初中数学-勾股定理单元试卷

合集下载

(完整版)初二数学勾股定理测试题

(完整版)初二数学勾股定理测试题

C勾股定理测试卷京翰提示:弦定理,又称毕达哥拉斯定理或毕氏定理,是初中数学中常用的公式定理,下面的试卷主要考察同们对勾股定理的基本知识和基础题型的认识程度,在数学学习的过程中,一定要注意对一个问题的延伸,这样才能知识点学习的更加透彻和明晰!一、选择题1。

已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 22。

一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为( ) (A ) 4 (B ) 8 (C) 10 (D ) 123.如图,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( ) (A)321S S S =+ (B )232221S S S =+ (C )321S S S >+ (D ) 321S S S <+4。

若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).(A )3cm 2 (B)32cm 2 (C )33cm 2 (D )4cm 25.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为 ( ) A 、6cm 2 B 、8cm 2 C 、10cm 2 D 、12cm26。

在下列以线段a 、b 、c 的长为三边的三角形中,不能构成 直角三角形的是 ( )(A)a=9 、b=41 、c=40 (B)a=11 、b=12 、c=15 (C )a ∶b ∶c=3∶4∶5 (D ) a=b=5 、c=257、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 338.如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为( ) A 3 B 4 C 5 D 6 9、锐角三角形的三边长分别是2、3、x,则x 的取值范围是( ) (A 513(B 13(13)1〈x 〈510。

初中数学数学勾股定理试题及答案

初中数学数学勾股定理试题及答案

初中数学数学勾股定理试题及答案一、选择题1.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .245B .365C .12D .152.如果正整数a 、b 、c 满足等式222+=a b c ,那么正整数a 、b 、c 叫做勾股数.某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x y +的值为( )A .47B .62C .79D .983.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .4.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A 22d S d +B 2d S d -C .22d S d +D .()22d S d + 5.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .25394+B .25392+C .18253+D .253182+ 6.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.在ABC 中,,,A B C ∠∠∠的对边分别是a b c 、、,下列条件中,不能说明ABC 是直角三角形的是( )A .222b a c =-B .;C A B ∠=∠-∠ C .::3:4:5A B C ∠∠∠=D .::5:12:13a b c =8.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1699.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺10.如图,在ABC ∆中,D 、E 分别是BC 、AC 的中点.已知90ACB ∠=︒,4BE =,7AD =,则AB 的长为( )A .10B .53C .213D .15二、填空题11.如图,AB =12,AB ⊥BC 于点B , AB ⊥AD 于点A ,AD =5,BC =10,E 是CD 的中点,则AE 的长是____ ___.12.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.13.如图,在四边形ABCD 中,22AD =,3CD =,45ABC ACB ADC ∠=∠=∠=︒,则BD 的长为__________.14.已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为_____.15.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD ,则线段BD 的长为_____.16.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___17.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______18.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.19.在等腰Rt ABC △中,90C ∠=︒,2AC =,过点C 作直线l AB ,F 是l 上的一点,且AB AF =,则FC =__________. 20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB , 且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD 的长是____________.三、解答题21.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)出发2秒后,求线段PQ 的长;(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形;(3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.24.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.25.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转90︒);(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.26.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.27.已知ABC ∆中,AB AC =.(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:BD CE =(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求AD AB的值.28.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.29.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 30.(知识背景) 据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB=90°即可得出EQ ∥BC ,进而可得出AE EQ AB BC=,代入数据即可得出EQ 的长度,此题得解. 【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,在Rt △ABC 中,∠ACB=90°,AC=9,BC=12,∴2215AB AC BC +=,∵AD 是∠BAC 的平分线,∴∠CAD=∠EAD ,在△ACD 和△AED 中,90CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴AE=AC=9.∵EQ ⊥AC ,∠ACB=90°,∴EQ ∥BC ,AE EQ AB BC ∴=, ∴91512EQ =,653EQ ∴=. 故选B. 【点睛】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C 的对称点E ,及通过点E 找到点P 、Q 的位置是解题的关键. 2.C解析:C【分析】依据每列数的规律,即可得到2221,,1a n b n c n =-==+,进而得出x y +的值. 【详解】解:由题可得:222321,42,521=-==+…… 2221,,1a n b n c n ∴=-==+当21658c n n =+==时,63,16x y ∴==79x y ∴+=故选C【点睛】本题为勾股数与数列规律综合题;观察数列,找出规律是解答本题的关键.3.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A 中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确; B 中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C 中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D 中,根据A 可得,C 可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A 、B 、C 选项的等式中需理解等式的各个部分表示的几何意义,对于D 选项是由A 、C 选项联立得出的. 4.D解析:D【解析】【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。

