第一章-肌肉活动
运动生理学 肌肉活动第一章第五节

sEMG所获得的客观信息,可为医疗保险、工伤保险 等提供重要依据。
sEMG仪工作原理
sEMG仪信号来源
信号来源是运动单位电位,是肌肉收缩过程中所 激活的运动单位动作电位的总和。sEMG通过皮肤表面 的电极片接收到这些电变化信号,并通过放大器放大 显示出来。
由于电极位于覆盖肌肉的皮肤表面,所以,越接 近记录电极的运动单位电位,越容易被记录到,而距 离电极较远的运动单位电位则记录的相对较少(受生 物组织阻抗的影响,电传导衰减)。脂肪(不全绝缘 体)越厚,肌电信号量越少。
在这些活动中,sห้องสมุดไป่ตู้MG是唯一可以实时、动
态观测行进过程中各个相关肌肉的作用、作用开始 时间、终止时间、与其他肌肉间协同关系、身体中 轴各个身体环节在动态稳定中的作用的方法。
sEMG在康复评价中的作用
为客观、定量地评价肌肉做功提供了安全、简易、无 创的方法。
获取有关肌肉做功的有价值信息,不需要用针刺穿皮 肤记录一个或多个运动单位电位变化,直接在皮肤表面即 可获取这些信息。
sEMG在运动分析中的应用
允许直接“查看”肌肉内部 测量肌肉的功能
帮助制定术前术后治疗计划 帮助文件处理和建立训练体制 帮助病人“寻找”和训练他们的肌肉
分析和改善运动能力 监测人体工程学的研究中肌肉的响应
肌电图的应用
1.分析动作。 评价肌肉力量及肌肉活动的协调性。通过肌肉的放电情况, 了解完成该项动作的主要肌群的程度和顺序。
二、sEMG信号的频谱分析(频域分析)
最常用参数是中位频率和平均功率频率。 中位频率(MF)指频率谱被分为相等的两部分的频率。 平均功率频率(MPF)整个事件段内频率谱的平均值。 典型的MF在70-120Hz,相应的时间是10-20ms。 疲劳时,MF和MPF降低。在应用中,也经常用到MF和MPF 曲线的下降斜率,斜率大,表示神经肌肉疲劳快;下降慢,表明 肌肉比较耐受疲劳。
运动生理学第1章 肌肉活动 肌肉的微细结构

肌肉的微细结构一、肌纤维(muscle fiber/myofiber)肌组织(muscle tissue)由特殊分化的肌细胞组成。
呈圆形或多角形,胞核位于纤维的边缘。
肌细胞的形状细长,呈纤维状,故肌细胞通常称为肌纤维。
骨骼肌超微结构示意图肌肉的微细结构二、肌原纤维(myofibril)每个肌纤维含有大量直径1~2μm的纤维状结构,称为肌原纤维。
肌小节(sarcomere)两相邻z线之间肌原纤维为肌小节,它是肌肉收缩和舒张的最基本单位,它包含一个位于中间部分的暗带和两侧各1/2的明带。
肌原纤维myofibril 在电子显微镜下观察骨骼肌的微细结构,可以发现,每个肌细胞都含有大量的纤维状结构,将其称为肌原纤维。
肌原纤维是横纹肌中长的、直径为1~2μm 的圆柱形的结构,是骨骼细胞的收缩单位。
肌原纤维由粗肌丝和细肌丝组装而成,粗肌丝的成分是肌球蛋白,细肌丝的主要成分是肌动蛋白,辅以原肌球蛋白和肌钙蛋白。
