A (3,1)和B (6,0)两点,则不等式组0<kx +b <13x 的解集为( )A .3>x >﹣3B .x <﹣3C .3<x <6D .5>x >310.用四个全等的直角三角形镶嵌而成的正方形如图所示,已知大正方形的面积为49,小正方形的面积为4,若x ,y 表示直角三角形的两直角边长()x y >,给出以下四个结论:①2249x y +=;②2x y -=;③245xy =;④9x y +=,其中正确的结论是( )A .①②③B .①②③④C .①③D .②④二、填空题11=.12.如图,数轴上点B 表示的数为2,过点B 作BC OB ⊥于点B ,且1CB =,以原点O 为圆心,OC 为半径作弧,弧与数轴负半轴交于点A ,则点A 表示的实数是.13.若0x <,则x =.14.若直线y kx b =+与直线2y x =-平行,且与y 轴交点的纵坐标为7,则直线的解析式为. 15.如图,AC BD ,是菱形ABCD 的对角线,24AC =,10BD =.若点P ,点Q 分别是AC AB ,上的动点,连接BP PQ ,,则BP PQ +的最小值是.三、解答题16.计算:()0π2024-17.如图,某隧道是一个双向通车的隧道,隧道的截面是一个半径为5米的半圆形,一辆高4.2米,宽3米的卡车能通过该隧道吗?为什么?18.某校为提高学生的安全意识,开展了安全知识竞赛,这次竞赛成绩满分为10分.现从该校七年级中随机抽取10名学生的竞赛成绩,这10名学生的竞赛成绩是:10,9,9,8,10,8,10,9,7,10.(1)求这10名学生竞赛成绩的中位数和平均数;(2)该校七年级共400名学生参加了此次竞赛活动,根据上述10名学生竞赛成绩情况估计参加此次竞赛活动成绩为满分的学生人数是多少?19.已知:如图,在菱形ABCD 中,E ,F 分别是BC ,CD 上的点,(1)如图1,若CE CF =;求证:AE AF =;(2)如图2,若60B EAF ∠=∠=︒,20BAE ∠=︒,求CEF ∠的度数.20.甲、乙两车分别从A 、B 两地同时出发,甲车匀速前往B 地,到达B 地立即以另一速度按原路匀速返回到A 地;乙车匀速前往A 地,设甲、乙两车距A 地的路程为y (千米),甲车行驶的时间为x (时),y 与x 之间的函数图象如图所示(1)求甲车从A 地到达B 地的行驶时间;(2)求甲车返回时y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)求乙车到达A 地时甲车距A 地的路程.21.如图,已知ABCD 是边长为3的正方形,点P 在线段BC 上,点G 在线段AD 上,PD =PG ,DF ⊥PG 于点H ,交AB 于点F ,将线段PG 绕点P 逆时针旋转90°得到线段PE ,连接EF .(1)求证:DF =PG ;(2)若PC =1,求四边形PEFD 的面积.22.某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.23.如图1,矩形ABCD中,点E,P,K分别在AB,AD,BC上,且DE⊥PK,DE=PK.(1)求证:四边形ABCD是正方形.(2)如图2,在(1)的条件下,△EFC是等腰直角三角形,∠CEF=90°,FG⊥AD于点G.①求证:AG=FG;②若点H为CF的中点,求DHDG的值.24.如图,在平面直角坐标系内,点O为坐标原点,点A在x轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OB−OC=OC−OA=2.(1)求点C的坐标;(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.。
湖北省宜昌市八年级下学期数学期末试卷

湖北省宜昌市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,△ABC内接于⊙O,∠A=60°,BC=6 ,则的长为()A . 2πB . 4πC . 8πD . 12π2. (2分)一个函数的图象如图,给出以下结论:①当x=0时,函数值最大;②当0<x<2时,函数y随x的增大而减小;③存在0<x0<1,当x=x0时,函数值为0.其中正确的结论是()A . ①②B . ①③C . ②③D . ①②③3. (2分) (2018九上·东湖期中) 方程x(x+5)=0化成一般形式后,它的常数项是()A . ﹣5B . 5C . 0D . 14. (2分)如图,一次函数y1=k1x+b与一次函数y2=k2x+4的图象交于点P(1,3),则关于x的不等式k1x+b >k2x+4的解集是()A . x>1B . x>0C . x>﹣2D . x<15. (2分)(2018·开封模拟) 如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A . 5B . 4C .D .6. (2分) (2016八上·河源期末) 一次函数y=kx﹣k(k<0)的图象大致是()A .B .C .D .7. (2分) (2019八下·衡水期中) 如图,将一根长为8cm(AB=8cm)的橡皮筋水平放置在桌面上,固定两端A和B,然后把中点C竖直地向上拉升3cm至D点,则拉长后橡皮筋的长度为()A . 8cmB . 10cmC . 12.cmD . 15cm8. (2分) (2018九上·汨罗期中) 某钢铁厂今年1月份钢产量为5000吨,3月份上升到7200吨,设平均每月增长的百分率为,根据题意得方程()A . 5000(1+x)+5000(1+x)2=7200B . 5000(1+x2)=7200C . 5000(1+x)2=7200D . 5000+5000(1+x)2=72009. (2分) (2017八下·东营期末) 如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A . 1B .C . 2-D . 2 ﹣210. (2分)如下图中的图象(折线ABCDE)描述了一汽车在某一直路上的行驶过程中,汽车离出发地的距离S(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车在途中停留了0.5小时;②汽车行驶3小时后离出发地最远;③汽车共行驶了120千米;④汽车返回时的速度是80千米/小时.其中正确的说法共有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共9题;共10分)11. (1分) (2018八上·岑溪期中) 函数中的自变量x的取值范围________。