初中数学数学勾股定理试题含答案

初中数学数学勾股定理试题含答案

一、选择题1.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.600m B.500mC.400m D.300m2.已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,下列结论错误的是().A.AF⊥AQ B.AF=AQ C.AF=AD D.F BAQ∠=∠3.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c三个正方形的面积之和为()A.11 B.15 C.10 D.224.如图,已知圆柱的底面直径6BCπ=,高3AB=,小虫在圆柱侧面爬行,从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程的平方为()A.18 B.48 C.120 D.725.如图,小红想用一条彩带缠绕易拉罐,正好从A 点绕到正上方B 点共四圈,已知易拉罐底面周长是12 cm ,高是20 cm ,那么所需彩带最短的是( )A .13 cmB .4cmC .4cmD .52 cm 6.一个直角三角形两边长分别是12和 5,则第三边的长是( ) A .13B .13或15C .13或119D .15 7.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( )A .24B .30C .40D .48 8.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+9.如图,已知数轴上点P 表示的数为1-,点A 表示的数为1,过点A 作直线l 垂直于PA ,在l 上取点B ,使1AB =,以点P 为圆心,以PB 为半径作弧,弧与数轴的交点C 所表示的数为( )A .5B .51-C .51+D .51-+10.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D .10二、填空题11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S1,S2,S3,若S 1+S 2+S 3=10,则S2的值是_________.12.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________13.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.14.如图,在ABC △中8,4,AB AC BC AD BC ===⊥于点D ,点P 是线段AD 上一个动点,过点P 作PE AB ⊥于点E ,连接PB ,则PB PE +的最小值为________.15.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,BAC 90∠=度,AB AC =,AE AD ⊥,且AE AD =,AF 平分DAE ∠交BC 于F ,若BD 6=,CF 8=,则线段AD 的长为______.18.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边长为_____.19.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.20.已知:如图,等腰Rt OAB ∆的直角边OA 的长为1,以AB 边上的高1OA 为直角边,按逆时针方向作等腰11Rt OA B ∆,11A B 与OB 相交于点2A ,若再以2OA 为直角边按逆时针方向作等腰22Rt OA B ∆,22A B 与1OB 相交于点3A ,按此作法进行下去,得到33OA B ∆,44OA B ∆,…,则66OA B ∆的周长是______.三、解答题21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?22.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.23.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD 中,∠ABC =70°,∠BAC =40°,∠ACD =∠ADC =80°,求证:四边形ABCD 是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =3D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.24.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2. 25.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△. (3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==E 、P 、D 三点共线时,7BP =下列结论:①E 、P 、D 共线时,点B 到直线AE 5②E 、P 、D 共线时, 13ADP ABP S S ∆∆+==532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =DB ,DA .(1)直接写出BC=__________,AC=__________;(2)求证:ABD∆是等边三角形;(3)如图,连接CD,作BF CD⊥,垂足为点F,直接写出BF的长;(4)P是直线AC上的一点,且13CP AC=,连接PE,直接写出PE的长.29.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.30.如图1,在正方形ABCD中,点E,F分别是AC,BC上的点,且满足DE⊥EF,垂足为点E,连接DF.(1)求∠EDF= (填度数);(2)延长DE交AB于点G,连接FG,如图2,猜想AG,GF,FC三者的数量关系,并给出证明;(3)①若AB=6,G是AB的中点,求△BFG的面积;②设AG=a,CF=b,△BFG的面积记为S,试确定S与a,b的关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如右图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,22=500m,AB BC∴CE=AC-AE=200,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选B.【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法.2.C解析:C【分析】根据BD 、CE 分别是AC 、AB 边上的高,推导出EBH DCH ∠=∠;再结合题意,可证明FAC AQB △≌△,由此可得F BAQ ∠=∠,AF AQ =;再经90AEF ∠=得90F FAE ∠+∠=,从而证明AF ⊥AQ ;最后由勾股定理得222AQ AD QD =+,从而得到AF AD ≠,即可得到答案.【详解】如图,CE 和BD 相较于H∵BD 、CE 分别是AC 、AB 边上的高∴CE AB ⊥,BD AC ⊥∴90BEC BDC AEF ADQ ∠=∠=∠=∠=∴90EBH EHB DHC DCH ∠+∠=∠+∠=∵EHB DHC ∠=∠∴EBH DCH ∠=∠又∵BQ =AC 且CF =AB∴FAC AQB △≌△∴F BAQ ∠=∠,AF AQ =,故B 、D 结论正确;∵90AEF ∠=∴90F FAE ∠+∠=∴90BAQ FAE F FAE ∠+∠=∠+∠=∴AF ⊥AQ 故A 结论正确;∵90ADQ ∠=∴222AQ AD QD =+∵0QD ≠∴AQ AD ≠∴AF AD ≠故选:C .【点睛】本题考查了全等三角形、直角三角形、勾股定理、三角形的高等知识;解题的关键是熟练掌握全等三角形、直角三角形、勾股定理、三角形的高的性质,从而完成求解.3.B解析:B【分析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a 的面积等于1号的面积加上2号的面积,b 的面积等于2号的面积加上3号的面积,c 的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.【详解】利用勾股定理可得:12a S S S =+ ,23b S S S =+,34c S S S =+∴122334a b c S S S S S S S S S ++=+++++74415=++=故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.4.D解析:D【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【详解】解:把圆柱侧面展开,展开图如图所示,点A ,C 的最短距离为线段AC 的长.∵已知圆柱的底面直径6BC π=,∴623AD ππ=⋅÷=, 在Rt ADC ∆中,90ADC ∠=︒ ,3CD AB ==,∴22218AC AD CD =+=,∴从C 点爬到A 点,然后再沿另一面爬回C 点,则小虫爬行的最短路程的平方为()222472AC AC ==.故选D.【点睛】本题考查了平面展开-最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.5.D解析:D【解析】【分析】本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决..要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】如图,由图可知,彩带从易拉罐底端的A 处绕易拉罐4圈后到达顶端的B 处,将易拉罐表面切开展开呈长方形,则螺旋线长为四个长方形并排后的长方形的对角线长,设彩带最短长度为xcm ,∵∵易拉罐底面周长是12cm ,高是20cm ,∴x 2=(12×4)2+202∴x 2=(12×4)2+202,所以彩带最短是52cm .故选D .【点睛】本题考查了平面展开−−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,6.C解析:C【分析】记第三边为c ,然后分c 为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.【详解】解:记第三边为c ,若c 为直角三角形的斜边,则13c ==;若c 为直角三角形的直角边,则c =故选:C .【点睛】本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.7.A解析:A【解析】已知△ABC 的三边分别为6,10,8,由62+82=102,即可判定△ABC 是直角三角形,两直角边是6,8,所以△ABC 的面积为12×6×8=24,故选A . 8.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22277-x x +=,解得: 1)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.9.B解析:B【分析】由数轴上点P 表示的数为1-,点A 表示的数为1,得PA=2,根据勾股定理得5PB 而即可得到答案.【详解】∵数轴上点P 表示的数为1-,点A 表示的数为1,∴PA=2,又∵l ⊥PA ,1AB =, ∴225PB PA AB +=∵5∴数轴上点C 51.故选B .【点睛】本题主要考查数轴上点表示的数与勾股定理,掌握数轴上两点之间的距离求法,是解题的关键.10.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC 中,2222BC=BE +CE =1+3=10,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.二、填空题11.103. 【解析】 试题解析:将四边形MTKN 的面积设为x ,将其余八个全等的三角形面积一个设为y , ∵正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,S 1+S 2+S 3=10, ∴得出S 1=8y+x ,S 2=4y+x ,S 3=x ,∴S 1+S 2+S 3=3x+12y=10,故3x+12y=10,x+4y=103, 所以S 2=x+4y=103. 考点:勾股定理的证明.12.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得BC=2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得DE=222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x 在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53; ②当折叠后点C 的对应点H 在AC 的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH ∴EH=DH +DE=163设CP=PH=y ,则EP= CP -CE =y -83在Rt △PEH 中,EP 2+EH 2=PH 2即(y -83)2+(163)2=y 2解得:y=203 即此时CP=203. 综上所述:CP=53或203. 故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.13.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE. 【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA 是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO ≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE 是等腰直角三角形所以()()222210210220BO EO +=+=所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.14.15 【分析】 根据题意点B 与点C 关于AD 对称,所以过点C 作AB 的垂线,与AD 的交点即点P ,求出CE 即可得到答案【详解】∵8,AB AC AD BC ==⊥∴点B 与点C 关于AD 对称过点C 作CE ⊥AB 于一点即为点P ,此时PB PE +最小∵8,4,AB AC BC AD BC ===⊥∴BD=2在Rt △A BC 中, 222282215AD AB BD =-=-= ∵S △ABC=1122BC AD AB CE ⋅⋅=⋅⋅ ∴42158CE ⨯=得15CE =故此题填15【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题 15.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,∴C=13.若A=S P =4.C=S Q =9,B=S K ,根据勾股定理,可得A+B=C ,∴B=9-4=5.∴S K 为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.16.71-【分析】分别找到两个极端,当M 与A 重合时,AP 取最大值,当点N 与C 重合时,AP 取最小,即可求出线段AP 长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--, ∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71--71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.65【分析】由“SAS”可证ABD ≌ACE ,DAF ≌EAF 可得BD CE =,4B ∠∠=,DF EF =,由勾股定理可求EF 的长,即可求BC 的长,由勾股定理可求AD 的长.【详解】解:如图,连接EF ,过点A 作AG BC ⊥于点G ,AE AD ⊥,DAE DAC 290∠∠∠∴=+=,又BAC DAC 190∠∠∠=+=,12∠∠∴=,在ABD 和ACE 中 12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,ABD ∴≌()ACE SAS .BD CE ∴=,4B ∠∠=BAC 90∠=,AB AC =,∴B 345∠∠==4B 45∠∠∴==,ECF 3490∠∠∠∴=+=,222CE CF EF ∴+=,222BD FC EF ∴+=,AF 平分DAE ∠,DAF EAF ∠∠∴=,在DAF 和EAF 中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩,DAF ∴≌()EAF SAS .DF EF ∴=.222BD FC DF ∴+=.22222DF BD FC 68100∴=+=+=,∴DF 10=BC BD DF FC 610824∴=++=++=,AB AC =,AG BC ⊥, 1BG AG BC 122∴===, DG BG BD 1266∴=-=-=,∴22AD AG DG 65=+=故答案为65【点睛】考查等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.18.310,62或32【解析】【详解】∵(x-6)2=9,∴x-6=±3,解得:x 1=9,x 2=3,∵x ,y 为一个直角三角形的两边的长,y=3,∴当x=3时,x 、y 都为直角三角形的直角边,则斜边为223332+=;当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ;当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.故答案为:310,62或32.【点睛】本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.19.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.20.28+ 【分析】依次求出在Rt △OAB 中,OA 1=2;在Rt △OA 1B 1中,OA 2=2OA 1=(2)2;依此类推:在Rt △OA 5B 5中,OA 6=(2)6,由此可求出△OA 6B 6的周长. 【详解】∵等腰Rt OAB ∆的直角边OA 的长为1,∴在Rt △OA 1B 1中OA 1=2OA =2,在22Rt OA B ∆中OA 2OA 1)2, …故在Rt △OA 6B 6中OA 6=2OA 5=(2)6= OB 666A B OB 6故△OA 6B 6的周长是=8+2×(2)6=8+2×18=28+.故答案为:28+ 【点睛】 本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.三、解答题21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米【解析】试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;(2)构建直角三角形,然后根据购股定理列方程求解即可.试题解析:(1)如图,∵AB=25米,BE=7米,梯子距离地面的高度AE=22257-=24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴22CD CE -222520-,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.22.(1)AE BD =,AE BD ⊥;(2)成立,理由见解析;(3)14或2.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒,由此即可得;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒,由此即可得;(3)先利用勾股定理求出102AB =,再分①点,,A E D 在直线上,且点E 位于中间,②点,,A E D 在直线上,且点D 位于中间两种情况,结合(1)(2)的结论,利用勾股定理求解即可得.【详解】(1)AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥;(2)成立,理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE △和BCD 中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥;(3)设AD x =,10,90AC BC ACB ==∠=︒,2102AB AC ∴==,由题意,分以下两种情况:①如图3-1,点,,A E D 在直线上,且点E 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==-=-,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x +-=,解得14x =或2x =-(不符题意,舍去),即14AD =,②如图3-2,点,,A E D 在直线上,且点D 位于中间,同理可证:AE BD =,AE BD ⊥,12DE =,12BD AE AD DE x ∴==+=+,在Rt ABD △中,222AD BD AB +=,即222(12)(102)x x ++=,解得2x =或14x =-(不符题意,舍去),即2AD =,综上,AD 的长为14或2.【点睛】本题考查了三角形全等的判定与性质、勾股定理等知识点,较难的是题(3),正确分两种情况讨论,并画出图形是解题关键.23.(1)见解析;(2)见解析;(3)363【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =23,∴AC =()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC 为等边三角形,过D 作DG ⊥AC 于G ,则∠ADG =160302⨯︒=︒, ∴122AG AD ==, 22224223DG AD AG =-=-= ∴S △ADC =1423432⨯⨯=S △ABC =12AB×BC =3, ∴S 四边形ABCD =S △ADC +S △ABC =3②当CD =CB =BD =3∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是3或3【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.24.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH2EF,CH=2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=20°,∴∠ABE=∠AED=20°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(2)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣2α,∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH2EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH2CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH2AF,∵在Rt △AEF 中,AE 2=AF 2+EF 2,AF )2+EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.25.(1)90°;(2)证明见解析;(3)变化,24l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵AE AP ==90EAP ∠=︒,∴2PE ==,∴2222BE +=,解得:BE =作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 45322HB BE =︒==, ∴点B 到直线AE 的距离为6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =,∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯⨯+⨯⨯ 13=+,故②正确;③在Rt AHB 中,由①知:62EH HB ==, ∴62AH AE EH =+=+, 22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称, ∴523AB BC ==+, ∴225231043AC BC ==+=+,∴ min PC AC AP =-,10432=+-,故④错误;⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)①详见解析;(2)222222CD n n =+-(1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90°∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+-又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+= ∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DF CD CF CD =+=又DF=BF-BD=AD-BD ∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)2,232)证明见解析(3221(423221【分析】(1)根据含有30°角的直角三角形的性质可得BC=2,再由勾股定理即可求出AC 的长; (2)由ED 为AB 垂直平分线可得DB=DA ,在Rt △BDE 中,由勾股定理可得BD=4,可得BD=2BE ,故∠BDE 为60°,即可证明ABD ∆是等边三角形;(3)由(1)(2)可知,=23AC AD=4,进而可求得CD 的长,再由等积法可得BCD ACD ACBD S S S =+四边形,代入求解即可;(4)分点P 在线段AC 上和AC 的延长线上两种情况,过点E 作AC 的垂线交AC 于点Q ,构造Rt △PQE ,再根据勾股定理即可求解.【详解】(1)∵Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =, ∴122BC AB ==,∴22=23AC AB BC =-; (2)∵ED 为AB 垂直平分线,∴ADB=DA ,在Rt △BDE 中, ∵122BE AE AB ===,23DE =, ∴22=4BD BE DE =+,∴BD=2BE ,∴∠BDE 为60°,∴ABD ∆为等边三角形;(3))由(1)(2)可知,=23AC ,AD=4,∴22=27CD AC AD =+,∵BCD ACD ACBD S SS =+四边形, ∴111()222BC AD AC AC AD BF CD +⨯=⨯+⨯, ∴2217BF =; (4)分点P 在线段AC 上和AC 的延长线上两种情况,如图,过点E 作AC 的垂线交AC 于点Q ,∵AE=2,∠BAC=30°,∴EQ=1,∵=23AC ,∴=3CQ QA =,①若点P 在线段AC 上,则23=333PQ CQ CP =-=,。

