第一章肌肉的活动
运动生理学 肌肉活动第一章第五节

sEMG所获得的客观信息,可为医疗保险、工伤保险 等提供重要依据。
sEMG仪工作原理
sEMG仪信号来源
信号来源是运动单位电位,是肌肉收缩过程中所 激活的运动单位动作电位的总和。sEMG通过皮肤表面 的电极片接收到这些电变化信号,并通过放大器放大 显示出来。
由于电极位于覆盖肌肉的皮肤表面,所以,越接 近记录电极的运动单位电位,越容易被记录到,而距 离电极较远的运动单位电位则记录的相对较少(受生 物组织阻抗的影响,电传导衰减)。脂肪(不全绝缘 体)越厚,肌电信号量越少。
在这些活动中,sห้องสมุดไป่ตู้MG是唯一可以实时、动
态观测行进过程中各个相关肌肉的作用、作用开始 时间、终止时间、与其他肌肉间协同关系、身体中 轴各个身体环节在动态稳定中的作用的方法。
sEMG在康复评价中的作用
为客观、定量地评价肌肉做功提供了安全、简易、无 创的方法。
获取有关肌肉做功的有价值信息,不需要用针刺穿皮 肤记录一个或多个运动单位电位变化,直接在皮肤表面即 可获取这些信息。
sEMG在运动分析中的应用
允许直接“查看”肌肉内部 测量肌肉的功能
帮助制定术前术后治疗计划 帮助文件处理和建立训练体制 帮助病人“寻找”和训练他们的肌肉
分析和改善运动能力 监测人体工程学的研究中肌肉的响应
肌电图的应用
1.分析动作。 评价肌肉力量及肌肉活动的协调性。通过肌肉的放电情况, 了解完成该项动作的主要肌群的程度和顺序。
二、sEMG信号的频谱分析(频域分析)
最常用参数是中位频率和平均功率频率。 中位频率(MF)指频率谱被分为相等的两部分的频率。 平均功率频率(MPF)整个事件段内频率谱的平均值。 典型的MF在70-120Hz,相应的时间是10-20ms。 疲劳时,MF和MPF降低。在应用中,也经常用到MF和MPF 曲线的下降斜率,斜率大,表示神经肌肉疲劳快;下降慢,表明 肌肉比较耐受疲劳。
运动生理学第1章 肌肉活动 肌肉的微细结构

肌肉的微细结构一、肌纤维(muscle fiber/myofiber)肌组织(muscle tissue)由特殊分化的肌细胞组成。
呈圆形或多角形,胞核位于纤维的边缘。
肌细胞的形状细长,呈纤维状,故肌细胞通常称为肌纤维。
骨骼肌超微结构示意图肌肉的微细结构二、肌原纤维(myofibril)每个肌纤维含有大量直径1~2μm的纤维状结构,称为肌原纤维。
肌小节(sarcomere)两相邻z线之间肌原纤维为肌小节,它是肌肉收缩和舒张的最基本单位,它包含一个位于中间部分的暗带和两侧各1/2的明带。
肌原纤维myofibril 在电子显微镜下观察骨骼肌的微细结构,可以发现,每个肌细胞都含有大量的纤维状结构,将其称为肌原纤维。
肌原纤维是横纹肌中长的、直径为1~2μm 的圆柱形的结构,是骨骼细胞的收缩单位。
肌原纤维由粗肌丝和细肌丝组装而成,粗肌丝的成分是肌球蛋白,细肌丝的主要成分是肌动蛋白,辅以原肌球蛋白和肌钙蛋白。