肌动蛋白肌球蛋白myomesin肌联蛋白肌纤维muscle fiber肌小节粗肌丝-由肌球蛋白组成横桥Crossbridge功能特征:1.包含与三磷酸腺苷ATP 结合的位点,且只在与细肌丝连结时被激活2.与细肌丝相应位点可逆性结合,倾斜摆动,牵引细肌丝向粗肌丝中部滑行长杆部朝向M 线横向聚合,形成粗肌丝主干球状头部有规则突出在M 线两侧的粗肌丝主干表面,形成横桥细肌丝-由肌动蛋白组成肌动蛋白原肌球蛋白调节蛋白肌钙蛋白肌肉的微细结构三、肌管系统1.横管(transverse tubule):肌细胞膜从表面横向伸入肌纤维内部的膜小管系统。
2.纵管(longitudinaltubule):肌质网系统。
1.横管(T 管)--与肌原纤维垂直--横穿肌节之间,成环状环绕每条肌原纤维,--同一水平横管互相沟通,--内腔与细胞外液相通,可将肌细胞兴奋时出现在细胞膜上的电位变化出入细胞内。
(二)肌管系统2.纵管(L 管)--与肌原纤维平行--包绕肌小节中间部分,近横管时膨大成终池--纵管和终池是Ca2+的储存库在肌肉活动中实现Ca2+的贮存、释放和再聚集。
运动生理学课后题

第一章肌肉活动的能量供应1.能量与生命的关系如何,是怎样实现的?人体生命活动是一个消耗能量的过程,而肌肉活动又是消耗能量最多的一种活动形式。
运动时,人体不能直接利用太阳能、电能等各种物理形式的能量,只能直接利用储存在高能化合物三磷酸腺苷分子中蕴藏的化学能,与此同时糖、脂肪、蛋白质则可通过各自的分解代谢,将储存在分子内部的化学能逐渐释放出来,并使部分能量转移和储存到ATP分子之中,以保证A TP供能的持续性。
2.不同运动中,ATP供能与间接能源的动用关系?1.A TP是人体内一切生命活动能量的直接来源,而能量的间接来源是指糖、脂肪和蛋白质。
2.糖是机体最主要,来源最经济,供能又快速的能源物质,一克糖在体内彻底氧化可产生4.1千卡的热量,机体正常情况下有60%的热量由糖来提供。
3.在进行剧烈运动时,糖进行无氧分解供能,1分子的糖原或葡萄糖可产生3-2分子的ATP,可利用的热量不到糖分子结构中重热量的5%,能量利用率很低,但产能速率很高。
4.在进行强度不是太大的运动时,糖进行有氧分解供能,此时1分子的糖原或葡萄糖可生成39-38分子的ATP,糖分子结构中的热量几乎全部可以被利用,但产能速率较低。
5.脂肪是一种含热量最多的营养物质,1克脂肪在体内彻底氧化可产生9.3千卡的热量,他是长时间肌肉运动的重要能源。
6.体内脂肪首先通过脂肪动员,分解为甘油和脂肪酸。
甘油经系列反应步骤,可循糖代谢途径氧化,由于肌肉内缺乏磷酸甘油激酶,故甘油直接为肌肉供能的意义不大。
脂肪酸进入细胞后,在线粒体外膜活化,经肉碱转运至内膜,再经ß氧化逐步生成乙酰辅酶,之后经三羧酸循环逐步释放出大量能量供ADP再合成ATP,此过程是脂肪氧化分解供能的主要途径。
蛋白质分解供能是由氨基酸代谢实现的,但蛋白质分解供能很不经济,故一般情况不作为主要供能物质。
3.三种能源系统为什么能满足不同强度的运动需要?这是由他们各自的供能特点所决定的。
第一章 肌肉的活动

56
(一)肌丝收缩的滑行学说
肌肉收缩时肌肉缩短,不是肌 丝的缩短而是肌小节的缩短。 肌肉收缩时,从Z线伸出的细 肌丝在某种力量的作用下向暗 带中央滑行而使肌小节缩短
变构后,使原肌球蛋白位移,暴露出结合位点).