【三套打包】成都树德中学(外国语校区)人教版初中数学八年级下册第十七章勾股定理单元试卷含答案

【三套打包】成都树德中学(外国语校区)人教版初中数学八年级下册第十七章勾股定理单元试卷含答案

人教版八年级下册数学单元培优卷第十七章勾股定理(含答案)一.选择题1.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.2.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.3.下列各组数中是勾股数的是()A.4,5,6B.0.3,0.4,0.5C.1,2,3D.5,12,134.已知△ABC的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c.①c2﹣a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2,c=.上述四个条件中,能判定△ABC为直角三角形的有()A.1个B.2个C.3个D.4个5.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A.14B.4C.14或4D.以上都不对6.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.107.三角形的三边a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=5:4:3B.a2=b2=c2C.a2=(b+c)(b﹣c)D.a:b:c=13:5:128.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯长度至少应是()A.13m B.17m C.18m D.25m9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,已知一条到达底部的直吸管在罐内部分的长度为a,若直吸管在罐外部分还剩余3,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤b≤13B.12≤b≤15C.13≤b≤16D.15≤b≤16 10.如图为某楼梯,已知楼梯的长为5米,高3米,现计划在楼梯表面铺地毯,则地毯的长度至少需要()A.8.5米B.8米C.7.5米D.7米二.填空题11.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.12.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=,b=,c=.13.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=度.14.已知三角形三边长分别是6,8,10,则此三角形的面积为.15.如图,已知一根长8m的竹竿在离地3m处断裂,竹竿顶部抵着地面,此时,顶部距底部有m.三.解答题16.如图,在4×4正方形网格中,每个小正方形的边长都为1.(1)求△ABC的周长;(2)求证:∠ABC=90°.17.图中的小正方形边长为1,△ABC的三个顶点都在小正方形的顶点上,求(1)△ABC的面积;(2)边AC的长.18.方格纸中小正方形的顶点叫格点.点A和点B是格点,位置如图.(1)在图1中确定格点C使△ABC为直角三角形,画出一个这样的△ABC;(2)在图2中确定格点D使△ABD为等腰三角形,画出一个这样的△ABD;(3)在图2中满足题(2)条件的格点D有个.19.在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.参考答案一.选择题1.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.2.解:设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x=,∴BC=DE=a﹣=,∴BD2=BC2+CD2=()2+()2=,∴BD=,故选:C.3.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.4.解.①∵c2﹣a2=b2;∴c2+b2=a2;故能判定△ABC为直角三角形;②∠A=∠B=∠C;∵∠A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;③∵c=a=b;∴a2+b2=2a2=c2,故能判定△ABC为直角三角形;④∵a=2,b=2,c=,∴a2+b2=12≠c2,故不能判定△ABC为直角三角形;故选:C.5.解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2﹣AD2=132﹣122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得CD2=AC2﹣AD2=152﹣122=81,则CD=9,故BC的长为DC﹣BD=9﹣5=4.故选:C.6.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,解得a=,b=,则ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.7.解:A、∵32+42=25=52,∴此三角形是直角三角形,故本选项正确;B、∵a2=b2=c2,∴不符合勾股定理的逆定理,故本选项错误;C、∵a2=(b+c)(b﹣c),∴a2=b2﹣c2,即a2+c2﹣=b2,∴此三角形是直角三角形,故本选项正确;D、∵52+122=132,∴此三角形是直角三角形,故本选项正确.故选:B.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.9.解:如图,连接BO,AO,当吸管底部在O点时吸管在罐内部分a最短,此时a就是圆柱形的高,即a=12;当吸管底部在A点时吸管在罐内部分a最长,即线段AB的长,在Rt△ABO中,AB===13,故此时a=13,所以12≤a≤13,则吸管的总长度b(罐壁的厚度和小圆孔的大小忽略不计)范围是:15≤b≤16.故选:D.10.解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故选:D.二.填空题(共5小题)11.解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).12.解:∵当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…∴勾股数a=2n,b=n2﹣1,c=n2+1.故答案为:2n,n2﹣1,n2+1.13.解:∵∠A=90°,AC=AB=4,∴∠ACB=∠ABC=45°,在Rt△ABC中,BC==4,CD2+BC2=22+(4)2=36,BD2=62=36,∴CD2+BC2=BD2,∴∠BCD=90°,∴∠ACD=45°,故答案为:45.14.解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.15.解:由图形及题意可知,AB2+BC2=AC2设旗杆顶部距离底部有x米,有32+x2=52,得x=4,故答案为4.三.解答题(共4小题)16.解:(1)AB==2,BC==,AC==5,△ABC的周长=2++5=3+5,(2)∵AC2=25,AB2=20,BC2=5,∴AC2=AB2+BC2,∴∠ABC=90°.17.解:(1)△ABC的面积=3×3﹣×1×2﹣×1×3﹣×3×2=;(2)AC==.18.解:(1)(2)如图所示:(3)在图2中满足题(2)条件的格点D有4个.故答案是:4.19.解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.=AB•CD=BC•AC因为S△ABC所以CD===240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.人教版八年级下册数学第十七章勾股定理强化训练(附解析)一.选择题1.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.642.直角三角形的两边分别为1和2,则另一边长为()A.B.C.或D.不确定3.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1 B.C.2 D.4.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169 B.119 C.13 D.1445.如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5 B.4 C.3 D.26.如图,OA=,以OA为直角边作Rt△OAA 1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A.B.C.D.7.在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F.若AD=AB=,则AF2=()A.8﹣4B.10﹣4C.8+4D.10+48.勾股定理在平面几何中有着不可替代的重要地位,在我国古算书《周牌算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理.将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()A.120 B.110 C.100 D.909.如图,在△ABC中,∠B=∠C,AD平分∠BAC,AB=10,BC=12,则AD等于()A.6 B.7 C.8 D.910.能作为直角三角形的三边长的数据是()A.3,4,6 B.5,12,14 C.1,,2 D.,,2 11.满足下列条件的△ABC,不是直角三角形的是()A.∠C=∠A+∠B B.∠C=∠A﹣∠BC.a:b:c=3:4:5 D.∠A:∠B:∠C=3:4:512.下列各组数据中,不是勾股数的是()A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,9 13.已知△ABC的三个角是∠A,∠B,∠C,它们所对的边分别是a,b,c.①c2﹣a2=b2;②∠A=∠B=∠C;③c=a=b;④a=2,b=2,c=.上述四个条件中,能判定△ABC为直角三角形的有()A.1个B.2个C.3个D.4个14.在三角形ABC中,若AB=3cm,AC=4cm,BC=5cm,则这个三角形是()A.等腰三角形B.等腰直角三角形C.直角三角形D.钝角三角形15.下列以a,b,c为边的三角形,不是直角三角形的是()A.a=1,b=1,B.a=1,,c=2C.a=3,b=4,c=5 D.a=2,b=2,c=316.以下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.3,5,7 B.5,7,9 C.3,2,D.2,2,2 17.下列各组数中是勾股数的是()A.4,5,6 B.0.3,0.4,0.5C.1,2,3 D.5,12,1318.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要()A.4米B.5米C.6米D.7米二.解答题19.如图,每个小正方形的边长为1.(1)求四边形ABCD的面积和周长;(2)∠BCD是直角吗?说明理由.20.如图,四边形ABCD中,∠ADC=90°,AD=4cm,CD=3cm,AB=13cm,BC =12cm,求这个四边形的面积?21.已知:如图,在△ABC中,AB=AC,点D、E分别是BC、AC上的点,且DE=3,AD=4,AE=5.若∠BAD=73°,∠C=35°,求∠AED的度数.参考答案一.选择题1.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.2.解:①长为1的边是直角边,长为2的边是斜边时:第三边的长为:=;②长为1、2的边都是直角边时:第三边的长为:=;综上,第三边的长为:或.故选:C.3.解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.4.解:第三边长的平方是52+122=169.故选:A.5.解:∵AB=AC,AD是∠BAC的平分线,∴BD=BC=4,AD⊥BC,由勾股定理得,AD==3,故选:C.6.解:∵∠OAA 1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA 1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长=,故选:B.7.解:∵AD=AB=,∴AB=1,AD=,∵四边形ABCD是矩形,∴BC=AD=,CD=AB=1,∵在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F,∴BE=AB=1,∴CF=CE=BC﹣BE=﹣1,∴DF=CD﹣CF=2﹣,∴AF2=AD2+DF2=()2+(2﹣)2=10﹣4.故选:B.8.解:延长AB交KF于点O,延长AC交GM于点P,如图所示:则四边形OALP是矩形.∵∠CBF=90°,∴∠ABC+∠OBF=90°,又∵Rt△ABC中,∠ABC+∠ACB=90°,∴∠OBF=∠ACB,在△OBF和△ACB中,,∴△OBF≌△ACB(AAS),∴AC=OB,同理:△ACB≌△PGC,∴PC=AB,∴OA=AP,∴矩形AOLP是正方形,边长AO=AB+AC=3+4=7,∴KL=3+7=10,LM=4+7=11,∴长方形KLMJ的面积为10×11=110.故选:B.9.解:∵∠B=∠C,∴AB=AC,∵AD平分∠BAC,∴BD=DC=AB=5,AD⊥BC,∴AD==8,故选:C.10.解:A、∵32+42≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵52+122=169≠142,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.D、∵()2+()2=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;故选:C.11.解:A、∵∠C=∠A+∠B==90°,是直角三角形,故此选项不合题意;B、∵∠C=∠A﹣∠B,∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;C、∵32+42=52,∴是直角三角形,故此选项不合题意;D、∠A:∠B:∠C=3:4:5,则∠C=180°×=75°,不是直角三角形,故此选项符合题意,故选:D.12.解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.13.解.①∵c2﹣a2=b2;∴c2+b2=a2;故能判定△ABC为直角三角形;②∠A=∠B=∠C;∵∠A+∠B+∠C=180°,∴∠C=90°,故能判定△ABC为直角三角形;③∵c=a=b;∴a2+b2=2a2=c2,故能判定△ABC为直角三角形;④∵a=2,b=2,c=,∴a2+b2=12≠c2,故不能判定△ABC为直角三角形;故选:C.14.解:∵AB=3cm,AC=4cm,BC=5cm,32+42=52,∴这个三角形是直角三角形.故选:C.15.解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.16.解:A、32+52≠72,不能构成直角三角形,故错误;B、52+72≠92,不能构成直角三角形,故错误;C、22+32=()2,能构成直角三角形,故正确;D、22+22≠(2)2,不能构成直角三角形,故错误.故选:C.17.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.18.解:在Rt△ABC中,AC==4米,故可得地毯长度=AC+BC=7米,故选:D.二.解答题(共3小题)19.解:(1)由勾股定理可得:AB2=32+32=18,则AB==5,∵BC2=42+22=20,∴BC=2,∵CD2=22+12=5,∴CD=,∵AD2=32+42=25,∴AD=5,故四边形ABCD的周长为:5+2+5+=5+3+5,四边形ABCD的面积为:7×5﹣(1×7+4×2+2×1+4×3)﹣3=35﹣17.5=17.5;(2)由(1)得:BC2=20,CD2=5,而BD2=32+42=25,故DC2+BC2=BD2,则∠BCD=90°.20.解:连接AC,∵AD=4cm,CD=3cm,∠ADC=90°,∴AC===5(cm)∴S△ACD=CD•AD=6(cm2).在△ABC中,∵52+122=132即AC2+BC2=AB2,∴△ABC为直角三角形,即∠ACB=90°,∴S△ABC=AC•BC=30(cm2).∴S四边形ABCD=S△ABC﹣S△ACD=30﹣6=24(cm2).答:四边形ABCD的面积为24cm2.21.解:∵AB=AC,∠C=35°,∴∠B=∠C=35°,∵DE=3,AD=4,AE=5,∴DE2+AD2=3+4=25,AE2=5=25,∴DE2+AD2=AE2,∴△ADE是直角三角形,∠ADE=90°;又∵∠BAD+∠B+∠ADB=180°,∠BAD=73°,∴∠ADB=180°﹣73°﹣35°=72°;又∵∠ADB+∠ADE+∠EDC=180°,∴∠EDC=180°﹣72°﹣90°=18°;∴∠AED=∠EDC+∠C=18°+35°=53°.人教版八年级数学下册第十七章勾股定理单元检测一、选择题(共2小题;共10分)1. 等腰三角形的底边长为,底边上的中线长为,它的腰长为A. B. C. D.2. 如图,个边长为的小正方形及其部分对角线所构成的图形中,如果从点到点只能沿图中的线段走,那么从点到点的最短距离的走法共有A. 种B. 种C. 种D. 种二、填空题(共1小题;共5分)3. 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为‘‘赵爽弦图”.如图由弦图变化得到,它由八个全等的直角三角形拼接而成.记图中正方形、正方形、正方形的面积分别为,,.若正方形的边长为,则.三、解答题(共3小题;共39分)4. 如图,在中,,,.求边上的高.5. 如图是用硬纸板做成的四个全等的直角三角形和一个边长为的正方形,直角三角形的两直角边长分别是,,斜边长为,请你将它们拼成一个能证明勾股定理的图形.Ⅰ画出拼成的这个图形的示意图;Ⅱ证明勾股定理.6. 一个直立的火柴盒在桌面上倒下,启迪人们发现了一种新的验证勾股定理的方法.如图火柴盒的一个侧面倒下到的位置,连接,设,,.请利用四边形的面积证明勾股定理:.四、选择题(共1小题;共5分)7. 已知三组数据:① ,,;② ,,;③ ,,.分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的有A. ②B. ①②C. ①③D. ②③五、填空题(共1小题;共5分)8. 若的三边长,,满足关系是,则是三角形.六、解答题(共3小题;共39分)9. 在中,,,,设为最长边.当时,是直角三角形;当时,利用代数式和的大小关系,探究的形状(按角分类).Ⅰ当的三边长分别为,,时,为三角形;当的三边长分别为,,,为三角形.Ⅱ小明同学根据上述探究,有下面的猜想:‘‘当时,为锐角三角形;当时,为钝角三角形.’’请你根据小明的猜想完成下面的问题:当,时,最长边在什么范围内取值时,分别是直角三角形、锐角三角形、钝角三角形?10. 如图,已知于点,且,,,.Ⅰ求:四边形的面积;Ⅱ若。

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)

(必考题)初中数学八年级数学上册第一单元《勾股定理》测试题(含答案解析)