肌动蛋白肌球蛋白myomesin肌联蛋白肌纤维muscle fiber肌小节粗肌丝-由肌球蛋白组成横桥Crossbridge功能特征:1.包含与三磷酸腺苷ATP 结合的位点,且只在与细肌丝连结时被激活2.与细肌丝相应位点可逆性结合,倾斜摆动,牵引细肌丝向粗肌丝中部滑行长杆部朝向M 线横向聚合,形成粗肌丝主干球状头部有规则突出在M 线两侧的粗肌丝主干表面,形成横桥细肌丝-由肌动蛋白组成肌动蛋白原肌球蛋白调节蛋白肌钙蛋白肌肉的微细结构三、肌管系统1.横管(transverse tubule):肌细胞膜从表面横向伸入肌纤维内部的膜小管系统。
2.纵管(longitudinaltubule):肌质网系统。
1.横管(T 管)--与肌原纤维垂直--横穿肌节之间,成环状环绕每条肌原纤维,--同一水平横管互相沟通,--内腔与细胞外液相通,可将肌细胞兴奋时出现在细胞膜上的电位变化出入细胞内。
(二)肌管系统2.纵管(L 管)--与肌原纤维平行--包绕肌小节中间部分,近横管时膨大成终池--纵管和终池是Ca2+的储存库在肌肉活动中实现Ca2+的贮存、释放和再聚集。
运动生理学课后题

第一章肌肉活动的能量供应1.能量与生命的关系如何,是怎样实现的?人体生命活动是一个消耗能量的过程,而肌肉活动又是消耗能量最多的一种活动形式。
运动时,人体不能直接利用太阳能、电能等各种物理形式的能量,只能直接利用储存在高能化合物三磷酸腺苷分子中蕴藏的化学能,与此同时糖、脂肪、蛋白质则可通过各自的分解代谢,将储存在分子内部的化学能逐渐释放出来,并使部分能量转移和储存到ATP分子之中,以保证A TP供能的持续性。
2.不同运动中,ATP供能与间接能源的动用关系?1.A TP是人体内一切生命活动能量的直接来源,而能量的间接来源是指糖、脂肪和蛋白质。
2.糖是机体最主要,来源最经济,供能又快速的能源物质,一克糖在体内彻底氧化可产生4.1千卡的热量,机体正常情况下有60%的热量由糖来提供。
3.在进行剧烈运动时,糖进行无氧分解供能,1分子的糖原或葡萄糖可产生3-2分子的ATP,可利用的热量不到糖分子结构中重热量的5%,能量利用率很低,但产能速率很高。
4.在进行强度不是太大的运动时,糖进行有氧分解供能,此时1分子的糖原或葡萄糖可生成39-38分子的ATP,糖分子结构中的热量几乎全部可以被利用,但产能速率较低。
5.脂肪是一种含热量最多的营养物质,1克脂肪在体内彻底氧化可产生9.3千卡的热量,他是长时间肌肉运动的重要能源。
6.体内脂肪首先通过脂肪动员,分解为甘油和脂肪酸。
甘油经系列反应步骤,可循糖代谢途径氧化,由于肌肉内缺乏磷酸甘油激酶,故甘油直接为肌肉供能的意义不大。
脂肪酸进入细胞后,在线粒体外膜活化,经肉碱转运至内膜,再经ß氧化逐步生成乙酰辅酶,之后经三羧酸循环逐步释放出大量能量供ADP再合成ATP,此过程是脂肪氧化分解供能的主要途径。
蛋白质分解供能是由氨基酸代谢实现的,但蛋白质分解供能很不经济,故一般情况不作为主要供能物质。
3.三种能源系统为什么能满足不同强度的运动需要?这是由他们各自的供能特点所决定的。
第一章 肌肉的活动

56
(一)肌丝收缩的滑行学说
肌肉收缩时肌肉缩短,不是肌 丝的缩短而是肌小节的缩短。 肌肉收缩时,从Z线伸出的细 肌丝在某种力量的作用下向暗 带中央滑行而使肌小节缩短
变构后,使原肌球蛋白位移,暴露出结合位点).