宜昌市八年级下学期数学期末考试试卷

宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·云南模拟) 若代数式在实数范围内有意义,则x的取值范围是()A . x<3B . x≤3C . x>3D . x≥32. (2分)对于一次函数y=x+6,下列结论错误的是()A . 函数值随自变量增大而增大B . 函数图象与两坐标轴围成的三角形面积为18.C . 函数图象不经过第四象限D . 函数图象与x轴交点坐标是(0,﹣6)3. (2分) (2019八下·长兴月考) 矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连结AF,取AF的中点H,连结GH,若BC=EF=4,CD=CE=2,则GH=()A . 1B .C .D .4. (2分) (2018九下·市中区模拟) 如果一组数据2,4,x,3,5的众数是4,那么该组数据的平均数是().A . 5.2B . 4.6C . 4D . 3.65. (2分)(2017·陕西模拟) 如图,△ABC中,BC=8,AD是中线,将△ADC沿AD折叠至△ADC′,发现CD与折痕的夹角是60°,则点B到C′的距离是()A . 4B .C .D . 36. (2分)(2018·连云港) 一组数据2,1,2,5,3,2的众数是()A . 1B . 2C . 3D . 57. (2分) (2020八上·丹江口期末) 如图,将矩形(长方形)沿折叠,使点与点重合,点落在处,连接,,则下列结论:① ,② ,③ ,④ ,,三点在同一直线上,其中正确的是()A . ①②③B . ①③④C . ②③④D . ①②④8. (2分) (2019七上·鸡西期末) 一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为()A . 亏2元B . 不亏不赚C . 赚2元D . 亏5元9. (2分)如图,P是矩形ABCD的对角线AC的中点,E是AD的中点.若AB=6,AD=8,则四边形ABPE的周长为()A . 14B . 16C . 17D . 1810. (2分)甲、乙两车分别从M,N两地沿同一公路相向匀速行驶,两车分别抵达N,M两地后即停止行驶.已知乙车比甲车提前出发,设甲、乙两车之间的路程S(km),乙行驶的时间为t(h),S与t的函数关系如图所示.有下列说法:①M、N两地之间公路路程是300km,两车相遇时甲车恰好行驶3小时;②甲车速度是80km/h,乙车比甲车提前1.5个小时出发;③当t=5(h)时,甲车抵达N地,此时乙车离M地还有20km的路程;④a=, b=280,图中P,Q所在直线与横轴的交点恰(, 0).其中正确的是()A . ①②B . ②③C . ③④D . ②④二、填空题 (共4题;共6分)11. (1分)(2019·莲湖模拟) 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD 于点E,交BC于点F,则EF的长为________.12. (1分)若,则m的取值范围是________.13. (2分) (2015七下·龙口期中) 已知一次函数y=﹣ x+m和y= x+n的图象都经过A(﹣2,0),则A点可看作方程组________的解.14. (2分) (2017九上·合肥开学考) 如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2 .以上结论中,你认为正确的有________.(填序号)三、解答题 (共11题;共81分)15. (5分)已知:a= -2,b= +2,分别求下列代数式的值:(1) a2b-ab2(2) a2+ab+b216. (5分)某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,面试中包括形体和口才,笔试中包括专业水平和创新能力考察,他们的成绩(百分制)如下表:候选人面试笔试形体口才专业水平创新能力甲86909692乙92889593(1)若公司根据经营性质和岗位要求认为:形体、口才、专业水平、创新能力按照5:5:4:6的比确定,请计算甲、乙两人各自的平均成绩,看看谁将被录取?(2)若公司根据经营性质和岗位要求认为:面试成绩中形体占5%,口才占30%,笔试成绩中专业水平占35%,创新能力占30%,那么你认为该公司应该录取谁?17. (10分) (2018八上·江都月考) 如图,在平面直角坐标系中,O为坐标原点,正方形OABC的面积为16,点D的坐标为(0,3).将直线BD沿y轴向下平移d个单位得到直线l(0<d≤4).(1)则点B的坐标为________;(2)当d=1时,求直线l的函数表达式;(3)设直线l与x轴相交于点E,与边AB相交于点F,若CE=CF,求d的值并直接写出此时∠ECF的度数.18. (5分) (2018七上·河口期中) 如图所示,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,求出旗杆在离底部多少米的位置断裂?19. (5分)某工厂用如图1所示的长方形和正方形纸板做成如图2所示的A、B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?20. (10分) (2015八上·句容期末) 如图,已知一次函数y1=(m﹣2)x+2与正比例函数y2=2x图象相交于点A(2,n),一次函数y1=(m﹣2)x+2与x轴交于点B.(1)求m、n的值;(2)求△ABO的面积;(3)观察图象,直接写出当x满足________时,y1>y2.21. (5分)如果只给你一把带有刻度的直尺,你是否能检查如图所示的∠MPN是不是直角?如果能,请简述你的方法;如果不能,请说明理由.22. (10分) (2019八下·博罗期中) 如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D 作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求四边形ADCE的面积.23. (6分)(2017·琼山模拟) 目前我市“校园手机”现象越来越受到社会关注,针对这种现象,重庆一中初三(1)班数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计我校11000名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.24. (5分) (2017九上·海宁开学考) 某种产品的年产量不超过1 000t,该产品的年产量(t)与费用(万元)之间的函数关系如图(1);该产品的年销售量(t)与每吨销售价(万元)之间的函数关系如图(2).