一、选择题1.一根竹竿插到水池中离岸边1.5m 远的水底,竹竿高出水面0.5m ,若把竹竿的顶端拉向岸边,则竿顶刚好接触到岸边,并且和水面一样高,问水池的深度为( ) A .2m B .2.5cm C .2.25m D .3m2.学习勾股定理后,老师布置的课后作业为“利用绳子(绳子足够长)和卷尺,测量学校教学楼的高度”,某数学兴趣小组的做法如下:①将绳子上端固定在教学楼顶部,绳子自由下垂,再垂直向外拉到离教学楼底部3m 远处,在绳子与地面的交点处将绳子打结;②将绳子继续往外拉,使打结处离教学楼的距离为6m ,此时测得绳结离地面的高度为 1m ,则学校教学楼的高度为( )A .11 mB .13 mC .14 mD .15 m3.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点A ,B ,C 均在网格的格点上,则△ABC 的三条边中边长是无理数的有( )A .0条B .1条C .2条D .3条 4.在周长为24的直角三角形中,斜边长为11,则该三角形的面积为( ) A .6B .12C .24D .48 5.下列各组数中,不能作为直角三角形的三边长的是( ) A .1,2,3 B .3,4,5 C .5,12,13 D .5,7,32 6.如图,用64个边长为1cm 的小正方形拼成的网格中,点A ,B ,C ,D ,E ,都在格点(小正方形顶点)上,对于线段AB ,AC ,AD ,AE ,长度为无理数的有( ).A .4条B .3条C .2条D .1条 7.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 8.下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 9.一个长方体盒子长24cm ,宽10cm ,在这个盒子中水平放置一根木棒,那么这根木棒最长(不计木棒粗细)可以是( )A .10cmB .24cmC .26cmD .28cm 10.如图①,直角三角形纸片的两直角边长分别为6、8,按如图②方式折叠,使点A 与点CB 重合,折痕为DE ,则BCE 与ADE 的面积之比为( )A .2:3B .4:9C .9:25D .14:25 11.如图是由四个全等的直角三角形与一个小正方形拼成的大正方形.若小正方形边长为3,大正方形边长为15,则一个直角三角形的面积等于( )A .36B .48C .54D .108 12.一根旗杆在离地面3米处断裂,旗杆顶部落在离旗杆底部4米处,旗杆折断之前的高度是( )A .5米B .7米C .8米D .9米二、填空题13.将五个边长为2的正方形按如图所示放置,若A ,B ,C ,D 四点恰好在圆上,则这个圆的面积为________.(结果保留π)14.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.15.如图,在Rt ABC △中,90C ∠=︒,点D 在BC 上,且12AC DC AB ==,若2AD =,则BD =___________.16.如图,在4×4方格中,小正方形格的边长为1,则图中阴影正方形的边长是____.17.如图,在校园内有两棵树相距12米,一棵树高14米,另一棵树高9米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞______米.18.在平面直角坐标系中,若点M (2,4)与点N (x ,4)之间的距离是3,则x 的值是_____.19.已知等边三角形的边长为2,则其面积等于__________.20.有两根木棒,分别长6cm 、5cm ,要再在7cm 的木棒上取一段,用这三根木棒为边做成直角三角形,则第三根木棒要取的长度是__________.三、解答题21.如图,Rt △ABC 中,∠ACB =90°.(1)作AB 边的垂直平分线交BC 于点D (要求:用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若AB =10cm ,BC =8cm ,求BD 的长.22.如图,在平面直角坐标系中,点A (4,0),点B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 的坐标.23.中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt △ABC 中,∠ACB =90°.AC =b ,BC =a ,AB =c ,请你利用这个图形解决下列问题:(1)试说明:a 2+b 2=c 2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a +b )2的值.24.利用所学的知识计算:(1)已知a b >,且2213a b +=,6ab =,求-a b 的值;(2)已知a 、b 、c 为Rt △ABC 的三边长,若222568a b a b ++=+,求Rt △ABC 的周长.25.如图,星期天小明去钓鱼,鱼钩A 在离水面的BD 的1.3米处,在距离鱼线1.2米处D 点的水下0.8米处有一条鱼发现了鱼饵,于是以0.2米/秒的速度向鱼饵游去,那么这条鱼至少几秒后才能到达鱼饵处?26.教材呈现:下图是华师版八年级上册数学教材111页的部分内容.()1请根据教材内容,结合图①,写出完整的解题过程.()2拓展:如图②,在图①的ABC 的边AB 上取一点D ,连接CD ,将ABC 沿CD 翻折,使点B 的对称点E 落在边AC 上.①求AE 的长.②DE 的长 .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设水池的深度BC =xm ,则AB =(0.5+x )m ,根据勾股定理列出方程,进而即可求解.【详解】解:在直角△ABC 中,AC =1.5m .AB ﹣BC =0.5m .设水池的深度BC =xm ,则AB =(0.5+x )m .根据勾股定理得出:∵AC 2+BC 2=AB 2,∴1.52+x 2=(x +0.5)2,解得:x =2.故选:A .【点睛】本题主要考查勾股定理的实际应用,根据勾股定理,列出方程,是解题的关键. 2.C解析:C【分析】根据题意画出示意图,设学校教学楼的高度为x ,可得AC AD x ==,()1AB x m =-,6BC m =,利用勾股定理可求出x .【详解】解:如图,设学校教学楼的高度为x ,则AD x =,()1AB x m =-,6BC m =,左图,根据勾股定理得,绳长的平方223x =+,右图,根据勾股定理得,绳长的平方()2216x =-+,∴()2222316x x +=-+, 解得:14x =.故选:C .【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.3.C解析:C【分析】根据勾股定理求出三边的长度,再判断即可.【详解】 解:由勾股定理得:22345AC =+=,是有理数,不是无理数;222313BC =+=,是无理数;221526AB =+=,是无理数,即网格上的△ABC 三边中,边长为无理数的边数有2条,故选:C .【点睛】本题考查了无理数和勾股定理,能正确根据勾股定理求出三边的长度是解此题的关键. 4.B解析:B【分析】画出直角三角形,由11,24,c a b c =++=可得:222169,a ab b ++=再由勾股定理可得:222121,a b c +==从而求解24,ab =再利用三角形的面积公式可得答案.【详解】解:如图,由题意知:11,24,c a b c =++=13,a b ∴+=222169,a ab b ∴++=222121,a b c +==121+2169,ab ∴=248,ab =24,ab ∴=112.2S ab ∴== 故选:.B【点睛】本题考查的是勾股定理的应用,完全平方公式的应用,掌握以上知识是解题的关键. 5.D解析:D【分析】根据勾股定理的逆定理分别进行判断,即可得出结论.【详解】解:A 、∵222142+==,∴1,2能作为直角三角形的三边长.故此选项不符合题意;B 、∵22234255+==,∴3,4,5能作为直角三角形的三边长.故此选项不符合题意;C 、∵22251216913+==,∴5,12,13能作为直角三角形的三边长.故此选项不符合题意;D 、∵2212+=,218=(,1218≠, ∴故选:D .【点睛】本题考查了勾股定理的逆定理的应用,掌握勾股定理逆定理用法是解题的关键. 6.C解析:C【分析】先根据勾股定理求出AB ,AC ,AD ,AE 这4条线段的长度,即可得出结果.【详解】根据勾股定理计算得:5=,=10=,长度为无理数的有2条,故选:C .【点睛】本题主要考查了勾股定理及无理数.勾股定理:如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.7.C解析:C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键8.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A 、222345+=,能构成直角三角形,是正整数,故是勾股数;B 、222123+≠,不能构成三角形,故不是勾股数;C 、2220981,不能构成直角三角形,故不是勾股数;D 、222569+≠,不能构成直角三角形,故不是勾股数.故选:A .【点睛】本题主要考查了勾股数的定义及勾股定理的逆定理,熟悉相关性质是解题的关键. 9.C解析:C【分析】根据题意可知木棒最长是底面长方形的对角线的长,利用勾股定理求解即可.【详解】解:长方体的底面是长方形,水平放置木棒,当木棒为该正方形的对角线时木棒最长,26=,则最长木棒长为26cm ,故选:C .【点睛】本题考查立体图形、勾股定理,由题意得出木棒最长是底面长方形的对角线的长是解答的关键.10.D解析:D【分析】由折叠可得5AD BD ==,AE BE =,根据勾股定理可得CE ,AE ,DE 的长度,即可求面积比.【详解】解:6BC =,8AC =,10AB ∴=,折叠,5AD BD ∴==,AE BE =, 22BC CE BE +=2,2236(8)CE CE ∴+=-,74CE ∴=, 725844AE ∴=-=,154DE ∴=, 11::14:2522BCE ADE S S BC CE AD DE ∆∆∴=⨯⨯⨯=, 故选:D .【点睛】本题考查了折叠问题,勾股定理,关键是熟练运用勾股定理求线段的长度.11.C解析:C【分析】根据图形的特征先算出4个三角形的面积之和,再除以4,即可求解.【详解】由题意得:15×15-3×3=216,216÷4=54,故选C .【点睛】本题主要考查“赵爽弦图”的相关计算,理清图形中的面积关系,是解题的关键. 12.C解析:C【分析】如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB ,求出AB 即可解决问题.【详解】解:如图,由题意,AC ⊥BC ,AC=3米,BC=4米,旗杆折断之前的高度高度就是AC+AB .在Rt △ACB 中,∠C=90°,AC=3米,BC=4米, ∴2222AB AC BC 345=++=(米),∴旗杆折断之前的高度高度=AC+AB=3+5=8(米),故选:C .【点睛】本题考查勾股定理的应用,解题的关键是理解题意,正确画出图形,运用勾股定理解决问题.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据题意得到圆心O 的位置设MO=x 根据AO2=DO2得到方程求出x 得到圆O 的半径从而求出面积【详解】解:由题意可得:多个小正方形排成轴对称图形∴圆心O 落在对称轴MN 上设MO=x ∵AO=DO ∴ 解析:1309π 【分析】根据题意得到圆心O 的位置,设MO=x ,根据AO 2=DO 2,得到方程,求出x ,得到圆O 的半径,从而求出面积.【详解】解:由题意可得:多个小正方形排成轴对称图形,∴圆心O 落在对称轴MN 上,设MO=x ,∵AO=DO ,∴AO 2=DO 2,即()2222163x x +=-+,解得:x=113, ∴圆O 的半径为21x +=130, ∴圆O 的面积为21303π⎛⎫ ⎪ ⎪⎝⎭=1309π, 故答案为:1309π.【点睛】本题考查了勾股定理,轴对称的性质,圆的性质,解题的关键是根据半径相等得到方程. 14.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD =,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.15.【分析】设在中利用勾股定理求出x 值即可得到AC 和CD 的长再求出AB 的长再用勾股定理求出BC 的长即可得到结果【详解】解:设∵∴即解得或(舍去)∴∵∴∴∴故答案是:【点睛】本题考查勾股定理解题的关键是掌1【分析】设AC DC x ==,在Rt ACD △中,利用勾股定理求出x 值,即可得到AC 和CD 的长,再求出AB 的长,再用勾股定理求出BC 的长,即可得到结果.【详解】解:设AC DC x ==,∵90C ∠=︒,∴222AC CD AD +=,即222x x +=,解得1x =或1-(舍去), ∴1AC DC ==, ∵12AC AB =, ∴2AB =,∴BC ===, ∴1BD BC CD =-=.1.【点睛】本题考查勾股定理,解题的关键是掌握利用勾股定理解直角三角形的方法.16.【分析】根据勾股定理即可得出结果【详解】解:正方形的边长=故答案为:【点睛】本题主要考查的是勾股定理掌握勾股定理的计算方法是解题的关键【分析】根据勾股定理即可得出结果.【详解】解:正方形的边长.【点睛】本题主要考查的是勾股定理,掌握勾股定理的计算方法是解题的关键.17.13【分析】根据两点之间线段最短可知:小鸟沿着两棵树的顶端进行直线飞行所行的路程最短运用勾股定理可将两点之间的距离求出【详解】如图所示ABCD为树且AB=14米CD=9米BD为两树距离12米过C作C解析:13【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的顶端进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图所示,AB,CD为树,且AB=14米,CD=9米,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=12,AE=AB−CD=5,在直角三角形AEC中,AC22+=13.512+=22AE CE答:小鸟至少要飞13米.故答案为:13.【点睛】本题考查了勾股定理的应用,关键是从实际问题中构建出数学模型,转化为数学知识,然后利用直角三角形的性质解题.18.﹣1或5【分析】根据点M(24)与点N(x4)之间的距离是3可以得到|2-x|=3从而可以求得x的值【详解】解:∵点M(24)与点N(x4)之间的距离是3∴|2﹣x|=3解得x=﹣1或x=5故答案为解析:﹣1或5【分析】根据点M(2,4)与点N(x,4)之间的距离是3,可以得到|2-x|=3,从而可以求得x的值.【详解】解:∵点M(2,4)与点N(x,4)之间的距离是3,∴|2﹣x|=3,解得,x=﹣1或x=5,故答案为﹣1或5.【点睛】本题考查两点间的距离,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】根据等边三角形三线合一的性质可得D为BC的中点即BD=CD在直角三角形ABD中已知ABBD根据勾股定理即可求得AD的长即可求三角形ABC的面积即可解题【详解】等边三角形三线合一即D为BC的中解析:3【分析】根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.【详解】等边三角形三线合一,即D为BC的中点,∴BD=DC=1,在Rt△ABD中,AB=2,BD=1,∴AD==3,∴△ABC的面积为BC•AD=333.20.【分析】分2种情况:①是直角边;②是斜边;根据勾股定理求出第三根木棒的长即可求解【详解】解:①是直角边第三根木棒要取的长度是(舍去);②是斜边第三根木棒要取的长度是故答案为:【点睛】考查了勾股定理的11【分析】分2种情况:①6cm是直角边;②6cm是斜边;根据勾股定理求出第三根木棒的长即可求解.【详解】解:①6cm是直角边,22+>(舍去);6561cm7cm②6cm是斜边,22-.6511cm11cm.【点睛】考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.三、解答题21.(1)见解析;(2)254. 【分析】(1)利用基本作图,作AB 的垂直平分线得到D 点;(2)先利用勾股定理计算出AC =6,再根据线段的垂直平分线的性质得到DA =DB ,设BD=x ,则AD =x ,CD =8﹣x ,利用勾股定理得到2(8)x -+26=2x ,然后解方程即可. 【详解】解:(1)如图,点D 为所作;(2)在Rt △ABC 中,∵∠ACB =90°,AB =10,BC =8,∴AC 22108-6,∵点D 在AB 的垂直平分线上,∴DA =DB ,设BD =x ,则AD =x ,CD =8﹣x ,在Rt △ACD 中,2(8)x -+26=2x ,解得x =254, 即BD 的长为254. 【点睛】本题考查了线段垂直平分线的作法,线段垂直平分线的性质,勾股定理,熟练掌握基本作图,灵活运用性质,是解题的关键.22.点C 的坐标为(-1,0).【分析】根据勾股定理可求出AB 的长,由AB=AC ,根据线段的和差关系可求出OC 的长,进而可求出C 点坐标.【详解】∵点A ,B 的坐标分别为(4,0),(0,3),∴OA=4,OB=3,∴225AB AO BO =+=.∵以点A 为圆心,AB 长为半径画弧,∴5AB AC ==,∴1OC AC AO =-=.∵交x 轴的负半轴于点C ,∴点C 的坐标为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,根据勾股定理求出OC 的长是解题关键. 23.(1)证明见解析;(2)23【分析】(1)根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式.(2)根据完全平方公式的变形解答即可.【详解】解:(1)∵大正方形面积为c 2,直角三角形面积为12ab ,小正方形面积为(b ﹣a )2, ∴c 2=4×12ab +(a ﹣b )2=2ab +a 2﹣2ab +b 2即c 2=a 2+b 2; (2)由图可知:(b ﹣a )2=3,4×12ab =13﹣3=10, ∴2ab =10,∴(a +b )2=(b ﹣a )2+4ab =3+2×10=23.【点睛】本题考查了对勾股定理的证明和以及非负数的性质,掌握三角形和正方形面积计算公式是解决问题的关键.24.(1)1;(2)12或7+【分析】(1)根据完全平方公式变形解答;(2)先移项,将25变形为9+16,利用完全平方公式变形为22(3)(4)0a b -+-=,求得a=3,b=4,分情况,利用勾股定理求出c ,即可得到周长.【详解】(1)∵2213a b +=,6ab =,∴222()213261a b a b ab =+-=-⨯=-,∴a-b=1或a-b=-1(舍去);(2)222568a b a b ++=+ 2225680a b a b ++--=22698160a a b b -++-+=22(3)(4)0a b -+-=∴a-3=0,b-4=0,∴a=3,b=4,当a 与b 都是直角边时,c=2222435b a +=+=,∴Rt △ABC 的周长=3+4+5=12; 当a 为直角边,b 为斜边时,c=2222437b a -=-=,∴Rt △ABC 的周长=77+.【点睛】此题考查完全平方公式的变形计算,勾股定理,正确掌握并熟练应用完全平方公式是解题的关键.25.5【分析】过点C 作CE ⊥AB 于点E ,连接AC ,根据题意直接得出AE ,EC 的长,再利用勾股定理得出AC 的长,进而求出答案.【详解】如图所示:过点C 作CE ⊥AB 于点E ,连接AC ,由题意可得:EC =BD =1.2m ,AE =AB−BE =AB−DC =1.3−0.8=0.5m ,∴AC=22221.20.5 1.3CE AE +=+=m ,∴1.3÷0.2=6.5s ,答:这条鱼至少6.5秒后才能到这鱼饵处.【点睛】本题主要考查勾股定理,添加合适的辅助线,构造直角三角形,是解题的关键. 26.(1)10cm ;(2)①4cm ;②3cm【分析】(1)设AB=xcm ,AC=(x+2)cm ,运用勾股定理可列出方程,求出方程的解可得AB 的值,从而可得结论;(2)①由折叠的性质可得EC=BC=6cm ,根据AE=AC-EC 可得结论;②设DE=xcm ,在Rt △ADE 中运用勾股定理列方程求解即可.【详解】解:(1)设AB=xcm ,则AC=(x+2)cm ,根据勾股定理得,222AC AB BC =+∴222(+2)6x x =+解得,x=8∴AB=8cm,∴AC=8+2=10cm;(2)①由翻折的性质得:EC=BC=6cm∴AE=AC-EC=10-6=4cm②由翻折的性质得:∠DEC=∠DBC=90°,DE=DB,∴∠AED=90°设DE=DB=x,则AD=AB-BD=8-x在Rt△ADE中,222=+AD AE DE∴222-=+(8)4x x解得,x=3∴DE=3cm.故答案为:3cm.【点睛】此题主要考查了勾股定理与折叠问题,运用勾股定理解直角三角形,熟练掌握运用勾股定理是解答此题的关键.。