54
粗肌丝和细肌丝的空间排列示意图-3
①粗肌丝头部的横 桥能与细肌丝上的 结合位点可逆性结 合;
②静息时,细肌丝 的肌钙蛋白对原肌 球蛋白有抑制作用; ③原肌球蛋白对肌 动蛋白上结合位点 有覆盖作用。
55
二、肌肉的收缩机制
(一)肌肉收缩的 滑行理论 (二)肌肉收缩的 过程
② Na离子通道激活,失活和K离子通道的开放。
Action Potential:
刺激后,膜对Na+通透 ↓ 膜内外Na+势能贮备 ↓ Na+经通道易化扩散 ↓ 扩散的Na+抵消膜内 负电位,形成正电位 ↓ 直至正电位增加到足以对抗由 浓度差所致的Na+内流
∴ AP的超射值等于Na+平衡电位(+50~+70mV)
45
3、兴奋在神经—肌肉接头的传递的特点 (1)化学传递 递质为乙酰胆碱 (2)兴奋传递是1对1 (3)单向性传递 (4)时间延搁, (0.5—1.0ms) (5)高敏感性 易受化学和其它环境因素影响
46
二、肌纤维的微细结构
肌肉是由肌腹、肌腱、血管和 神经构成。肌腹是肌肉中部 的肌性部分,主要由肌纤维 构成。每条肌纤维的外面均 包有一层结缔组织膜,称肌 内膜。由 100-150条肌纤维 集合在一起形成肌束,外面 包有肌束膜。由若干肌束组 成整块肌腹,外面包有肌外 膜。
35
36
一、肌肉的神经 支配 (一)运动单位 1、定义:一个运 动神经元连同 它的全部神经 末梢所支配的 肌纤维,从功 能上看是一个 肌肉活动的基 本功能单位, 称为运动单位。
王步标运动生理学第一章肌肉与运动

三个主要步骤:
①动作电位沿横管系统 传到肌细胞内部。
②三联管处的信息传
③ 终池中Ca2+释放入肌
浆与肌钙蛋白结合,解.
51
除位阻效应。
2、横桥摆动肌丝滑行
——肌肉收缩
Ca2+与肌钙蛋白结合, 肌钙蛋白构型改变
原肌球蛋白位移,暴露 肌动蛋白上的结合位点
横桥与细肌丝结合, 分解ATP释放能量
横桥摆动,
.
60
2/7
(一)缩短收缩(向心收缩)
肌肉收缩产生的张力 大于外加阻力时,肌肉缩 短,牵拉它附着的骨杠杆 做向心运动,这种收缩形 式称为缩短收缩。
作用:实现各种加速运动
和位移运动
.
61
做功:做正功
例:屈肘、抬腿、挥臂等。
等张收缩
肌肉收缩时,其外加阻 力在整个收缩过程中是恒定 的,当肌张力发展到足以克 服外加阻力后,其张力在收 缩的全过程就不再变化了。 这种收缩形式称为等张收缩 。在运动实际中,不可能有 等张收缩现象。
.
52
牵拉细肌丝向肌节中央滑行
肌节缩短—肌细胞收缩
.
53
.
54
15 / 20
.
55
16 / 20
.
56
17 / 20
3、肌肉的舒张
.
肌膜电位复极化 肌浆网膜Ca2+泵激活
肌浆[Ca2+]↓
Ca2+与肌钙蛋白解离 原肌57 凝蛋白复盖 横桥结合位点 骨骼肌舒张
.
58
19 / 20
.
59
1/7
配的所有快肌纤维组成快运动单位。
.