若生产出的产品都能在当年销售完,则年产量为多少吨时,当年可获得7500万元毛利润?(毛利润=销售额﹣费用)25. (15分)如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共6分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共81分)15-1、15-2、16-1、17-1、17-2、17-3、18-1、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、23-3、23-4、24-1、25-1、25-2、。
湖北省宜昌市夷陵区2023-2024学年八年级下学期期末数学试题

湖北省宜昌市夷陵区2023-2024学年八年级下学期期末数学试题一、单选题1.下列整数x x 可以是( )A .4B .5C .6D .72.下列各式计算正确的是( )A .4=B .=C .=D .3.下列各组数中,能作为直角三角形三边长度的是( )A .1,2,3B .2,3,4C .4,5,6D .6,8,10 4.下列各点不在直线23y x =-上是( )A .()1,5--B .()0,3-C .()1,1-D .()2,1- 5.正方形具有而矩形不一定具有的性质是( )A .四个角都是直角B .对角线相等C .对角线互相平分D .对角线平分一组对角6.技术员分别从甲、乙两块小麦地中随机抽取1000株苗,测得苗高的平均数相同,方差分别为()2212cm S =甲,()22cm S a =乙,检测结果是乙地小麦比甲地小麦长得整齐,则a 的值可以是( )A .10B .12C .13D .147.若点()11,A y -,()22,B y 在一次函数3y x m =-+(m 是常数)的图象上,则1y 与2y 的大小关系为( )A .12y y =B .12y y >C .12y y <D .无法判断 8.如图,在四边形ABCD 中,AC BD =,点E 、F 、G 、H 分别是边CD 、DA 、AB 、BC 的中点,四边形EFGH 是( )A .平行四边形B .矩形C .菱形D .正方形9.数形结合是非常重要的数学思想方法,请你利用数形结合思考并判断下面问题:如图,在平面直角坐标系中,若直线1y x a =-+(a 为常数)与直线24y bx =-(b 为常数且0b ≠)相交于点P ,则下列结论错误的是( )A .方程4x a bx -+=-的解是1x =B .不等式3x a -+<-与不等式43bx ->-的解集相同C .不等式组40bx x a -<-+<的解集是24-<<xD .方程组4y x a y bx +=⎧⎨-=-⎩的解是13x y =⎧⎨=-⎩ 10.为增强居民节水意识,XY 市自来水公司采用以户为单位分段计费办法收费,即每月用水不超过10吨,每吨收费a 元;若超过10吨,则不超过10吨的部分按每吨a 元收费,超过部分按每吨b 元收费.公司为居民绘制的水费y (元)与当月用水量x (吨)之间的函数图象如图,有下列结论:① 1.5a =;②2b =;③若小明家5月份用水12吨,则应缴水费19元;④若小明家6月份缴水费55元,则当月用水30吨.其中,正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题11. 12.如图,在数轴上点A 表示的实数是.13.某校在广播操比赛中,综合成绩是由服装统一、动作整齐、动作准确和精神面貌四项成绩按1342:::的比例计算所得.已知某班的这四项成绩依次是96分、85分、92分和94分,那么该班的综合成绩是分.14.已知6a b +=,7ab =,则代数式 15.如图,已知正方形OABC 的顶点在直线4y x =上,点A 在第一象限,若正方形OABC 的面积是34,则点C 的坐标为.三、解答题16.计算(1)(22(2)2 17.中国最强发射震撼上演!2024年2月3日7时37分,我国在西昌卫星发射中心使用长征二号丙运载火箭,成功将吉利星座02组卫星发射升空,11颗卫星顺利进入预定轨道,发射任务获得圆满成功.如图,火箭从地面A 处垂直发射,当火箭到达B 点时从D 处的雷达站测得60km BD =,30ADB ∠=o ;当火箭到达C 点时,测得45ADC ∠=o ,求BC 的长.(参考1.414≈ 1.7322.236,结果精确到0.1km )18.人教版初中数学教科书八年级下册第16页“阅读与思考”给我们介绍了“海伦—秦九韶公式”.如果一个三角形的三边长分别为a ,b ,c ,则可求得其面积S .S p 为半周长,即2a b c p ++=;若一个三角形的三边长a ,b ,c 分别为3,4,请利用该公式求该三角形面积S .19.“防溺水”是校园安全教育工作的重点之一.某校为促使学生学习防护自救的知识,增强学生安全意识,开展了“远离溺水,珍爱生命”安全知识竞赛,为了解学生对防溺水知识的学习情况,现从该校七、八年级中各随机抽取10名学生的比赛成绩(成绩为百分制,学生得分均为整数且用x 表示,得分不少于90分者为优秀)进行如下收集、整理、描述和分析:【收集数据】七年级:85,84,76,70,90,73,82,78,87,75;八年级:85,85,76,78,96,64,75,97,63,81.【整理数据】七八年级抽取的学生比赛成绩统计表:【分析数据】两组数据的平均数,中位数,方差,优秀率如下表:【应用数据】:(1)填空:=a ________,b =________,c =________;(2)根据以上数据,我认为________年级学生“防溺水”知识的学习情况较好,(填“七”或“八”),理由是________;(一条理由即可)(3)该校七八年级1240名学生共同参加了此次竞赛,请估计参加此次竞赛成绩达到优秀的学生人数.20.如图,在四边形ABCD 中,AB CD ∥,AO CO =.(1)求证:四边形ABCD 是平行四边形.(2)若3CD =,BD =AC AB ⊥,求四边形ABCD 的面积.21.设正方形网格中每个小正方形的边长为1,每个小正方形的顶点叫做格点,只用无刻度的直尺按要求画图,各顶点(端点)均在格点上.