54
粗肌丝和细肌丝的空间排列示意图-3
①粗肌丝头部的横 桥能与细肌丝上的 结合位点可逆性结 合;
②静息时,细肌丝 的肌钙蛋白对原肌 球蛋白有抑制作用; ③原肌球蛋白对肌 动蛋白上结合位点 有覆盖作用。
55
二、肌肉的收缩机制
(一)肌肉收缩的 滑行理论 (二)肌肉收缩的 过程
② Na离子通道激活,失活和K离子通道的开放。
Action Potential:
刺激后,膜对Na+通透 ↓ 膜内外Na+势能贮备 ↓ Na+经通道易化扩散 ↓ 扩散的Na+抵消膜内 负电位,形成正电位 ↓ 直至正电位增加到足以对抗由 浓度差所致的Na+内流
∴ AP的超射值等于Na+平衡电位(+50~+70mV)
45
3、兴奋在神经—肌肉接头的传递的特点 (1)化学传递 递质为乙酰胆碱 (2)兴奋传递是1对1 (3)单向性传递 (4)时间延搁, (0.5—1.0ms) (5)高敏感性 易受化学和其它环境因素影响
46
二、肌纤维的微细结构
肌肉是由肌腹、肌腱、血管和 神经构成。肌腹是肌肉中部 的肌性部分,主要由肌纤维 构成。每条肌纤维的外面均 包有一层结缔组织膜,称肌 内膜。由 100-150条肌纤维 集合在一起形成肌束,外面 包有肌束膜。由若干肌束组 成整块肌腹,外面包有肌外 膜。
35
36
一、肌肉的神经 支配 (一)运动单位 1、定义:一个运 动神经元连同 它的全部神经 末梢所支配的 肌纤维,从功 能上看是一个 肌肉活动的基 本功能单位, 称为运动单位。
王步标运动生理学第一章肌肉与运动

三个主要步骤:
①动作电位沿横管系统 传到肌细胞内部。
②三联管处的信息传
③ 终池中Ca2+释放入肌
浆与肌钙蛋白结合,解.
51
除位阻效应。
2、横桥摆动肌丝滑行
——肌肉收缩
Ca2+与肌钙蛋白结合, 肌钙蛋白构型改变
原肌球蛋白位移,暴露 肌动蛋白上的结合位点
横桥与细肌丝结合, 分解ATP释放能量
横桥摆动,
.
60
2/7
(一)缩短收缩(向心收缩)
肌肉收缩产生的张力 大于外加阻力时,肌肉缩 短,牵拉它附着的骨杠杆 做向心运动,这种收缩形 式称为缩短收缩。
作用:实现各种加速运动
和位移运动
.
61
做功:做正功
例:屈肘、抬腿、挥臂等。
等张收缩
肌肉收缩时,其外加阻 力在整个收缩过程中是恒定 的,当肌张力发展到足以克 服外加阻力后,其张力在收 缩的全过程就不再变化了。 这种收缩形式称为等张收缩 。在运动实际中,不可能有 等张收缩现象。
.
52
牵拉细肌丝向肌节中央滑行
肌节缩短—肌细胞收缩
.
53
.
54
15 / 20
.
55
16 / 20
.
56
17 / 20
3、肌肉的舒张
.
肌膜电位复极化 肌浆网膜Ca2+泵激活
肌浆[Ca2+]↓
Ca2+与肌钙蛋白解离 原肌57 凝蛋白复盖 横桥结合位点 骨骼肌舒张
.
58
19 / 20
.
59
1/7
配的所有快肌纤维组成快运动单位。
.