35
慢运动单位:由小运动神经元连同它所支 配的所有慢肌纤维组成慢运动单位。
第一章肌肉活动

适宜初长度:引起肌肉收缩张力最大的初长 度称为适宜初长度。 生理机制: 肌肉初长度处于适宜水平时,肌节长度约 2.0~2.2微米,粗、细肌丝正处于最理想的重 叠状态,起作用的横桥数目最多,表现收缩 张力最大。
ห้องสมุดไป่ตู้
第四节 肌纤维类型与运动能力
一、人类肌纤维类型的类型
慢肌(Ⅰ型)ST 快A(Ⅱa) (代谢兼有快、慢肌特征)
膜外为正、膜内为负的极化状态 扩散动力与阻力达到平衡= K+平衡电位
(二)动作电位的产生机制
AP上升支
AP下降支
刺激 少量Na+通道开放 Na+内流→膜电位↓→局部电位 阈电位→Na+通道大量开放
再生式内流 AP上升支 Na+内流停+K+通道开放 K+迅速外流 AP下降支 激活Na+-K+泵 Na+泵出、K+泵回
快肌(Ⅱ型)FT 快B(Ⅱb)(典型快肌) 快C (Ⅱc)(过渡型,未完全分化,数量较少)
两类肌纤维形态特征对比
形态特征
Ⅰ型(慢肌) Ⅱ型(快肌)
肌原纤维直径
细
粗
肌原纤维数量
少
多
肌浆网(内质网)
不发达
发达
线粒体
数量多,容积大 数量少,容积小
Ⅰ、Ⅱ型肌纤维形态特征对比
形态特征 α-运动神经元 突触的囊泡数量
医疗保险的重要依据。
sEMG所获得的客观信息,可为医疗保险、工伤保险 等提供重要依据。
sEMG仪工作原理
sEMG仪信号来源
信号来源是运动单位电位,是肌肉收缩过程中所 激活的运动单位动作电位的总和。sEMG通过皮肤表面 的电极片接收到这些电变化信号,并通过放大器放大 显示出来。
运动生理学课件《第一章:肌肉活动的能量供应》

合成并可迅速分解被直接利用的一 种自由存在 的化学能形式。 ATP的组成:一个大分子的腺苷和三 个磷酸根 在ATP分子结构中的三个磷酸根之间 的结合键中蕴藏着大量的化学能。 生物体一切生命活动的能量都直接 来源于ATP
(一)ATP的分解——放能
ATP酶
ATP
ADP+Pi+能
肌肉收缩就是利用肌细 胞内ATP分解释放出的 能量供肌肉收缩克服阻 力来做功,以实现化学 能向机械能的转化.
运动对脂肪代谢的影响
提高脂肪酸的氧化能力:耐力训练是 提高机体氧化利用脂肪酸供能能力最 有效的措施。 改善血脂异常:耐力运动可促使血浆 甘油三酯降解,增加血浆高密度脂蛋 白(HDL)含量(HDL可防止动脉粥样 硬化) 减少体脂积累 :坚持长期运动可以提 高脂肪酶活性,促进脂肪水解,加速 自由脂肪酸氧化供能,而减少体脂积 累。
(2)糖和糖原
②血糖
血液中的葡萄糖又称血糖,正常人空腹浓度为80120mg%。 血糖是包括大脑在内的中枢神经系统的主要能源。 运动员安静状态下的血糖浓度与常人无异。 血糖浓度是人体糖的分解及合成代谢保持动态平衡的标 志。 饥饿及长时间运动时,血糖水平下降, 运动员会出现工作能力下降及疲劳的征象。 肝糖原可以迅速分解入血以补充血糖,维持血糖的动态 平衡。
人体的糖以血糖、肝糖原和肌糖原的形式 存在,并以血糖为中心,使之处于一种动 态平衡。葡萄糖是人体内糖类的运输形式, 而糖原是糖类的贮存形式
2、糖的分解供能
(1)食物中的糖(多糖或双糖) 血液 。 消化道(单糖) 单糖被吸收进人
一部分合成肝糖原; 一部分随血液运输到肌肉合成肌糖原贮存起来; 进入消 一部分被组织氧化利用; 化道, 另一部分维持血液中葡萄 使双糖 和单糖 糖的浓度。 氧化分解 分解为 食 物
运动生理学(第4课时)-第一章-肌肉的活动2018.8.28

(1)肌肉受到外力的牵张时会反射性地引起收缩。
(2)离心收缩时肌肉中的弹性成分被拉长而产生阻力,同时肌肉中的可 收缩成分也产生最大阻力。