(不写画法,标上字母)(1)在图1的正方形网格中画出格点线段AB =AB 的中点M ;(保留画图痕迹)(2)在图2中画出格点CDE V ,使CD =,DE CE = (3)在(2)的条件下,直接写出CDE V 的面积________,点C 到DE 的距离________. 22.2024年4月30日17时46分,神舟十七号载人飞船返回舱在东风着陆场成功着陆,载人飞行任务取得圆满成功.航模店看准商机,在模型厂购进“神舟”和“天宫”模型出售,已知“天宫”模型的利润30元/个,“神舟”模型的利润18元/个.该店计划购进这两种模型共200个,其中购进“天宫”模型数量不超过“神舟”模型的2倍,设购买“神舟”模型x 个,销售这批模型的利润为w 元.(1)求w 与x 的函数关系式,并写出x 的取值范围;(2)当购进这两种模型各多少个时,销售这批模型可以获得最大利润?最大利润是多少?(3)实际进货时,厂家对“神舟”模型出厂价下调m 元()515m ≤≤,且限定航模店最多购“神舟”模型80台,若航模店保持同种模型的售价不变,求出这200个模型利润最大时的x 的值. 23.如图1,在菱形ABCD 中,60DAB ∠=︒,对角线AC ,BD 交于点O ,P 是射线AC 上一动点,连接DP ,以DP 为边顺时针作等边DEP V ,连接BE ,6AC =,AP m =(0m >).(1)①填空:AO =,AB =;②当03m ≤<时. 求证:AP BE =,AB BE ⊥;(2)如图2,当36m <≤时,连接AE ,若DP AE 的长;(3)如图3,当6m >时,连接AE ,若AE =DP 的长.24.如图1,直线1l ∶6y kx =+与x 轴交于点A ,且经过定点()2,7M -,直线2l ∶y x b =+与x 轴交于点B ,直线1l 与2l 交于点()2,C m ,连接BM .(1)填空:直线1l 解析式为,直线2l 解析式为,点C 坐标为;(2)①在y 轴上的动点Q 使BMQ V 的周长最短?请画图标出点Q ,并求点Q 的坐标; ②在平面直角坐标系中存在点N ,使得以B 、C 、M 、N 为顶点的四边形是平行四边形?直接写出点N 坐标;(3)如图2,点P 为线段BA 上一动点,连接MP ,将MAP △沿直线MP 翻折得到△MPE 交x 轴于点H ,当HPE V 为直角三角形时,求点E 的坐标.。
湖北省宜昌市八年级下学期数学期末考试试卷

湖北省宜昌市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分) (2016八下·云梦期中) 下列各式,计算正确的是()A .B . 3 - =3C . 2D . ()÷ =2﹣2. (2分)十名射箭运动员进行训练,每人射箭一次,成绩如下表:运动员A B C D E F G H I J成绩(环)1076997106109则十名运动员射箭成绩的中位数(环)为()A . 9B . 8C . 6D . 10或93. (2分) (2016八上·江阴期末) 如图,在△ABC中,D为BC上一点,且AB=AD=DC,∠B=80º,则∠C 等于()A . 20ºB . 30ºC . 40ºD . 50º4. (2分) (2020八下·抚宁期中) 在平面直角坐标系xoy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为()A . 15B . 7.5C . 6D . 35. (2分)若一次函数y=ax+b的图象经过第一、二、三象限,则二次函数y=ax2+bx的图象可能是下列中的()A .B .C .D .6. (2分)(2013·杭州) 在▱ABCD中,下列结论一定正确的是()A . AC⊥BDB . ∠A+∠B=180°C . AB=ADD . ∠A≠∠C7. (2分) (2016八下·洪洞期末) 下列命题是假命题的是()A . 菱形的对角线互相垂直平分B . 有一斜边与一直角边对应相等的两直角三角形全等C . 有一组邻边相等且垂直的平行四边形是正方形D . 对角线相等的四边形是矩形8. (2分)(2019·台州模拟) 下列说法正确的是()A . 平行四边形的对角线互相平分且相等B . 矩形的对角线相等且互相平分C . 菱形的对角线互相垂直且相等D . 正方形的对角线是正方形的对称轴9. (2分) (2020九上·赣榆期末) 为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位:):-1,-3,-1,5.下列结论错误的是()A . 平均数是0B . 中位数是-1C . 众数是-1D . 方差是610. (2分)现在要选拔一人去参加全国青少年英语口语比赛,小明和小刚的三次选拔成绩分别为:小明96、85、89,小刚90、91、89,最终决定选择小刚去参加,那么,最终依据是()A . 小刚的平均分高B . 小刚的中位数高C . 小刚的方差小D . 小刚最低分高11. (2分) (2020七下·陈仓期末) 星期天晚饭后,小红从家里出发去散步,下图描述了她散步过程中离家的距离(米)与散步所用的时间(分)之间的关系,下面描述情境与图象大致符合的是()A . 从家出发,到了公共阅读报栏,看了一会儿报,就回家了B . 从家出发,到了公共阅读报栏,看了一会儿报,继续向前走了一段,然后回家了C . 从家出发,一直散步(没有停留),然后回家了D . 从家出发,散了一会儿步,就找同学去了,18分钟后才开始返回12. (2分)(2017·碑林模拟) 如果点(a,b)为正比例函数y=(2m﹣1)x的图象上任意一点,且a+b=0,那么m的值是()A . m=1B . m=﹣1C . m=D . m=013. (2分) (2020八下·江阴月考) 如图,在第一象限内,点,是双曲线上的两点,轴于点A,轴于点B,PA与OM交于点C,则的面积为A .B .C . 2D .14. (2分)一次函数y=k1x+b1的图象与y=k2x+b2的图象相交于点P(﹣2,3),则方程组的解是()A .B .C .D .15. (2分) (2019八上·西城期中) 已知:如图,,点为内一点,,分别是点关于、的对称点,连接,分别交于、于 .如果,的周长为,的度数为,请根据以上信息完成作图,并指出和的值()A . ,B . ,C . ,D . ,16. (2分)(2017·德州) 如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF,给出以下五个结论:①∠MAD=∠AND;②CP=b﹣;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆,其中正确的个数是()A . 