35
慢运动单位:由小运动神经元连同它所支 配的所有慢肌纤维组成慢运动单位。
运动生理学习题01

第一章:肌肉活动的能量供应(一)填空题1.实现机体各种生理活动所需的直接能源均来自的分解;而间接能源来自食物中的分解代谢。
2.ATP再生成的代谢方式,可分为和两种方式。
3.ATP再生成过程,通常包括和两种方式。
4.1moL的葡萄糖或由糖原分解的葡萄糖残基,经酵解途经,可净生成ATP的mol数,分别为和。
5.1moL的葡萄糖或由糖原分解的葡萄糖残基,经有氧氧化途经,可净生成ATP的mol 数,分别为和。
6.1moL的CP分解时,可净生成moL的ATP。
7.磷酸原系统通常是指由细胞内和等化合物组成。
8.无氧分解供能应包括和两种能量系统。
9.短跑以代谢供能为主,长跑则以代谢供能为主。
10.乳酸能系统的供能底物只能是和。
11.运动时,体内以何种方式供能,主要取决于与的相互关系。
12.糖的呼吸商是;脂肪的呼吸商接近。
13.食物中三种能源物质,其氧热价最高的是;而食物热价最高的是。
14.糖在体内的存在形式主要有和两种。
15.把能量统一体的表示形式,可分为和两种。
16.食物在消化道内的分解过程包括和两种方式。
17.线粒体传递氢与氧化合的呼吸链主要有和两条。
18.组织经氧化分解脱下来的氢,经NADH2呼吸链传递最终生成水时,ATP生成量为经FADH2呼吸链传递最终生成水时,ATP生成量为。
19.通常胃的机械性消化包括和两种。
20.通常小肠的机械性消化包括、和三种。
21.运动中影响肌肉能量代谢方式的因素,主要是和两个变量因素。
(二)判断题:1.生物体内的能量的释放,转移和利用等过程是以ATP为中心进行的。
()2.剧烈运动开始阶段,可使肌肉内的ATP迅速下降,而后是CP迅速下降。
()3.人体内的能源物质,都能以有氧或无氧的分解方式来供能。
()4.ATP和CP分子都有高能磷酸键,其断裂释放出来的能量,都可被机体直接利用。
()5.在100m赛跑中,肌肉内CP含量在开始阶段迅速下降;而ATP含量变化不大。
()6.蛋白质在剧烈运动中的供能比例占有重要作用。
第一章肌肉活动第三节肌肉收缩的形式和力学特征

第一章肌肉活动第三节肌肉收缩的形式和力学特征肌肉收缩是肌肉活动中最重要的过程之一、它指的是肌纤维在神经冲动的刺激下产生的力量,使肌肉收缩或缩短。
肌肉收缩的形式可以分为等长收缩和等张收缩,其力学特征包括肌肉产生的力量、速度和能量消耗等。
一、肌肉收缩的形式1.等长收缩:在等长收缩过程中,肌肉的长度保持不变。
这种收缩形式主要用于肌肉的抗阻力工作,如举重运动等。
这种收缩时,肌纤维的长度缩短,但所产生的力量无法克服外部阻力,因此肌肉的长度保持不变。
2.等张收缩:在等张收缩过程中,肌肉的张力保持不变,其长度会发生改变。
这种收缩形式主要用于运动和作战等需要肌肉能够产生力量的活动中。
当肌纤维在神经冲动的刺激下收缩时,所产生的力能够克服外部阻力,从而使肌肉长度发生变化。
二、肌肉收缩的力学特征1.力量:肌肉收缩产生的力量主要由两个因素决定:一是肌肉纤维的横截面积,即肌肉的肌纤维数量;二是肌肉纤维的收缩力量,即肌纤维的收缩能力。
这两个因素相互作用决定了肌肉收缩产生的总力量。
2.速度:肌肉收缩的速度与力量密切相关。
一般来说,肌肉产生的力量越大,收缩速度就越慢;反之,肌肉产生的力量越小,收缩速度就越快。
这是因为肌肉纤维收缩时产生的力量与速度之间存在一个反向关系。
3.能量消耗:肌肉收缩产生的能量消耗取决于肌肉的收缩速度和力量大小。