【三套打包】濮阳市第一高级中学人教版初中数学八年级下册第十七章勾股定理单元试卷

【三套打包】濮阳市第一高级中学人教版初中数学八年级下册第十七章勾股定理单元试卷

人教版八年级下册《第十七章 勾股定理》单元测试题 一.选择题(共10小题,满分40分,每小题4分) 1.如果一个三角形的三边分别为1、、,则其面积为( B )

A. B. C. D. 2.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是( )

A.1 B. C.2 D.

3.下面四组数中是勾股数的有( A )

①3,4,7;②2,2,2;③12,16,20;④0.5,1.2,1.3. A.1组 B.2组 C.3组 D.4组 4.如图是一个直角三角形,它的未知边的长x等于( )

A.13 B. C.5 D.

5.如图所示,有一块地ABCD,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,

则这块地的面积为( D )

A.60米2 B.48米2 C.30米2 D.24米2 6.以下列三个数据为三角形的三边,其中能构成直角三角形的是( )

A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,7 7.下列各组数据中,不是勾股数的是( )

A.3,4,5 B.7,24,25 C.8,15,17 D.5,7,9 8 .在中,,,,则点C到AB的距离是( A )

A. B. C. D. 9.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史

上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为( ) A.4 B.4π C.8π D.8 10.如图,,且,,,则线段

AE

的长为( A ).

A. B. 2 C. 3 D. 4 二.填空题(共5小题,满分20分,每小题4分) 11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为 5 .

12.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是___12____m.

13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2= 10 , ∠ABC= 45 °.

(常考题)人教版初中数学八年级数学下册第二单元《勾股定理》检测(含答案解析)(3)

(常考题)人教版初中数学八年级数学下册第二单元《勾股定理》检测(含答案解析)(3)