2B . 3C . 4D . 5二、填空题 (共4题;共4分)17. (1分)计算: =________ .18. (1分) (2020八下·兴化期末) 如图,平行四边形ABCD中,AB=15,BC=7,AC=20,则BD的长度为________.19. (1分) (2019九下·江阴期中) 在□ABCD中,若∠A=40°,则∠C=________°.20. (1分) (2017八上·南漳期末) 长为10,7,5,3的四根木条,选其中三根组成三角形,有________种选法.三、解答题 (共6题;共55分)21. (5分)计算下列各题:(1)4+-+4(2)x(3)(2+3)2007•(2﹣3)2008 .22. (5分) (2017八下·合浦期中) 如图,∠C=90°,AC=3,BC=4,AD=12,BD=13,试判断△ABD的形状,并说明理由.23. (12分) (2017八下·临沭期末) 甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟________米,乙在A地时距地面的高度b为________米.(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?24. (13分) (2017七下·莆田期末) 福建省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.(1) m=________%,这次共抽取________名学生进行调查;并补全条形图________;(2)在这次抽样调查中,采用哪种上学方式的人数最多?(3)如果该校共有6000名学生,请你估计该校骑自行车上学的学生有多少名?25. (11分)(2017·玄武模拟) 如图①,在一条笔直的公路上有M、P、N三个地点,M、P两地相距20km,甲开汽车,乙骑自行车分别从M、P两地同时出发,匀速前往N地,到达N地后停止运动.已知乙骑自行车的速度为20km/h,甲,乙两人之间的距离y(km)与乙行驶的时间t(h)之间的关系如图②所示.(1) M、N两地之间的距离为________km;(2)求线段BC所表示的y与t之间的函数表达式;(3)若乙到达N地后,甲,乙立即以各自原速度返回M地,请在图②所给的直角坐标系中补全函数图象.26. (9分)(2019·南浔模拟) 如图,在Rt△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别与AB,BC交于点E,F,在线段BC上取一点G,使CG=CD.(1)若不增加其他的点,以图中的点为顶点构造四边形.能构成菱形的四个顶点是________或________;能构成等腰梯形的四个顶点是________或________.(2)请你选择(1)中的一个四边形加以证明.参考答案一、选择题 (共16题;共32分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共4题;共4分)17-1、18-1、19-1、20-1、三、解答题 (共6题;共55分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、。
湖北省宜昌市当阳市2023-2024学年八年级下学期期末考试数学试卷(含答案)

2023-2024学年湖北省宜昌市当阳市八年级(下)期末数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共10小题,每题3分,计30分)1.(3分)下列m取值中,能满足在实数范围内有意义的是( )A.m=﹣2B.m=2024C.m=﹣0.2D.m=﹣12.(3分)下列计算中,正确的是( )A.B.C.D.3.(3分)已知△ABC的边长分别是,b=2,,则该三角形一定是( )A.直角三角形B.等腰三角形C.锐角三角形D.等腰直角三角形4.(3分)如图,Rt△OAB中,∠OAB=90°,OA=2,AB=1,点O为圆心,OB为半径作弧,弧与数轴的正半轴交点P所表示的数是( )A.2.2B.C.1+D.5.(3分)四边形ABCD中,∠A=∠C,∠B=∠D,则下列结论不一定正确的是( )A.∠A=∠B B.AD∥BCC.AB=CD D.对角线互相平分6.(3分)甲、乙、丙、丁四名学生准备参加学校英语口语比赛,他们4次模拟训练成绩的平均数都是95分,这四名学生4次训练成绩的方差依次为如表:学生甲乙丙丁方差 1.7 2.6 3.8 5.2根据表中数据,可以判断发挥最稳定的学生是( )A.甲B.乙C.丙D.丁7.(3分)关于正比例函数y=﹣3x,下列说法正确的是( )A.图象经过第一、三象限B.图象经过原点C.y随x增大而增大D.点(2,﹣4)在函数的图象上8.(3分)一次函数y=x﹣4的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)在平面直角坐标系中,点A(2,﹣4)到原点的距离为( )A.2B.4C.D.10.(3分)在下列命题中,真命题是( )A.有两边平行的四边形是平行四边形B.对角线互相垂直平分的四边形是菱形C.有一个角是直角的四边形是矩形D.有一个角是直角且有一组邻边相等的四边形是正方形二.填空题.(本大题满分15分,共5小题,每小题3分)11.(3分)某市在一次空气污染指数抽查中,收集到5天指数数据如下:61,75,81,56,81.则该组数据的众数是 .12.(3分)如图,在菱形ABCD中,E、F分别是AB、AC的中点,如果EF=1,那么菱形ABCD的周长是 .13.(3分)已知直角三角形的两边的长分别是3和4,则第三边长为 .14.(3分)如图,把两条等宽都为4的长方形纸条重叠在一起,重合部分构成的四边形ABCD是何种特殊的平行四边形,请填写在横线上 .15.(3分)将直线y=2x+1向下平移2个单位,得到的直线解析式是 .三.解答题.(本大题满分75分,共9小题)16.(6分)计算:.17.(6分)如图,直线y=kx+2(k≠0)经过点A(2,6).(1)求k的值;(2)求直线与x轴、y轴的交点坐标.18.(6分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市部分教师某日“微信运动”中的步数情况进行统计整理,绘制了统计表:组别步数频数频率10≤x<40006a24000≤x<84000140.2838000≤x<1200015b512000≤x<16000100.2616000≤x<20000c0.06720000≤x<2400020.04请根据以上信息,解答下列问题:(1)本次调查的教师人数为 人,a= ;(2)这组数据的中位数落在第 组内;(3)本市约有2000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?19.