通常情况下,肌肉收缩的能量消耗与收缩力量成正比,与收缩速度成反比。
如果收缩速度增加,肌肉消耗的能量也会增加。
三、肌肉收缩相关的生理机制肌肉收缩的过程涉及到肌纤维的收缩蛋白质-肌动蛋白和肌球蛋白。
当神经冲动到达肌纤维的末端时,会释放出乙酰胆碱,刺激肌纤维内膜上的乙酰胆碱受体。
这会触发肌纤维中的线粒体释放大量的能量并使肌动蛋白与肌球蛋白的交互作用,进而导致肌纤维的收缩。
总结起来,肌肉收缩的形式包括等长收缩和等张收缩。
肌肉收缩的力学特征包括力量、速度和能量消耗。
肌肉收缩的生理机制涉及到肌动蛋白和肌球蛋白的交互作用。
第一章肌肉的活动

第⼀章肌⾁的活动第⼀篇器官系统运动⽣理学第⼀章肌⾁的活动第⼀节肌⾁的兴奋和收缩第⼆节肌⾁收缩的形式及⼒学分析教学任务通过教学,使学⽣明确肌⾁的神经⽀配及兴奋在神经—肌⾁接头传递过程。
掌握肌纤维的微细结构、肌⾁收缩和舒张的原理和过程,肌⾁收缩的形式和肌⾁收缩的⼒学分析。
教学重点肌纤维的微细结构、肌⾁收缩和舒张的原理和过程,肌⾁收缩的形式和肌⾁收缩的⼒学分析。
教学难点肌⾁的神经⽀配及兴奋在神经—肌⾁接头传递过程。
肌⾁收缩的⼒学分析。
教学⽅法与⼿段结合多媒体课件进⾏课堂讲授教学内容授课过程:复习上节课的主要内容新课引⼊:第⼀篇器官系统运动⽣理学第⼀章肌⾁的活动第⼀节肌⾁的兴奋和收缩⼈体的肌⾁分为⾻骼肌、⼼肌和平滑肌三⼤类。
⾻骼肌的主要活动形式是收缩和舒张。
通过舒缩活动完成运动、动作,维持⾝体姿势。
⾻骼肌的活动是在神经系统的调节⽀配下,在机体各器官系统的协调活动下完成的。
肌纤维(肌内膜)集中形成肌束(肌束膜),肌束集中形成肌⾁(肌外膜)。
每⼀块肌⾁都是⼀个器官。
肌⾁两端为肌腱,跨关节附⾻。
⼀、肌⾁的神经⽀配(⼀)运动单位1、脊髓运动神经元发出的运动神经纤维通过终板⽀配⾻骼肌的运动。
⼀个运动神经元和它所⽀配的全部⾻骼肌纤维所组成的结构和机能单位叫做⼀个运动单位。
运动单位的⽣理特点是作为⼀个整体活动。
运动单位是最基本的肌⾁收缩单位。
2、运动单位的分类:(1)运动性(快肌)运动单位—⼤运动单位:冲动频率⾼,收缩⼒量⼤,易疲劳,氧化酶含量低。
⼤运动单位中(如腓肠肌)肌纤维数⽬多,收缩时产⽣的张⼒⼤。
(2)紧张性(慢肌)运动单位—⼩运动单位:冲动频率低,持续时间长,氧化酶含量⾼。
⼩运动单位中(如眼外直肌)肌纤维数⽬少,收缩时⽐较灵活。
同⼀运动单位肌纤维兴奋收缩同步;同⼀肌⾁中属不同运动单位的肌纤维兴奋收缩不⼀定同步。
(因神经冲动的不同频率及肌纤维的兴奋性)3.运动单位的动员(1)概念:参与活动的运动单位数⽬和神经发放冲动频率的⾼低结合,形成运动单位的动员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二)动作电位产生机制
分期及机制:
机制
细胞受刺激,Na通道开放,Na快速 内流(内正外负) 去极化一定程度,Na通道关闭,K 通道开放,K外流
Na泵:排Na保K,形成微小电位波动
29
分期
锋电 位 去极 化 复极 化
后电位
2018/3/17
(二)动作电位产生机制
动作电位的形成 Na+借浓度差内流,阻力(浓度差)越来 越小,动力(电位差)越来越大)。 动力=阻力, Na+停止内流,形成外负内 正的膜电位。 动作电位是Na+内流所造成。
2018/3/17
38
2018/3/17
39
小结:
比较项目 定义
:
静息电位 见上 未受刺激 0-90mV 极化状态(外 正内负) K+外流 见上