一、选择题1.如图,在ABC 中,90C ∠=︒,点E 是AB 的中点,点D 是AC 边上一点,且DE AB ⊥,连接DB .若6AC =,3BC =,则CD 的长( )A .112B .32C .94D .32.以下列各组数为三边的三角形中不是直角三角形的是 ( )A .1,2,5B .3,5,4C .5,12,13D .1,3,7 3.如图,在ABC 中,AB AC =,8BC cm =,AE 平分BAC ∠,交BC 于点E ,D 为AE 上一点,且ACD CAD ∠=∠,3DE cm =,连接CD .过点作DF AB ⊥,垂足为点F .则下列结论正确的有( )①5CD cm =;②10AC cm =;③3DF cm =;④ACD △的面积为210cmA .1B .2C .3D .44.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( )A .a =7,b =25,c =24B .a =11,b =41,c =40C .a =12,b =13,c =5D .a =8,b =17,c =155.如图,在Rt △ABC 中,∠C =90°,AC =2,BC =1,在BA 上截取BD =BC ,再在AC 上截取AE =AD ,则AE AC的值为( )A .352B .512-C .5﹣1D .512+ 6.如图,在长方形ACD 中,3AB cm =,9AD cm =,将此长方形折叠,便点D 与点B 重合,折痕为EF ,则ABE △的面积为( )2cm .A .12B .10C .6D .157.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( ) A .3:1:2 B .2:3:7 C .2:1:5 D .无法确定 8.为准备一次大型实景演出,某旅游区划定了边长为12m 的正方形演出区域,并在该区域画出4×4的网格以便演员定位(如图所示),其中O 为中心,A ,B ,C ,D 是某节目中演员的四个定位点.为增强演出效果,总策划决定在该节目演出过程中增开人工喷泉.喷头位于演出区域东侧,且在中轴线l 上与点O 相距14m 处.该喷泉喷出的水流落地半径最大为10m ,为避免演员被喷泉淋湿,需要调整的定位点的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .310.如图,是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是12,小正方形的面积是2,直角三角形的短直角边为a ,较长的直角边为b ,那么(a+b)2的值为( )A .144B .22C .16D .1311.如图,在Rt ABC 中,90ACB ∠=︒,3AC =,4BC =,AD 平分CAB ∠交BC 于D 点,E ,F 分别是AD ,AC 上的动点,则CE EF +的最小值为( )A .152B .152C .3D .12512.1876年,美国总统伽菲尔德利用如图所示的方法验证了勾股定理,其中两个全等的直角三角形的边AE ,EB 在一条直线上,证明中用到的面积相等关系是( )A .EDA CEB S S =△△B .EDA CDE CEB ABCD S S S S ++=△△△四边形C .EDA CEB CDE S S S +=△△△D .AECD DEBC S S =四边形四边形二、填空题13.如图,已知在Rt ABC △中,90ACB ∠=,3AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则12S S +的值等于________.14.如图,数轴上点A 表示的数是__________.15.已知△ABC 中,AB=AC=5,BC=6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.16.如图,已知点A ,点B 分别为y 轴和x 轴正半轴上两点,以AB 为斜边作等腰直角三角形ABC ,点A ,点B ,点C 按顺时针方向排列,若4,AB AOB =∆的面积为3,则点C 的坐标为_________.17.如图在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,点D 是AB 的中点,过点D 作DE 垂直AB 交BC 的延长线于点E ,则CE 的长是_______.18.如图所示的正方形网格中,A,B,C,D,P是网格线交点.若∠APB=α,则∠BPC的度数为 ____(用含α的式子表示).19.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______cm.20.如图,点A是∠MON=45°内部一点,且OA=4cm,分别在边OM,ON上各取一点B,C,分别连接A,B,C三点组成三角形,则△ABC最小周长为 ________ .三、解答题21.为迎接十四运,我区强力推进“三改一通一落地”,加速城市更新步伐.绿地广场有一=,E是AC上的一点,块三角形空地将进行绿化,如图,在ABC中,AB ACBC=,12CE=,135BE=.(1)判断ABE △的形状,并说明理由.(2)求线段AB 的长.22.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC 与AE 的长度一样,滑梯的高度4,1BC m BE m ==.求滑道AC 的长度.23.如果正方形网格中的每一个小正方形边长都是1则每个小格的顶点叫做格点.(1)在图1中,以格点为顶点画一个三角形,使三角形的三边长分别为,3,5,22;(2)在图2中,线段AB 的端点在格点上,请画出以AB 为一边的三角形使这个三角形的面积为6(要求至少画出3个);(3)在图3中,MNP △的顶点M ,N 在格点上,P 在小正方形的边上,问这个三角形的面积相当于多少个小方格的面积?24.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米. (1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?25.如图,△ABC 中,AB =6cm ,AC =42cm ,BC =25cm ,点P 以1cm/s 的速度从点B 出发沿边BA→AC 运动到点C 停止,运动时间为ts ,点Q 是线段BP 的中点. (1)若CP ⊥AB 时,求t 的值;(2)若△BCQ 是直角三角形时,求t 的值;26.阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC 中,两边长分别是52a =10c =,这个三角形是否是奇异三角形?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据线段垂直平分线的性质得到AD=BD ,继而在Rt △BCD 中利用勾股定理列式进行计算即可.【详解】∵E 是AB 中点,DE AB ⊥,∴DE 是AB 的垂直平分线,∴DA DB =,则6DA DB AC CD CD ==-=-,在Rt CDB 中,∠C=90°,BC=3,∴222CD CB DB +=,即()22236CD CD +=-,∴94CD =. 故选:C .【点睛】 本题考查了勾股定理,线段垂直平分线的性质,准确识图,熟练掌握和灵活运用相关知识是解题的关键.2.D解析:D【分析】直接利用勾股定理的逆定理验证即可.【详解】A 、∵222125+==, ∴以1、2为三边的三角形是直角三角形,A 不符合题意;B 、∵22234255+==,∴以3、5、4为三边的三角形是直角三角形,B 不符合题意;C 、∵22251216913+==,∴以5、12、13为三边的三角形是直角三角形,C 不符合题意;D 、∵2221310+=≠,∴以1、3为三边的三角形不是直角三角形,D 符合题意;故选:D .【点睛】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键. 3.B解析:B【分析】根据AB AC =,AE 平分BAC ∠,得AE BC ⊥,12BE EC BC ==,从而得CD ,结合ACD CAD ∠=∠,得AD CD =,从而计算得AE ;连接BD ,通过证明BED CED △≌△,得BD CD AD ==,通过勾股定理得DF ,即可完成求解.【详解】∵AB AC =,AE 平分BAC ∠∴AE BC ⊥,142BE EC BC ===∴5CD ===∵ACD CAD ∠=∠∴5AD CD ==cm ,故①正确;∴8AE AD DE =+= ∴22224845AC EC AE =+=+=cm ,故②错误;∴45AB AC ==如图,连接BD∵90DE DE DEB DEF BE EC =⎧⎪∠=∠=⎨⎪=⎩∴BED CED △≌△∴BD CD = ∴5BD CD AD ===∵DF AB ⊥ ∴1252AF BF AB === ∴()22225255DF AD AF =-=-=cm ,故③错误; ∴11541022ACD S AD EC =⨯=⨯⨯=△cm ,故④正确; 故选:B .【点睛】本题考查了等腰三角形、勾股定理、全等三角形的知识;解题的关键是熟练掌握等腰三角形三线合一、勾股定理、全等三角形的性质,从而完成求解. 4.B解析:B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A 、72+242=52,能构成直角三角形,不符合题意;B 、112+402≠412,不能构成直角三角形,符合题意;C 、52+122=132,能构成直角三角形,不符合题意;D 、82+152=172,能构成直角三角形,不符合题意.故选:B .【点睛】本题主要考查了勾股定理的逆定理,准确分析计算是解题的关键.5.B解析:B【分析】先由勾股定理求出BD=BC=1,得1,即可得出结论.【详解】解:∵∠C=90°,AC=2,BC=1,∴==∵BD=BC=1,∴1-,∴12AE AC =, 故选B .【点睛】本题考查了黄金分割以及勾股定理,熟练掌握黄金分割和勾股定理是解题的关键. 6.C解析:C【分析】设AE=x ,由折叠BE=ED=9-x ,再在Rt △ABE 中使用勾股定理即可求出x ,进而求出△ABE 的面积.【详解】解:设AE=x ,由折叠可知:BE=ED=9-x ,在Rt △ABE 中,由勾股定理有:AB²+AE²=BE²,代入数据:3²+x²=(9-x)²,解得x=4,故AE=4,此时11=43622∆⨯=⨯⨯=ABE S AE AB , 故选:C .【点睛】本题考查了折叠问题中的勾股定理,利用折叠后对应边相等,设要求的边为x ,在一个直角三角形中,其余边用x 的代数式表示,利用勾股定理建立方程求解x . 7.B解析:B【分析】作Rt △ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则CE=a ,BE=2a ,在Rt △BCE 中∠BCE=90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出.【详解】解:如图①,作Rt △ABC 的三条中线AD 、BE 、CF ,∵∠ACB=90°, ∴12CF AB AB =≠, 又在Rt △ABC 中,AD >AC >BC ,,AD BC ∴≠ ∴满足条件的中线是BE ,它是AC 边上的中线,设AC=2a ,则,2,CE AE a BE a ===在Rt △BCE 中∠BCE=90°, ∴223,BC BE CE a =-在Rt △ABC 中,()()2222237,AB BC AC a a a =+=+=∴AC :BC :AB=237237.a a a =故选:B .【点睛】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.8.B解析:B【分析】把此题转化成一个直角坐标系的问题,然后求各点坐标,最后利用勾股定理即可判断.【详解】设喷头在点P ,则A(6,0),B (3,0);C (3,3);D (4.5;1.5);P (14,0) 则AP=14-6=8m<10m ,故A 需调整;BP=14-3=11m>10m ,故B 不需调整;()221433130-+=,不需调整; ()2214 4.5 1.592.5-+=<10m ,故D 需调整;故选:B【点睛】此题考查了勾股定理的应用,根据坐标系找到相应点的坐标,根据勾股定理计算长度是解答此题的关键.9.C解析:C【分析】根据线段垂直平分线性质得出AD=BD,再用勾股定理即可求出AC.【详解】解:∵点D是线段AB的垂直平分线与BC的交点,BD=4,∴AD=BD=4,∴2222AC AD CD;4223故选:C.【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键.10.B解析:B【分析】先求出四个直角三角形的面积,再求出直角三角形的斜边的长即可求解.【详解】解:∵大正方形的面积12,小正方形的面积是2,∴四个直角三角形的面积和是12-2=10,即4×1ab=102∴2ab=10,∵直角三角形的短直角边为a,较长的直角边为b∴a2+b2=12∴(a+b)2= a2+b2+2ab=22.故答案为B.【点睛】本题主要考查了勾股定理、三角形的面积、完全平方公式等知识点,完全平方公式和勾股定理的灵活变形是解答本题的关键.11.D解析:D【分析】利用角平分线构造全等,使两线段可以合二为一,则EC+EF的最小值即为点C到AB的垂线段长度.【详解】在AB 上取一点G ,使AG =AF∵在Rt △ABC 中,∠ACB =90°,AC =3,BC =4∴AB=5,∵∠CAD =∠BAD ,AE =AE ,∴△AEF ≌△AEG (SAS )∴FE =GE ,∴要求CE+EF 的最小值即为求CE+EG 的最小值,故当C 、E 、G 三点共线时,符合要求,此时,作CH ⊥AB 于H 点,则CH 的长即为CE+EG 的最小值,此时,AC BC AB CH =,∴CH=·AC AB BC=125, 即:CE+EF 的最小值为125,故选:D .【点睛】本题考查了角平分线构造全等以及线段和差极值问题,灵活构造辅助线是解题关键. 12.B解析:B【分析】直接根据梯形ABCD 的面积的两种算法进行解答即可.【详解】解:由图形可得:EDA CDE CEB ABCD S S S S ++=△△△四边形故答案为B .【点睛】本题主要考查了勾股定理的证明方法,将图形的面积用两种方式表示出来成为解答本题的关键.二、填空题13.【分析】根据图形得到根据勾股定理推出【详解】解:由题意得所以故答案为:【点睛】此题考查勾股定理的应用观察图形理解各部分图形的面积的关系利用勾股定理解决问题是解题的关键 解析:98π.【分析】 根据图形得到22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭,根据勾股定理推出()22121188S S AC BC π+=+=298AB ππ=. 【详解】 解:由题意,得22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, 所以()22121188S S AC BC π+=+=298AB ππ=, 故答案为:98π.【点睛】此题考查勾股定理的应用,观察图形理解各部分图形的面积的关系,利用勾股定理解决问题是解题的关键. 14.【分析】根据勾股定理得到圆弧的半径长利用数轴上两点间的距离公式即可求解【详解】解:根据题意可得:圆的半径为则点A 表示的数是故答案为:【点睛】本题考查勾股定理数轴上两点间的距离利用勾股定理求出半径长是解析:1【分析】根据勾股定理得到圆弧的半径长,利用数轴上两点间的距离公式即可求解.【详解】=则点A 表示的数是1,故答案为:1【点睛】本题考查勾股定理、数轴上两点间的距离,利用勾股定理求出半径长是解题的关键. 15.4【分析】过A 作AP ⊥BC 于P 根据勾股定理以及垂线段最短即可得到结论【详解】解:过A 作AP ⊥BC 于P ∵AB=AC=5∴BP=BC=3在Rt △ABP 中由勾股定理得AP=4∵点P 是线段BC 上一动点∴AP解析:4【分析】过A 作AP ⊥BC 于P ,根据勾股定理以及垂线段最短即可得到结论.【详解】解:过A 作AP ⊥BC 于P ,∵AB=AC=5,∴BP=12BC=3, 在Rt △ABP 中,由勾股定理得,AP=4∵点P 是线段BC 上一动点,∴AP≥4所以,AP 的最小值为4故答案为:4.【点睛】本题考查了等腰三角形的性质以及勾股定理,求出AP=4是解题的关键.16.或【分析】过点C 作交x 轴于点N 延长NC 至点M 使根据勾股定理解得ACBC 的长再证明由全等三角形对应边相等解得再根据设用加减消元法解得x 的值最终得到点C 的坐标【详解】解:过点C 作交x 轴于点N 延长NC 至点 解析:()1,1-或()1,1-【分析】过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,根据勾股定理解得AC 、BC 的长,再证明()NAC BCM AAS ≅,由全等三角形对应边相等解得NC BM =,再根据3AOB S =△,设=,NC BM x ON AN CM y ====,用加减消元法解得x 的值,最终得到点C 的坐标.【详解】解:过点C 作CN OA ⊥交x 轴于点N ,延长NC 至点M 使BM CM ⊥,Rt ABC 为等腰直角三角形,222AC BC AB ∴+=22AC BC ∴==90NAC ACN ∠+∠=︒90BCM ACN ∠+∠=︒NAC MCB ∴∠=∠()NAC MCB AAS ∴≅NC BM ∴=设=,NC BM x ON AN CM y ====AO y x ∴=-在t R CMB 中,2228x y BC +==① 3AOB S =1()()32x y y x ∴+-= 226y x -=②①-②得,21x =1x ∴=±(1,1)C ∴-或(1,1)C -故答案为:()1,1-或()1,1-.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定与性质,其中涉及勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.【分析】连接AE 设CE =x 由线段垂直平分线的性质可知AE =BE =BC +CE 在Rt △ACE 中利用勾股定理即可求出CE 的长度【详解】解:如图连接AE 设∵点D 是线段AB 的中点且∴DE 是AB 的垂直平分线∴∴ 解析:76【分析】连接AE ,设CE =x ,由线段垂直平分线的性质可知AE =BE =BC +CE ,在Rt △ACE 中,利用勾股定理即可求出CE 的长度.【详解】解:如图,连接AE ,设CE x =, ∵点D 是线段AB 的中点,且DE AB ⊥,∴DE 是AB 的垂直平分线,∴3AE BE BC CE x ==+=+,∴在Rt ACE 中,222AE AC CE =+,即()22234x x +=+, 解得76x =. 故答案为:76. 【点睛】 本题考查了线段垂直平分线的性质、勾股定理的应用,熟练掌握线段垂直平分线的性质并利用勾股定理求解线段的长度是解题的关键.18.【分析】由图可知AC 的长根据勾股定理可以求得PAPC 的长再利用勾股定理的逆定理可以判断△PAC 的形状从而可以得到∠CPA 的度数然后即可得到∠BPC=∠CPA−∠APB 的度数【详解】设网格的长度为1则解析:90-α︒ 【分析】由图可知AC 的长,根据勾股定理可以求得PA 、PC 的长,再利用勾股定理的逆定理可以判断△PAC 的形状,从而可以得到∠CPA 的度数,然后即可得到∠BPC=∠CPA−∠APB 的度数.【详解】设网格的长度为1,则223332+=223332+= ,AC=6222AP PC AC +=∴ △PAC 为等腰直角三角形∴∠CPA=90︒∴∠BPC=∠CPA−∠APB=90-α︒故答案为:90-α︒【点睛】本题考查勾股定理的逆定理、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.13【分析】如图将容器侧面展开建立A 关于的对称点根据两点之间线段最短可知的长度即为所求【详解】将圆柱沿A 所在的高剪开展平如图所示则作A 关于的对称点连接则此时线段即为蚂蚁走的最短路径过B 作于点则在中由 解析:13【分析】如图,将容器侧面展开,建立A 关于MM '的对称点A ',根据两点之间线段最短可知A B '的长度即为所求.【详解】将圆柱沿A 所在的高剪开,展平如图所示,则10cm MM NN '='=,作A 关于MM '的对称点A ',连接A B ',则此时线段A B '即为蚂蚁走的最短路径,过B 作BD A A ⊥'于点D ,则5,''123312cm BD NE cm A D MN A M BE ===+-=+-=,在Rt A BD '中, 由勾股定理得2213cm A B A D BD ''=+=,故答案为:13.【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理的应用等,正确利用侧面展开图、熟练运用相关知识是解题的关键.20.4【分析】作A 关于OM 的对称点A´A 关于ON 的对称点A´´根据垂直平分线上的点到两端点的距离相等得AB=A´BAC=A´´COA=OA´=OA´´=4再由勾股定理求得A´A´´长由三角形周长公式结合解析:42【分析】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,根据垂直平分线上的点到两端点的距离相等得AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,再由勾股定理求得A´A´´长,由三角形周长公式结合等量代换即可求得答案.【详解】作A 关于OM 的对称点A´,A 关于ON 的对称点A´´,如图,∴AB=A´B ,AC=A´´C ,OA=OA´=OA´´=4,∵∠MON=45°∴∠AOA´´=90°∴A´A´´2244+2(cm )∴△ABC 周长=AB+AC+BC=A´B+A´´C+BC=A´A´´2(cm )即△ABC 的周长最小值为2故答案为:2【点睛】本题考查了轴对称、垂直平分线、勾股定理的知识;解题的关键是熟练掌握轴对称、垂直平分线、勾股定理的性质,从而完成求解.三、解答题21.(1)ABE △是直角三角形;理由见解析;(2)线段AB 的长为16.9.【分析】(1)根据勾股定理的逆定理证明即可;(2)设AB AC x ==,则5AE x =-,由勾股定理列得222BE AE AB +=,代入数值得22212(5)x x +-=,计算即可.【详解】解:(1)ABE △是直角三角形.理由:∵22222213169,12144,525BC BE CE ======,∴222169BE CE BC +==,∴90BEC ∠=︒,∴BE AC ⊥,∴ABE △是直角三角形.(2)设AB AC x ==,则5AE x =-,由(1)可知ABE △是直角三角形,∴222BE AE AB +=,∴22212(5)x x +-=,解得16.9x =,∴线段AB 的长为16.9.【点睛】此题考查勾股定理及逆定理,熟练掌握勾股定理及逆定理的运算及应用是解题的关键. 22.5m【分析】设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,根据勾股定理得到222AB BC AC +=,即()22214x x -+=,解方程即可. 【详解】解:设AC xm =,则(),1AE AC xm AB AE BE x m ===-=-,由题意得:090ABC ∠=,在Rt ABC ∆中,222AB BC AC +=,∴()22214x x -+= 解得8.5x =,∴8.5AC m =.【点睛】此题考查勾股定理的实际应用,解一元一次方程,根据题意建立直角三角形,从而利用勾股定理解决实际问题是解题的关键.23.(1)见解析;(2)见解析;(3)10【分析】(1)可先画长度为32,宽为1的矩形的对角线,是边长为2的正方形的对角线,画图即可;(2)画高为3的三角形即可;(3)首先求出△MNP 的面积,进而得出答案.【详解】解:(1)如图所示,(2)如图所示:(3)△MNP 的面积为:1542⨯⨯=10,故这个小三角形的面积相当于10个小正方形的面积.【点睛】本题考查无理数概念、勾股定理的应用、三角形的面积,正确掌握三角形面积求法是解题关键.24.(1)7米;(2)不是【分析】(1)利用勾股定理直接求出边长即可;(2)梯子的顶端下滑了4米,则20a =米,利用勾股定理求出b 的值,判断是否梯子的底部在水平方向也滑动了4米.【详解】(1)如图,由题意得此时a =24米,c =25米,由勾股定理得222+=a b c ,∴2225247b =-=(米);(2)不是,如果梯子的顶端下滑了4米,此时20a =米,25c =米, 由勾股定理,22252015b =-=(米),1578-=(米),即梯子的底部在水平方向滑动了8米.【点睛】本题考查勾股定理的应用,解题的关键是掌握用勾股定理解直角三角形的方法. 25.(1)2;(2)4或6+42﹣25【分析】(1)如图1中,作CH ⊥AB 于H .设BH =x ,利用勾股定理构建方程求出x ,当点P 与H 重合时,CP ⊥AB ,此时t =2;(2)由题意易知分两种情形①如图2中,当点Q 与H 重合时,BP =2BQ =4,②如图3中,当CP =CB =25时,CQ ⊥PB ,然后根据题意求解即可解决问题.【详解】解:(1)如图1中,作CH ⊥AB 于H .设BH =x ,∵CH ⊥AB ,∴∠CHB =∠CHA =90°,∴AC 2﹣AH 2=BC 2﹣BH 2,∴(42)2﹣(6﹣x )2=(25)2﹣x 2,解得x =2,∴当点P 与H 重合时,CP ⊥AB ,此时t =2.(2)由(1)可得:BH=2,CH=4,∴点P 的运动路程为1×t=t ,∴如图2中,当点Q 与H 重合时,则有BP =2BQ =4,此时t =4;如图3中,当CP =CB =5CQ ⊥PB ,此时t =6+(2﹣56+2﹣5+,△BCQ是直角三角形.综上所述:当t=4或64225【点睛】本题主要考查等腰三角形的性质及勾股定理,熟练掌握等腰三角形的性质及勾股定理是解题的关键.26.(1)是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形.【分析】(1)根据题中所给的奇异三角形的定义直接进行判断即可;(2)分c是斜边和b是斜边两种情况,再根据勾股定理判断出所给的三角形是否符合奇异三角形的定义.【详解】解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形;理由如下,分两种情况:①当c为斜边时,2252c a-=∴a=b,∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形;②当b为斜边时,22c a=,+56∵a2+b2=200,∴2c2=200,∴a2+b2=2c2,∴Rt△ABC是奇异三角形.【点睛】本题考查的是勾股定理的应用,需要熟练掌握勾股定理的公式,运用分类讨论的思想是解决第(2)问的关键.。