(8分)如图,在四边形ABCD中,对角线AC与BD相交于点O,且AO=CO,AD∥BC.(1)求证:四边形ABCD为平行四边形;(2)若AB=10,OA=6,BD=16.①求∠BOA的度数;②求四边形ABCD的面积.20.(8分)如图是由边长为1的小正方形组成的6×6的网格,△ABC的三个顶点A,B,C均在格点上.(1)如图1,判断△ABC的形状,并说明理由;(2)请按要求在给定的网格中,仅用无刻度的直尺,在图2中的BC上找一点D,画线段AD,使AD⊥BC,保留作图痕迹,不写画法.21.(8分)A超市在星期天进行某种水果优惠促销活动,该种水果的标价为10元/kg,如果一次购买5kg 以上的该种水果,超过5kg的部分按标价6折售卖.x(单位:kg)表示购买该种水果的重量,y(单位:元)表示付款金额.(1)小明购买4kg该种水果需付款 元;购买6kg该种水果需付款 元;(2)求付款金额y关于购买该种水果的重量x的函数解析式;(3)当天,隔壁的B超市也在进行该种水果优惠促销活动,同样的该种水果的标价也为10元/kg,且全部按标价的8折售卖.小明如果要购买9kg该种水果,请问她在哪个超市购买更划算?22.(10分)已知△ABC和△ADE都是等腰直角三角形,∠CAB=∠EAD=90°,△ADE绕着顶点A旋转.(1)如图1,若D点恰好落在BC边上,连接CE.①求证:BD=CE;②若G为AC中点,连接GE,当点D在直线BC上运动时,若AC=10,求线段GE的最小值;(2)若D不在BC边上,DE交AC于点F,且AB=10,AD=6.当△CEF是直角三角形时,求BD 长.(图2,图3是备用图)23.(11分)已知,在矩形ABCD中.(1)若点F是矩形ABCD边上一点,点E在边AB上,连接CE,AE=BC.①如图1,点F在边AD上,且AF=BE,连接EF.求∠CFE的度数;②如图2,点F在边BC上,且BE=CF,连接AF交CE于点G,过C作CH∥AF交AD于H.求∠AGE的度数.(2)如图3,在矩形ABCD中,若E是边DC上一动点,将△CBE沿BE折叠后得到△NBE,点N在矩形ABCD内部(不含边),射线BN分别交射线BC,射线DC于点M,F,AB=8,AD=6.①当点E是DC的中点时,求线段DF的长;②点E在运动过程中,求出△DEN的周长的最小值.24.(12分)如图1,直线与x轴交于点B,与y轴交于点A,直线AC交x轴于点C,△AOC沿直线AC折叠,点O恰好落在直线AB上的点D处.(1)求点C的坐标;(2)如图2,直线AC上的两点E,F,△BEF是以EF为斜边的等腰直角三角形,求点E的坐标;(3)如图3,若OD交AC于点G,在线段AB上是否存在一点H,使△ADC与△AGH的面积相等,若存在求出H点坐标;若不存在,请说明理由.参考答案一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共10小题,每题3分,计30分)1.解:由题可知,m≥0,则在四个选项中只有B项符合题意;故选:B.2.解:﹣=2﹣,故A错误,不符合题意;×=,故B正确,符合题意;与不是同类二次根式,不能合并,故C错误,不符合题意;÷==2,故D错误,不符合题意;故选:B.3.解:,∴a2+c2=b2,∴该三角形一定是等腰直角三角.故选:D.4.解:由题意可得:OB===,故弧与数轴的交点C表示的数为:.故选:B.5.解:∵∠A=∠C,∠B=∠D,∴可得四边形ABCD是平行四边形,∴B、C、D均正确,而A选项∠A+∠B=180°,但并不一定∠A=∠B,故该选项错误,符合题意,故选:A.6.解:∵他们4次模拟训练成绩的平均数都是95分,甲的方差<乙的方差<丙的方差<丁的方差,∴发挥最稳定的学生是甲,故选:A.7.解:A、正比例函数y=﹣3x,图象经过第二,四象限,不正确,不合题意;B、正比例函数y=﹣3x,图象经过原点,正确,符合题意C、正比例函数y=﹣3x,y随x增大而减小,故此选项错误,不合题意;D、当x=2时,y=﹣6,故点(2,﹣6)在函数的图象上不正确,不合题意;故选:B.8.解:由题意,得:k>0,b<0,故直线经过第一、三、四象限.即不经过第二象限.故选:B.9.解:由题意得,点P到坐标原点的距离为:==2.故选:D.10.解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、对角线互相垂直平分的四边形是菱形,所以B选项正确;C、有一个角是直角的平行四边形是矩形,所以C选项错误;D、有一个角是直角且有一组邻边相等的平行四边形是正方形,所以D选项错误.故选:B.二.填空题.(本大题满分15分,共5小题,每小题3分)11.解:数据:61,75,81,56,81.81次数出现最多,该组数据的众数是81.故答案为:8112.解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×1=2,∴菱形ABCD的周长=2×4=8.故答案为:8.13.解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.14.解:由题意可得,AD∥BC,AB∥DC,∴四边形ABCD是平行四边形,作DE⊥BA交BA的延长线于点E,作BF⊥DA交DA的延长线于点F,如图所示,则∠AED=∠BFA=90°,AF=DE,∵AD∥BC,∴∠EAD=∠FBA,在△AED和△BFA中,,∴△AED≌△BFA(AAS),∴AD=AB,∴平行四边形ABCD是菱形,故答案为:菱形.15.解:由“左加右减”的原则可知:直线y=2x+1向下平移2个单位,得到直线的解析式为:y=2x+1﹣2,即y=2x﹣1.故答案为:y=2x﹣1.三.解答题.(本大题满分75分,共9小题)16.解:=2=2﹣.17.解:(1)把A(2,6)代入y=kx+2得2k+2=6,解得k=2;(2)直线解析式为y=2x+2,令y=0得,2x+2=0,解得x=﹣2所以直线与x轴交点坐标为(﹣1,0);令x=0得,y=2,所以直线与y轴交点坐标为(0,2).18.