肌肉在向心收缩时,一部分张力在作用于负荷之前,先要拉长肌肉中的 弹性成分。一旦肌肉中的弹性成分被充分拉长,肌肉收缩产生的张力才 会作用于外界负荷上。因此肌肉收缩产生的张力,有一部分是用来克服 弹性阻力的,这就使实际表现出来的张力小于实际肌肉收缩产生的张力。
骨骼肌收缩的力学表现
(二)肌肉力量与运动 3.肌肉的机械功和功率
W(功)=F(力)×D(距离)。 功的单位是焦耳(J)。1焦耳=0.1019千克•米;或1千克•米=9.8焦耳 (J)。 一位运动员将重50千克的杠铃上举1米高,此时,他所做的机械功将为 50kg×9.8×1m=490焦耳
功率:即为单位时间内所做的功。P=W/t=F ×D/t。功率反映爆发力大小。
小负荷训练发展速度,大负荷训练发 展力量。
骨骼肌收缩的力学表现
(二)肌肉力量与运动
2.肌肉力量与爆发力
人体运动时所输出的功率,实际上就 是运动生理学中所说的爆发力,是指 人体单位时间内所做的功。
P=(m×a×D)/t
相对爆发力:短跑、跳跃 绝对爆发力:投掷、相扑 在机体中,爆发力的产生还与神经中枢的 骨骼肌总体控制有关,如运动单位的募集、 主动肌、拮抗肌、固定肌之间的协调配合。
4.肌肉酸疼
肌肉做退让工作时容易引起肌肉酸疼和损伤。肌肉大负荷离心收缩引起 肌肉酸疼和肌纤维超微结构改变以及收缩蛋白代谢的变化最显著,等长 收缩次之,向心收缩最低。
肌肉三种收缩形式比较
收缩形式 长度变化
外力与肌 张力关系
对外作功
运动中功能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/6/16
6
一、兴奋和兴奋性概念
兴奋:在生理学中,将组织受刺激后产生动 作电位的过程或动作电位本身称为兴奋。
兴奋性:组织这种受刺激后产生兴奋的能力 称为来自奋性。2020/6/16
7
二、引起兴奋的刺激条件
三条件缺一不可:
1、刺激强度(阈刺激或以上) 2、刺激作用时间(最短作用时间) 3、一定的刺激变化速率(反比)
400 110 420
10
540
蛙神经和肌肉
15
120
3
120 2.5 120
哺乳运动肌肉
10
140
150 4 140
2020/6/16
25
(二)静息电位产生机制
膜 通 道 的 选 择 性 通 透
2020/6/16
Na+
K+
A-
Cl-
26
(二)静息电位产生机制K+
第一章 肌肉的活动
第一节 肌肉的兴奋与收缩 第二节 肌肉收缩的形式及力学征 第三节 肌纤维类型与运动
2020/6/16
1
第一章 肌肉收缩
教学目的与要求: 1、骨骼肌纤维的分类方法。 2、掌握运动对骨骼肌纤维的影响。 3、了解肌电图在体育科学中的应用。 教学重点与难点: 1、不同类型骨骼肌纤维的区分方法。 2、不同类型骨骼肌纤维的特征以及骨骼肌纤
意义:强度-时间曲线揭示了组织兴奋的普遍规律, 在体内一切可兴奋组织都可以绘制出类似的曲线。
2020/6/16
10
(二)强度—时间曲线
强 度
时值
2020/6/16
基强度
时间
11
三、兴奋性的评价指标
(一)阈强度:是评定组织兴奋性高低的 最简易指标。测定阈强度时只须固定一适 中的刺激作用时间,再由低向高逐渐增加 刺激的强度,便能获得刚能引起组织反应 所需的最低刺激强度,这就是阈强度。兴 奋性与阈强度呈倒数关系,即引起组织兴 奋所需要的阈强度越低,表明组织的兴奋 性越高,反之则反。
2020/6/16
8
(一)阈强度与阈刺激
阈强度:通常把在一定刺激作用时间和 强度—时间变化率下,引起组织兴奋的 这个临界刺激强度,称为阈强度或阈值。 阈刺激:具有这种临界强度的刺激,称 为阈刺激,强度小于阈值的刺激为阈下 刺激,强度大于阈值的刺激为阈上刺激
2020/6/16
9
(二)强度—时间曲线
14
四、兴奋后恢复过程兴奋性变化
绝对 不应期
相对 不应期
超常期
低常期
恢复
兴奋性: (0) (较低) (较高 ) ( 较低) (正常)