【三套打包】滨州市人教版初中数学八年级下册第十七章勾股定理单元试题含答案(1)

【三套打包】滨州市人教版初中数学八年级下册第十七章勾股定理单元试题含答案(1)

人教版数学科八年级下册第十七章勾股定理(含答案)一、选择题1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A.86B.64C.54D.482.如图,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则△ACD的周长为()A.13B.17C.18D.253.两只小鼹鼠在地下从同一处开始打洞,一只朝北面挖,每分钟挖8 cm,另一只朝东面挖,每分钟挖6 cm,10分钟之后两只小鼹鼠相距()A.100 cmB.50 cmC.140 cmD.80 cm4.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=60 m,AC=20 m,则A,B两点间的距离是()A.200 mB.20mC.40mD.50 m5.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D共有()A.5个B.4个C.3个D.2个6.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数为()(1)(2)(3)(4)B.2C.3D.47.如图,一棵大树在一次强台风中距地面5 m处折断,倒下后树顶端着地点A距树底端B的距离为12 m,这棵大树在折断前的高度为()A.10 mB.15 mC.18 mD.20 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是()A.5 mB.12 mC.13 mD.18 m9.张大爷离家出门散步,他先向正东走了30 m,接着又向正南走了40 m,此时他离家的距离为()A.30 mB.40 mC.50 mD.70 m10.已知在Rt△ABC中,∠C=90°,AC=2,BC=3,则AB的长为()A.4B.C.11.如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,AD⊥BC,那么AD的长为()A.1B.2C.3D.4.812.在△ABC中,AB=AC=17,BC=16,则△ABC的面积为()A.60B.80C.100D.120二、填空题13.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是________米.14.如图,在Rt△ABC中,∠B=90°,AC的垂直平分线DE分别交AB,AC于D,E两点,若AB=4,BC=3,则CD的长为________.15.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD 的面积__________.16.如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为________.17.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为________.18.如图,平安路与幸福路是两条平行的道路,且与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处,如果小强同学站在平安路与新兴大街的交叉路口,准备去书店,按图中的街道行走,最近的路程为____________ m.19.如图,四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”,如果大正方形面积为169,且直角三角形中较短的直角边的长为5,则中间小正方形面积(阴影部分)为________.20.《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”.设秋千的绳索长为x尺,根据题意可列方程为____________.21.如图,在△ABC中,∠C=90°,则BC=________.22.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.23.如图是单位长度为1的网格图,A、B、C、D是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.24.如下图,在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为________.三、解答题25.如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求:(1)△ABC的面积;(2)边AC的长;(3)点B到AC边的距离.26.细心观察图形,认真分析各式,然后回答问题:(1)推算出OA10的长和S10的值.(2)用含n(n为正整数)的式子表示上述规律.(3)求S12+S22+S32+…+S102的值.27.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s 的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.28.东明县是鲁西南的化工基地,有东明石化集团,洪业化工集团,玉皇化工集团等企业,化学工业越来越成为东明县经济的命脉,化工厂里我们会经常看到如图储存罐,根据需要,在圆柱形罐的外围要安装小梯子,如果油罐的底面半径为6米,高24米,梯子绕罐体半圆到达罐顶,则梯子至少要多长?29.在△ABC中,AB=15,AC=20,BC边上的高AD=12,试求BC的长.30.如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.31.阅读下列解题过程已知a、b、c为△ABC为三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2-b2)(a2+b2)②∴c2=a2+b2③∴△ABC是直角三角形回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步的序号________.(2)错误原因为________.(3)本题正确结论是什么,并说明理由.32.如图所示,是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm)请计算两圆孔中心A和B的距离.答案解析1.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.2.【答案】C【解析】∵∠ACB=90°,BC=12,AC=5,∴AB==13,根据题意可得EF是AB的垂直平分线,∴D是AB的中点,∴AD=AB=6.5,CD=AB=6.5,∴△ACD的周长为13+5=18,故选C.3.【答案】A【解析】两只鼹鼠10分钟所走的路程分别为80 cm,60 cm,∵正北方向和正东方向构成直角,∴由勾股定理得=100,∴其距离为100 cm.故选A.4.【答案】C【解析】∵CB=60 m,AC=20 m,AC⊥AB,∴AB==40(m).故选C.5.【答案】C【解析】过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选C.6.【答案】D【解析】(1)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(2)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴a2+b2=c2,∴S1+S2=S3.(4)S1=a2,S2=b2,S3=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3图形有4个.故选D.7.【答案】C【解析】∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC=5 m,AB=12 m,∴AC===13 m,∴这棵树原来的高度=BC+AC=5+13=18 m.即这棵大树在折断前的高度为18 m.故选C.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】C【解析】根据题意,得AB=30 m,BC=40 m,他离家的距离为AC==50 m,故选C.10.【答案】C【解析】在Rt△ABC中,∠C=90°,AC=2,BC=3,由勾股定理,得AB===;故选C.11.【答案】D【解析】如图所示,在Rt△ABC中,AB=8,AC=6,∠CAB=90°,∴BC===10,又∵S△ABC=AC·AB=BC·AD,∴6×8=10AD,∴AD=4.8.故选D.12.【答案】B【解析】如图,作AD⊥BC于点D,∵△ABC中,AB=AC=17,BC=16,∴BD=BC=8,∴在直角△ABD中,由勾股定理,得AD==15,∴S△ABC=×15×16=120,故选:D.13.【答案】2.6【解析】由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为=2.6米.14.【答案】【解析】∵DE是AC的垂直平分线,∴CD=AD,∴AB=BD+AD=BD+CD,设CD=x,则BD=4-x,在Rt△BCD中,CD2=BC2+BD2,即x2=32+(4-x)2,解得x=.15.【答案】36【解析】在△ABD中,∵∠A=90°,AD=3,AB=4,∴BD==5,S△ABD=AB·AD=×4×3=6,在△BCD中,∵BC=12,CD=13,BD=5,∴BD2+BC2=CD2,∴△CBD是直角三角形,∴S△CBD=BC·BD=×12×5=30.∴四边形ABCD的面积=S△ABD+S△BCD=6+30=36.16.【答案】【解析】∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.17.【答案】2【解析】∵BC⊥AB,CD⊥AC,DE⊥AD,∴∠B=∠ACD=∠ADE=90°,在Rt△ABC中,AB=BC=1,根据勾股定理,得AC==,在Rt△ACD中,CD=1,AD=,根据勾股定理,得AD==,在Rt△ADE中,DE=1,AD=,根据勾股定理,得AE==2.18.【答案】500【解析】如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400 m,∴△ABC≌△DEA,∴EA=BC=300 m,在Rt△ABC中,AC==500 m,∴CE=AC-AE=200 m,从B到E有两种走法:①BA+AE=700 m;②BC+CE=500 m,∴最近的路程是500 m.19.【答案】49【解析】设直角三角形中较长的直角边的长为a,由题意得a2+52=169解得a=12,则中间小正方形面积(阴影部分)为(12-5)2=49.20.【答案】x2=102+(x-4)2【解析】设秋千的绳索长为x尺,根据题意可列方程为x2=102+(x-4)2,故答案为x2=102+(x-4)2.21.【答案】4【解析】由勾股定理,得BC==4.22.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.23.【答案】3【解析】由勾股定理得AD2=BD2=12+32=10,AC2=12+22=5,AB2=22+42=20,BC2=CD2=25,∵AD2+BD2=AB2,AC2+AB2=BC2,AC2+AB2=CD2,∴能够组成3个直角三角形.24.【答案】8π【解析】在Rt△ABC中,AB===8,所以S半圆=×42=8π.25.【答案】解(1)S△ABC=3×3-(×3×1+×2×1+×2×3)=;(2)AC==;(3)设点B到AC边的距离为h,则S△ABC=×AC×h=,解得h=.【解析】(1)利用三角形所在的正方形面积减三个小直角三角形的面积即可求出;(2)利用勾股定理即可求出AC的长;(3)求出AC,则点B到AC边的距离即为AC边上的高,利用面积定值即可求出.26.【答案】解(1)∵OA122=(OA102)2+1=2,OA32=12+()2=3,OA42=12+()2=4,…,∴OA102=10,∴OA10=;∵S1=,S2=,S3=,…,∴S10=;(2)由(1)可知,OAn=,Sn=;(3)S12+S122+S32+…+S102=+++...+=×(1+2+3+ (10)=×=.【解析】(1)根据规律写出OA102,再根据算术平方根的定义解答;(2)根据题中给出的得数即可得出结论;(3)根据分析写出算式,然后利用求和公式列式计算即可得解.27.【答案】解(1)设经过x秒,△BMN为等边三角形,则AM=x,BN=2x,∴BM=AB-AM=30-x,根据题意得30-x=2x,解得x=10,答:经过10秒,△BMN为等边三角形;(2)经过x秒,△BMN是直角三角形,①当∠BNM=90°时,∵∠B=60°,∴∠BMN=30°,∴BN=BM,即2x=(30-x),解得x=6;②当∠BMN=90°时,∵∠B=60°,∴∠BNM=30°,∴BM=BN,即30-x=×2x,解得x=15,答:经过6秒或15秒,△BMN是直角三角形.【解析】(1)设时间为x,表示出AM=x、BN=2x、BM=30-x,根据等边三角形的判定列出方程,解之可得;(2)分①∠BNM=90°时,即可知∠BMN=30°,依据BN=BM列方程求解可得;②∠BMN=90°时,∠BNM=30°,依据BM=BN列方程求解可得.28.【答案】解如图,根据题意,BC=24 m,AB=·2π·6≈18 m,在Rt△ABC中,AC===30 m,答:梯子至少要30 m.【解析】29.【答案】解如图(1),△ABC中,AB=15,AC=20,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理,得BD==9,在Rt△ADC中AC=20,AD=12,由勾股定理,得DC==16,BC的长为BD+DC=9+16=25.如图(2),△ABC中,AB=15,AC=20,BC边上高AD=12,在Rt△ABD中AB=15,AD=12,由勾股定理,得BD==9,在Rt△ACD中AC=20,AD=12,由勾股定理,得DC==16,BC=CD-BD=7.综上所述,BC的长为25或7.【解析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角还是锐角三角形,所以需分情况讨论,即∠ABC是钝角还是锐角,然后利用勾股定理求解.30.【答案】解∵△ABC是等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACD+∠BCE=90°,∵∠ADC=90°,∴∠ACD+∠DAC=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,∴△ADC≌△CEB(AAS),∴DC=BE=7 cm,∴AC===(cm),∴BC=2,∴该零件的面积为××=37(cm2).【解析】首先证明△ADC≌△CEB,根据全等三角形的性质可得DC=BE=7 cm,再利用勾股定理计算出AC长,然后利用三角形的面积公式计算出该零件的面积即可.31.【答案】解(1)③;(2)除式可能为零;(3)∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),∴a2-b2=0或c2=a2+b2,当a2-b2=0时,a=b;当c2=a2+b2时,∠C=90°,∴△ABC是等腰三角形或直角三角形.【解析】(1)(2)等式两边都除以a2-b2,而a2-b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.32.【答案】解∵由图可知,AC=120-60=60,BC=140-60=80,∴AB===100.答:两圆孔中心A和B的距离是100 mm.【解析】先根据图例得出AC及BC的长,再由勾股定理即可得出结论.最新人教版七年级(上)期末模拟数学试卷【答案】一、单选题(共10题;共30分)1.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A∶∠B∶∠C=3∶4∶5;③a2=(b+c)(b-c);④a∶b∶c=5∶12∶13,其中能判定△ABC是直角三角形的有( )A. 1个B. 2个C. 3个D. 4个2.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A. 直角三角形两个锐角互补B. 三角形内角和等于180°C. 如果三角形两条边长的平方和等于第三边长的平方D. 如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形3.如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是()A. 12 米B. 13 米C. 14 米D. 15 米4.如图,从电线杆离地面3米高处向地面拉一条长为5米的拉线,这条拉线在地面的固定点距离电线杆底部有()米.A. 2B. 3C. 4D. 55.如图,△ABC中,∠ACB=90°,AC=24,BC=7,点M, N在AB上,且AM=AC, BN=BC,则MN的长为()A. 4B. 5C. 6D. 76.如图,已知正方形B的面积为100,如果正方形C的面积为169,那么正方形A的面积为()A. 269B. 69C. 169D. 257.如图,已知1号、4号两个正方形的面积和为10,2号、3号两个正方形的面积和为7,则a,b,c三个方形的面积和为()A. 17B. 27C. 24D. 348.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A. 4B. 6C. 8D. 109.如图是一个6×6的正方形网格,每个小正方形的顶点都是格点,Rt△ABC的顶点都在图中的格点上,其中点A、点B的位置如图所示,则点C可能的位置共有()A. 9个B. 8个C. 7个D. 6个10.如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从点A出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→……,白甲壳虫爬行的路线是AB→BB1→……,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2018条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A. 0B.C.D. 1二、填空题(共6题;共24分)11.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.12.如图,正方形ABCD中,AE⊥BE于E,且AE=3,BE=4,则阴影部分的面积是________.13.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为________cm(杯壁厚度不计)14.如图,已知∠A=90°,AC=AB=4,CD=2,BD=6.则∠ACD=________度.15.直角三角形的两条直角边长分别是5和12,则斜边上的高长为________.16.如图,Rt△ABC中,∠C=90°,点P为AC边上的一点,延长BP至点D,使得AD=AP,当AD⊥AB时,过D作DE⊥AC于E,AB-BC=4,AC=8,则△ABP面积为________.三、解答题(共6题;共46分)17.如图所示,在四边形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.(1)连接BC,求BC的长;(2)求四边形ABDC的面积.18.在我国古代数学著作《九章算术》中记载了一个有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如下图所示,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.那么水深多少?芦苇长为多少?19.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.20.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?21.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.22.阅读下面的材料勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.由图1可以得到(a+b)2=4× ab+c2整理,得a2+2ab+b2=2ab+c2.所以a2+b2=c2.如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述方法证明勾股定理.答案解析一、单选题1.C【解析】【解答】解:①∵∠A=∠B-∠C,又∵∠A+∠B+∠C=180°,∴∠B=90°,∴①是直角三角形;②∵∠A:∠B:∠C=3:4:5,∴设∠A=3x ,∠B=4x ,∠ C=5 x ,又∵∠A+∠B+∠C=180°,∴A=45°,∠B=60°,∠C=75°,∴②不是直角三角形;③∵a2=(b+c)(b-c),∴a2+c2=b2,符合勾股定理的逆定理,∴③是直角三角形;④∵a:b:c=5:12:13,∴设a=5x ,b=12x ,c=13x ,∴a2+b2=c2,符合勾股定理的逆定理,∴④是直角三角形.故应选:C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
D
CB
A