解:(1)本次调查的教师人数为(人),,故答案为:50,0.12;(2)∵本次调查的教师人数为50人,∴中位数等于第25及第26个数的平均数,∴这组数据的中位数落在第8000≤x<12000组内,故答案为:8000≤x<12000;(3)2000×(0.2+0.06+0.04)=600,∴估计日行走步数超过12000步(包含12000步)的教师有600名.19.(1)证明:∵AD∥BC.,∴∠DAO=∠BCO,在△ADO和△CBO中,,∴△ADO≌△CBO(ASA),∴AD=BC,∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:①∵OA=6,OB=8,AB=10,OB=BD=8,∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠BOA=90°;②由①可知,AC垂直平分BD,∴AB=AD,∴四边形ABCD是菱形,∴AC=2OA=12,∴S四边形ABCD=AC•BD=×12×16=96.20.解:(1)结论:△ABC是等腰直角三角形.理由:∵AB==,AC==,BC==,∴AB2+AC2=BC2,∴∠BAC=90°,∵AB=AC,∴△ABC是等腰直角三角形.(2)如图,线段AD即为所求.21.解:(1)由题意可知:购买4kg苹果,不优惠,∴购买4kg苹果需付款:4×10=40(元),购买6kg水果,5kg不优惠,1kg优惠,∴购买6kg需付款:5×10+1×10×0.6=56(元),故答案为:40,56;(2)由题意得:当0<x≤5时,y=10x,当x>5时,y=5×10+(x﹣5)×10×0.6=6x+20,∴付款金额y关于购买苹果的重量x的函数解析式为:y=;(3)小明在甲超市购买9kg水果需付费:6×9+20=74(元),小明在乙超市购买9kg水果需付费:10×9×0.8=72(元),∴小明应该在B超市购买更划算.22.(1)①证明:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD,∵AE=AD,AC=AB,∴△CAE≌△DAB(SAS),∴BD=CE;②解:如图:由①知△CAE≌△DAB,∴∠ECA=∠DBA=45°,∴∠ECB=∠ECA+∠ACB=90°,∴EC⊥CB,∴E的轨迹是过C与BC垂直的一条直线,∴当EG⊥EC时,GE最小,此时△GCE是等腰直角三角形,∴EG=CG,∵G为AC中点,AC=10,∴CG=CG,∴EG=×5=,∴GE最小值为;(3)解:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD,∵AE=AD,∠CAE=∠BAD,AC=AB∴△CAE≌△DAB(SAS),∴BD=CE;①当∠CFE=90°时,如图,∵△ADE是等腰直角三角形,∴∠AEF=45°,∵AF⊥DE,∴△AEF是等腰直角三角形,∴AF=EF==6,∴CF=AC﹣AF=10﹣6=4,∴BD=CE===2;②当∠CEF=90°时,过A作AH⊥DE于H,如图,∵∠AED=45°,∴∠AEC=∠AED+∠CEF=135°,∵△CAE≌△DAB,∴∠CEA=∠BDA=135°,∵∠ADE=45°,∴∠ADE+∠BDA=180°,∴B、D、F共线,∵△ADE是等腰直角三角形,AD=6,AH⊥DE,∴DE=AD=12,AH=DH=DE=6,∴BH===8,∴BD=BH﹣HD=8﹣6=2,综上所述,BD的长为2或2.23.解:(1)①∵AE=BC,∠A=∠B,AF=BE,∴△FAE≌△EBC(SAS),∴FE=EC,∠AFE=∠BEC,∵∠AFE+∠AEF=90°,∴∠BEC+∠AEF=90°,∴∠FEC=90°,∴△FEC是等腰直角三角形,∴∠CFE=45°;②∵CH∥AF,AH∥CF,∴四边形HAFC是平行四边形,∴CF=AH,∵CF=BE,∴BE=AH,∵BE=AH,∠EBC=∠HAE=90°,AE=BC,∴△HAE≌△EBC(SAS),同①△HEC是等腰直角三角形,则∠HCE=45°,∵AF∥HC,∴∠AGE=∠HCE=45°;(2)①连接EF,∵E是DC的中点,∴DE=EC,∵△CBE沿AE折叠后得到△NBE,∴CE=EN,∴DE=EN,∵在矩形ABCD中,∴∠C=90°,∴∠ENB=90°,∵DE=EN,EF=EF,∴Rt△DFE≌Rt△NFE(HL),∴DF=FN,设DF=x,则BF=6+x,FA=6﹣x,在Rt△AFB中,82+(6﹣x)2=(6+x)2,解得,∴;②由折叠知,∠C=∠ENB=90°,EC=NE,∴DE+EN=DE+CE=DC=8,∴当DN最小时,△DEN的周长最小,∵∠ENB=90°,∴点B、N、D在同一条直线上时,DN最小,∴DN=BD﹣BN=10﹣6=4,此时,∠DNE=90°,∴△DNE的周长=DN+DE+EN=8+4=12.24.解:(1)直线与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,6)、(﹣8,0),则AB=10,∵△AOC沿直线AC折叠,点O恰好落在直线AB上的点D处,故设CD=x=OC,则Rt△BCD中,BC=8﹣x,CD=x,BD=10﹣6=4,由勾股定理得:BC2=CD2+BD2,即(8﹣x)2=x2+42,解得:x=3,即点C(﹣3,0);(2)由点A、C的坐标得,直线AC的表达式为:y=2x+6,过点B作y轴的平行线交过点E和x轴的平行线于点M,交过点F和x轴的平行线于点N,如图2,设点E、F的坐标分别为:(m,2m+6)、(n,2n+6),∵△BEF是以EF为斜边的等腰直角三角形,则BE=BF,∠EBF=90°,∵∠EBM+∠FBN=90°,∠FBN+∠BFN=90°,∴∠MBE=∠BFN,∵∠EMB=∠BNF=90°,∴△EMB≌△BNF(AAS),∴EM=m+8=BN=﹣2n﹣6且BM=2m+6=FN=n+8,解得:m=﹣2,即点E(﹣2,2);(3)如图3,∵S△BCD=×CD•BD=BC•y D,即3×4=5y D,则y D=,则点D(﹣,);由点D的坐标得,直线OD的表达式为:y=﹣x,过点C作CH∥OD,交AB于点H,则△DGH和△DGC面积相等,而△ADC与△AGH的面积相等,故点H为所求点,则CH的表达式为:y=﹣(x+3),联立上式和直线AB的表达式得:x+6=﹣(x+3),解得:x=﹣6,即点H(﹣6,).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省宜昌市八年级下学期数学期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分)下列二次根式中属于最简二次根式的是()
A .