2020/6/16
15
四、兴奋后恢复过程兴奋性变化
时期 绝对不应期 相对不应期
超常期 低常期
2020/6/16
历时 0.3ms 3ms 12ms 70ms
兴奋性 0 ↑
细胞膜的离子通道(电压依从式与化学依从式) 细胞膜离子通道的选择性通透(静息时对K+通透,受 到刺激后对Na+通透)。
2020/6/16
20
2020/6/16
21
图1-2 静息电位和动作电位
2020/6/16
22
图1-3 单一神经动作电位的实验模式图
2020/6/16
23
(二)静息电位产生机制
强度-时间曲线:以刺激强度变化为纵坐标,刺激 的作用时间为横坐标,将引起组织兴奋所需的刺激 强度和时间的变化关系,描绘在直角坐标系中,可 得到一条曲线,称强度-时间曲线。
基强度:刺激的强度低于某一强度时,无论刺激的 作用时间怎样延长,都不能引起组织兴奋,这个最 低的或者最基本的阈强度,称为基强度。
2020/6/16
18
2020/6/16
19
(一)静息电位和动作电位
动作电位定义:指可兴奋组织接受刺激而兴奋时,在静息电位的基础上发
生的膜电位由去极化到反极化与复极化的过程,其机制是细胞受到刺激后, 该处对Na的通透性突然增加,对K的通透性暂时降低,造成膜两侧电位差减 少
基本概念:内正外负(-90mv——+30mv——~-90mv) 细胞膜内外离子的分布(膜内Na+,A-;膜外K+,Cl-)
静息电位(跨膜电位、膜电位、K平衡电位 )定义:细胞未
受到刺激时存在于细胞膜内外两侧的电位差。人体神经、肌肉细胞的静息电 位是—90毫伏,其机制是K离子外流所致。
基本概念:外正内负(-70~-90mv) 细胞膜内外离子的分布(膜内K+,A-;膜外Na+,Cl-) 细胞膜的离子通道(电压依从式与化学依从式) 细胞膜离子通道的选择性通透(静息时对K+通透,受 到刺激后对Na+通透)。
max ↓
刺激 不反应 高于正常 低于正常 高于正常
16
五、神经肌肉细胞的生物电现象
(一)静息电位(RP Resting Potential) 和动作电位(AP Action Potential)
(二)静息电位和动作电位产生机制 (三)动作电位的传导 (四)局部兴奋
2020/6/16
17
(一)静息电位和动作电位
维类型与运动的关系。
2020/6/16
2
导言
本章系统阐述神经肌肉的兴奋性,含兴奋的产 生、传导和兴奋在神经肌肉接点的传递,认为 这是完整机体内肌肉收缩的生理学基础;根据 肌丝滑行理论着重对肌细胞的收缩过程与机制, 以及肌肉收缩的形式和力学特征进行分析;此 外对肌纤维的类型与运动能力的关系也作简要 的介绍。
静 息 ( 膜 ) 电 位
2020/6/16
外正
24
(二)静息电位产生机制
性膜 内 外 离 子 分 布 的 不 均 匀
Na+
K+ A-
Cl-
神经和肌肉细胞膜内、外某些离子的浓度
细胞
细胞内浓度/mmol·l-1 细胞外浓度/mmol·l-1
Na+ K+ CL- Na+ K+ CL-
枪乌贼巨轴突
50
2020/6/16
3
第一节 肌肉的兴奋与收缩
2020/6/16
4
本节主要内容
一。神经肌肉的兴奋和生物电现象 二。肌肉收缩的原理
2020/6/16
5
神经肌肉的兴奋和生物电现象
一、兴奋和兴奋性的概念 二、引起兴奋的刺激条件 三、兴奋性的评价指标 四、兴奋后恢复过程的兴奋性变化 五、神经肌肉的生物电现象 六、兴奋在神经肌肉接头的传递
2020/6/16
12
三、兴奋性的评价指标
(二)时值:以2倍基强度刺激组织, 刚能引起组织兴奋所需的最短作用时间。
兴奋性与时值亦呈倒数关系,即时值越 小,组织的兴奋性越高, 反之则反。
2020/6/16
13
四、兴奋性变化过程
5个时期: 绝对不应期 相对不应期 超常期 低常期 恢复正常
2020/6/16