动作电位 见上 阈刺激以上 -90--+30mV 除极化态、复 极化态 Na+内流 见上
局部电位 见上 阈下刺激 / / / 见上
产生条件 大小范围 状态 产生机制 特点
联系过程:静息电位 → 动作电位(阈电位 → 峰电位 → 后电位)
2018/3/17 40
补:运动单位与肌电图
1、运动单位:一个运动神经元连同它的全 部神经末梢所支配肌纤维,从功能上是肌 肉活动的基本单位,称为运动单位。它可 大可小,眼内肌中,每一运动单位只有3条 肌纤维,腓肠肌中,有上千条纤维。 2、肌电图:肌肉兴奋时产生的动作电位通 过引导放大后,在肌电图仪上记录下来的 图形称为肌电图。
第一章 肌肉活动
第一节 细胞生物电现象 第二节 肌肉收缩原理 第三节 肌肉收缩的形式及力学特征 第四节 肌纤维类型与运动能力 第五节 肌电图
2018/3/17
1
第一节 细胞生物电现象
一、兴奋和兴奋性的概念 二、引起兴奋的刺激条件 三、兴奋性的评价指标 四、兴奋后恢复过程的兴奋性变化 五、神经肌肉的生物电现象 六、兴奋在神经肌肉接头的传递
2018/3/17 24
2018/3/17
25
(二)动作电位产生机制
动 作 电 位 的 形 成
2018/3/17
+ Na
Na+ Na+ Na+ Na+
+
+ K
A
Cl
26
动作电位是Na+内流所造成
2018/3/17
27
(二)动作电位产生机制
动作电位(锋电位)的形成过程
-70m v
2018/3/17 28
2018/3/17 14
2018/3/17
15
(一)静息电位和动作电位
动作电位定义:指可兴奋组织接受刺激而兴奋时,在静息电位的基础上发
生的膜电位由去极化到反极化与复极化的过程,其机制是细胞受到刺激后, 该处对Na的通透性突然增加,对K的通透性暂时降低,造成膜两侧电位差减 少
基本概念:内正外负(-90mv——+30mv——~-90mv) 细胞膜内外离子的分布(膜内Na+,A-;膜外K+,Cl-) 细胞膜的离子通道(电压依从式与化学依从式) 细胞膜离子通道的选择性通透(静息时对K+通透,受 到刺激后对Na+通透)。
②肌小节:暗带+1/2明带
2018/3/17
45
图09 肌小节的示意图
2018/3/17
46
2018/3/17
肌原纤维的结构示意图
47
图12 肌小节分子结构
2018/3/17
48
粗肌丝和细肌丝的空间排列示意图
2018/3/17 49
(二)肌管系统
1、定义:由单位膜构成的囊管系统,包绕在每条肌纤维周围, 分横管、纵管。 2、组成: 横管系统(T管):肌膜的延续,内为细胞外液,传递电信号横 行于肌原纤维之间。 纵管系统(L管):(肌质网),末端称终末池,贮存、释放Ca 平行于肌原纤维之间。 终末池:纵管两端的膨大称终末池(Ca的贮库)。 三联管:每条横管和邻近两侧的终末池形成,但彼此并不相通。 3、功能: (1)肌原纤维内外物质交换 (2)将动作电位传至肌纤维内部,终末池钙释放,肌肉收缩
21
2018/3/17
(二)静息电位产生机制 膜 通 道 的 选 择 性 通 透
2018/3/17
+ Na + K
A
Cl
22
(二)静息电位产生机制 K
+
静 息 膜 电 位 的 形 成
2018/3/17
+ Na
K+ + K
K+
+
A
+ K
静息膜电位是K+外流所造成
Cl
23
(二)静息电位产生机制
K+借浓度差外流,动力(浓度差) 越来越小,阻力(电位差)越来越 大)。 动力=阻力, K+停止外流,形成内 负外正的膜电位。 静息膜电位是K+外流所造成。
刺激
++++++++