B .
C .
D .
2. (2分)在函数y=中,自变量x的取值范围是()
A . x<
B . x≤
C . x>
D . x≥
3. (2分)(2017·烟台) 如图,▱ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()
A . π
B . π
C . π
D . π
4. (2分)已知直角三角形的两条边的长为3和4,则第三条边的长为()
A . 5
B . 4
C .
D . 5或
5. (2分)(2017·陆良模拟) 下列说法正确的是()
A . 数据4、5、5、6、0的平均数是5
B . 数据2、3、4、2、3的众数是2
C . 了解某班同学的身高情况适合全面调查
D . 甲、乙两组数据的平均数相同,方差分别是S甲2=3.2,S乙2=2.9,则甲组数据更稳定
6. (2分)下列各图象中,不能表示y是x的函数的是()
A .
B .
C .
D .
7. (2分)在下列各式的化简中,化简正确的有()
①=a,②5x﹣=4x,③6a=,④+=10
A . 1个
B . 2个
C . 3个
D . 4个
8. (2分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为()
A . 3
B . 4
C . 5
D . 6
9. (2分)(2019·义乌模拟) 如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()
A . x>2
B . 0<x<4
C . ﹣1<x<4
D . x<﹣1或x>4
10. (2分) (2019八下·长春月考) 如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF 相交于点O,下列结论:
⑴AE=BF;(2)AE⊥BF;(3)AO=OE;(4)中正确的有()
A . 4个
B . 3个
C . 2个
D . 1个
二、填空题 (共6题;共9分)
11. (4分) -7的倒数是________,它的相反数是________,它的绝对值是________;倒数等于它本身的有理数是________
12. (1分)小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为S12、S22 ,根据图中的信息判断两人方差的大小关系为________.
13. (1分) (2019九上·萧山开学考) 若关于x的一次函数y=(m+1)x+2m﹣3的图象经过第一、三、四象限,则m的取值范围为________.
14. (1分)某校九年级420名学生参加植树活动,随机调查了50名学生植树的数量,并根据数据绘制了如下条形统计图,请估计该校九年级学生此次植树活动约植树________棵.
15. (1分)(2020·新泰模拟) 如图,正方形ABCD和正方形CE FG中,点D在CG上,BC=2,CE=3,H是AF 的中点,EH与CF交于点O,则HE的长为________。
16. (1分) (2017九上·泸西期中) 如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作翻转变换,依次得到△1、△2、△3、△4…,则△23中的A23的坐标为________.
三、解答题 (共7题;共75分)
17. (5分)(1)计算:(2)用配方法解方程:.
18. (5分) (2018八上·江阴期中) 如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD= cm,CD=5 cm,BC=4 cm,求四边形ABCD的面积.
19. (10分)某校学生会决定从三明学生会干事中选拔一名干事当学生会主席,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:
测试项目测试成绩/分甲乙丙
笔试758090
面试937068
根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率如扇形统计图所示(没有弃权,每位同学只能推荐1人),每得1票记1分.
(1)分别计算三人民主评议的得分;
(2)根据实际需要,学校将笔试、面试、民主评议三项得分按3:3:4的比例确定个人成绩,三人中谁会当选学生会主席?
20. (10分)(2017·赤壁模拟) 如图,点B(3,3)在双曲线y= (x>0)上,点D在双曲线y=﹣(x <0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.
(1)求k的值;
(2)求点A的坐标.
21. (20分)(2017·黔西南) 赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:
(1)起点A与终点B之间相距多远?
(2)哪支龙舟队先出发?哪支龙舟队先到达终点?
(3)分别求甲、乙两支龙舟队的y与x函数关系式;
(4)甲龙舟队出发多长时间时两支龙舟队相距200米?
22. (10分)(2017·磴口模拟) 如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC 的交点为O,连接DE.
(1)求证:△ADE≌△CED;
(2)求证:DE∥AC.
23. (15分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点,顶点M关于x轴的对称点是M’.
(1)求抛物线的解析式
(2)若直线AM’与此抛物线的另一个交点为C,求△CAB的面积;
(3)是否存在过A,B两点的抛物线,其顶点P关于x轴的对称点为Q,使得四边形APBQ为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共9分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共75分)
17-1、答案:略
18-1、答案:略
19-1、
19-2、答案:略
20-1、
20-2、答案:略21-1、
21-2、
21-3、答案:略21-4、答案:略22-1、答案:略
22-2、
23-1、答案:略23-2、答案:略23-3、答案:略。