F
E

D
C
B
A

初中数学-勾股定理单元试卷
一、填空题(每小题2分,共24分)
1. 如图,在长方形ABCD中,已知BC=10cm,AB=5cm,则对角线BD= cm。

2. 如图,在正方形ABCD中,对角线为22,
则正方形边长为 。
3. 把直角三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来
的 。
4. 三角形中两边的平方差恰好等于第三边的平方,则这个三角形是 三角形。
5. 飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机
距离小刚5000米,则飞机每小时飞行 千米。
6. 在Rt△ABC中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
7. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
8. 如图所示,在矩形ABCD中,AB=16,BC=8,将矩形沿AC折叠,点D落在点E处,且CE
与AB交于点F,那么AF= 。

9. 如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷
子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是 。
10. 如图,数轴上有两个Rt△ABC、Rt△ABC,OA、OC是斜边,且
OB=1,AB=1,CD=1,OD=2,分别以O为圆心,OA、OC为半径
画弧交x轴于E、F,则E、F分别对应的数是 。
11. 一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12
海里/时的速度向西南方向航行,则一个半小时后两船相距 海里。
12. 所谓的勾股数就是指使等式a2+b2=c2成立的任何三个自然数。我国清代数学家罗士林
钻研出一种求勾股数的方法,即对于任意正整数m、n(m>n),取a=m2-n2,b=2mn,c=m2+n2,
则a、b、c就是一组勾股数。请你结合这种方法,写出85(三个数中最大)、84和 组
成一组勾股数。
二、选择题(每小题3分,共18分)

D
C
B

A
2
13. 在△ABC中,∠A=90°,∠A、∠B、∠C的对边长分别为a、b、c,则下列结论错误的
是( )
(A)a2+b2=c2 (B)b2+c2=a2 (C)a2-b2=c2 (D)a2-c2=b2
14. 在△ABC中,已知AB=12cm,AC=9cm,BC=15cm,则△ABC的面积等于( )
(A)108cm2 (B)90cm2 (C)180cm2 (D)54cm2
15. 在直角坐标系中,点P(-2,3)到原点的距离是 ( )

(A)5 (B)13 (C)11 (D)2
16. 池塘中有一朵荷花,它直立在水中,荷花高出水面半尺处长着一朵红莲,一阵风吹来
把荷花吹倒在一边,红莲倒在水面位置距荷花生长处水平距离为2尺,则池塘深( )
(A)3.75尺 (B)3.25尺 (C)4.25尺 (D)3.5尺
17. 2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股园
方图》,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图
所示,如果大正方形的面积是13,小正方形式面积是1,直角三角形的短直角边为a,
较长直角边为b,那么(a+b)2的值为 ( )
(A)13 (B)19 (C)25 (D)169

18. 如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面距
离为7m,现将梯子的底端A向外移到A′,使梯子的底端A′到墙根O距离为3m,同时梯子
顶端B下降至B′,那么BB′ ( )
(A)等于1m (B)小于1m (C)大于1m (D)以上都不对
三、解答题(共58分)
19.(8分)如图,从电线杆离地6米处向地面拉一条长10米的缆绳,这条缆绳在地面的
固定点距离电线杆底部有多远?
3

20.(8分)三个半圆的面积分别为S1=4.5π,S2=8π,S3=12.5π,把三个半圆拼成如图所
示的图形,则△ABC一定是直角三角形吗?说明理由。

21.(12分)求知中学有一块四边形的空地ABCD,如下图所示,学校计划在空地上种植草
皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200天,
问学校需要投入多少资金买草皮?

22.(12分)如图所示,折叠矩形的一边AD,使点D落在BC边上的点F处,已知AB=8cm,
BC=10cm,求EC的长。

23.(10分)如图,李叔叔想要检测雕塑底座正面的AD和BC是否分别垂直于底边AB,但
他随身只带了有刻度的卷尺。
(1)你能替他想办法完成任务吗?
(2)李叔叔量得AD长30厘米,AB长40厘米,BD长50厘米,则AD边垂直于AB边吗?

D
C
B
A
4

24.(8分)观察下列各式,你有什么发现?
32=4+5,52=12+13,72=24+25 92=40+41……
这到底是巧合,还是有什么规律蕴涵其中呢?
(1)填空:132= +
(2)请写出你发现的规律。
(3)结合勾股定理有关知识,说明你的结论的正确性。
5
参考答案
一、填空题

1. 55 2. 2 3. 2倍 4. 直角 5. 540 6. 12、16
7. 5或7 8. 10 9. 12cm≤a≤13cm 10. -2、5
11. 30 12. 13
二、选择题
13. A 14. D 15. B 16. A 17. C 18. B
三、解答题
19. 13米
20. △ABC一定是直角三角形。理由略。
21. 学校需投入7200元购买草皮。
22. 3cm
23. (1)用卷尺分别测量AD、AB、BD的长,然后计算AD2+AB2,看是否与BD2相等,如果相
等,则△ABC是直角三角形,AD⊥AB;否则不是直角三角形, DA不垂直AB,同
理,可判断BC与AB是否垂直。
(2)∵AD2+AB2=302+402=502=BD2
∴∠DAB=90° ∴AD边垂直AB边
24. (1)132=84+85
(2)任意一个大于1的奇数的平方可拆成两个连续整数的和,并且这两个连续整数与
原来的奇数构成一组勾股数。
(3)略

相关文档
最新文档