--- + + + + + + + + + - - - - - - - + + + - -- - - - - - ------+++
- -- - - - - - -
++++++++
--- + + + + + + + + +
2018/3/17
动作电位在神经纤维上的传导(无髓鞘)
35
强度-时间曲线:以刺激强度变化为纵坐标,刺激 的作用时间为横坐标,将引起组织兴奋所需的刺激 强度和时间的变化关系,描绘在直角坐标系中,可 得到一条曲线,称强度-时间曲线。 基强度:刺激的强度低于某一强度时,无论刺激的 作用时间怎样延长,都不能引起组织兴奋,这个最 低的或者最基本的阈强度,称为基强度。 意义:强度-时间曲线揭示了组织兴奋的普遍规律, 在体内一切可兴奋组织都可以绘制出类似的曲线。
肌浆网
纵小管
三 联 体
终池
横小管 终池 横小管 的开口
骨骼肌纤维 超微结构立体模式图 2018/3/17
肌膜
肌原纤维
血管 肌核
52
(三)肌丝的分子组成
1 、粗肌丝:由肌球蛋白(又称肌凝蛋白)分子构成 (杆+头), (200-300个)。
横桥:肌球蛋白分子的球状头部称为横桥。
功能:
(1)有能与ATP结合的位点,具有ATP酶活性,当它 与肌动蛋白结合量使ATP迅速水解释放出能量。 (2)在一定条件下,可和细肌丝上的肌动蛋白呈可逆 性结合。
肌小节:两条Z线 之间的结构。
2018/3/17
骨骼肌超微结构示意图44
(一)肌原纤维与肌小节
肌肉→肌束 →肌纤维 →肌原纤维 →肌小节 肌原纤维:由许多肌小节组成,肌小节是 实现肌肉收缩和舒张的最基本功能单位。
暗带(粗肌丝)M线连接,中间较明为H带
①肌原纤维
明带(细肌丝)Z线连接,
2018/3/17
4
(一)阈强度与阈刺激
阈强度:通常把在一定刺激作用时间和 强度—时间变化率下,引起组织兴奋的 这个临界刺激强度,称为阈强度或阈值。 阈刺激:具有这种临界强度的刺激,称 为阈刺激,强度小于阈值的刺激为阈下 刺激,强度大于阈值的刺激为阈上刺激
2018/3/17
5
(二)强度—时间曲线
Na+
K+
A-
Cl-
神经和肌肉细胞膜内、外某些离子的浓度
细胞
细胞内浓度/mmol· l-1
Na+
枪乌贼巨轴突 蛙神经和肌肉 哺乳运动肌肉
细胞外浓度/mmol· l-1
Na+ K+ CL-
K+ 400 120 140
CL110 3
50 15 10
420 120 150
10 2.5 4
540 120 140
四、兴奋后恢复过程兴奋性变化
绝对 不应期 相对 不应期 (较低) 恢复
超常期
低常期
兴奋性: (0)
(较高 )
( 较低)
(正常)
2018/3/17
11
四、兴奋后恢复过程兴奋性变化
时期 绝对不应期 相对不应期 超常期 历时 0.3ms 3ms 12ms 兴奋性 0 ↑ max 刺激 不反应 高于正常 低于正常
2018/3/17 41
二、肌肉收缩原理
一、肌纤维的微细结构 二、肌肉的收缩机制 三、单收缩与强直收缩
2018/3/17
42
一、肌纤维的微细结构
(一)肌原纤维与肌小节 (二)肌管系统 (三)肌丝的分子组成
2018/3/17
43
(一)肌原纤维和肌小节
每个肌细胞含有数 百至数千条与肌纤 维长轴平行排列的 肌原纤维。直径约 1-2微米,纵贯肌 细胞全长。
2018/3/17 33
比较项目 定义 产生条件 大小范围
(三)动作电位的传导
机理:局部电流 见图1-4 动作电位传导原理示意图
2018/3/17
34
(三)动作电位的传导
++++++++++++++++++++