第四讲 等腰三角形和直角三角形(学生版本

合集下载

第1章 考点01 等腰三角形与直角三角形(学生版) 新版初中北师大版数学常考考点各个击破讲义

第1章 考点01 等腰三角形与直角三角形(学生版) 新版初中北师大版数学常考考点各个击破讲义

考点1、等腰三角形与直角三角形知识框架⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩︒︒3045等腰三角形的判定及性质等边三角形的判定及性质直角三角形的判定及性质全等三角形的判定和性质等腰三角形的性质等腰三角形的判定等边三角形的性质与判定等腰三角形的分类讨论(边、角、高)直角三角形的性质与判定应用直角三角形全等的判定直角三角形中的特殊角()的应用三角形中的动态问题基础知识点重难点题型, 基础知识点知识点1.1等腰三角形的判定及性质1)等腰三角形的有关概念有两条边相等的三角形叫做等腰三角形,相等的两条边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

2)等腰三角形的性质①等腰三角形的两个底角相等。

(简写成“等边对等角”);②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。

(三线合一)3)等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等。

(简写成“等角对等边”)等腰三角形是以底边的垂直平分线为对称轴的轴对称图形1.(2020·宁波市海曙区储能学校初二期末)若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒2.(2020·哈尔滨市第三十九中学初二月考)在ABC 中,AD 是BAC ∠的平分线,且AB AC CD =+,若81BAC ∠=︒,则ABC ∠的大小为______.第2题 第3题3.(2020·内蒙古凉城·初二期末)如图钢架中,焊上等长的13根钢条来加固钢架,若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是 .4.(2020·湖南永定·期中)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任何一个角.这个三等分角仪由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC=CD=DE ,点D ,E 可在槽中滑动,若∠BDE=78°,则∠AOB 等于__________度.5.(2020·河北初三其他)已知等腰三角形ABC ,AB AC =,D 为射线BC 上一点,以AD 为一边作等腰三角形,且AD AE =,连接DE ,BAC DAE ∠=∠,2CD =,3BC =.(1)如图1,当点D 在线段BC 上时,线段CE 的长为______________.(2)如图2,当点D 在BC 延长线上时,若140∠=︒,则2∠=__________.6.(2020·广东揭阳·初一期末)如图,ABC 中,AB AC =,D 是BC 中点,下列结论中不正确的是( ). A .B C ∠=∠ B .AD BC ⊥C .AD 平分BAC ∠ D .2AB BD =7.(2020·江阴市长寿中学初二月考)如图,△ABC中,AB=8,AC=6,∠ABC和∠ACB的平分线交于点O,过O点作MN∥BC,分别交AB、AC于M、N点,则△AMN的周长为___________.知识点1.2等边三角形的判定及性质1)等边三角形的有关概念等腰三角形中,有一种特殊的等腰三角形:三条边都相等的三角形,我们把这样的三角形叫做等边三角形。

等腰三角形和直角三角形(共83张PPT)

等腰三角形和直角三角形(共83张PPT)

(1)判断∠ABE与∠ACD的数量关系,并说明理由. (2)求证:过点A,F的直线垂直平分线段BC. 【思路点拨】(1)根据全等三角形的判定SAS可证明 △ABE≌△ACD,然后可得证.(2)根据(1)的结论和等腰三 角形的性质,可由线段垂直平分线的判定得证.
【自主解答】(1)∠ABE=∠ACD. 因为AB=AC,∠BAE=∠CAD,AE=AD, 所以△ABE≌△ACD. 所以∠ABE=∠ACD.
_____3_____个.
图 4-2-27
6.已知等腰三角形一边长为4,另一边长为8,则这个 等腰三角形的周长为20或16. ( × ) 7.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为5.
( √)
8.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD, AB=BD,则∠B的度数为36°. ( √ )
图1
第 30 页
图2
考点 2 直角三角形的性质和判定
5.(2011 年广东肇庆)在直角三角形 ABC 中,∠C=90°, BC=12,AC=9,则 AB=1_5_______.
6.(2010 年广东汕头)如图 4-2-29,把等腰直角三角形 △ABC 沿 BD 折叠,使点 A 落在边 BC 上的点 E 处.下面结论
【变式训练】 1.(2017·滨州中考)如图,在△ABC中,AB=AC,D为BC上 一点,且DA=DC,BD=BA,则∠B的大小为 ( )
A.40° B.36° C.80° D.25°
【解析】选B.设∠C=x°,由于DA=DC,可得∠DAC=∠C =x°,由AB=AC可得∠B=∠C=x°.∴∠ADB=∠C+∠DAC =2x°,由于BD=BA,所以∠BAD=∠ADB=2x°,根据三角形 内角和定理,得x°+x°+3x°=180°,解得x=36.所以 ∠B=36°.

北师大版小学四年级下册数学《三角形分类》教案(精选6篇)

北师大版小学四年级下册数学《三角形分类》教案(精选6篇)

北师大版小学四年级下册数学《三角形分类》教案(精选6篇)北师大版小学四年级下册数学《三角形分类》篇1教学目标:知识与技能:通过分类认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每种三角形的特点。

过程与方法:在分类中体会分类标准的严密。

情感态度与价值观:在三角形的分类中感受各类三角形之间的关系。

教学准备:多媒体,各种三角形纸片。

教学过程:一、创设情境1、欢欢和笑笑给同学们发来请贴,邀请大家到数学王国做客.但路上有两道关卡,只有顺利通过才能得到通行证.第一关:准确地认出他们,并说出他们的特征.(课件出示锐角、直角和钝角)第二关:给他们取个形象又合适的名字.(出示锐角三角形、直角三角形和钝角三角形)二、探究新知:同学们顺利过关,来到了数学王国.它们非常好客,派了很多代表来迎接我们。

(课件出示各种三角形)1、哟,它们长得很相似的,找找它们有哪些共同点?2、有这么多共同点,老师眼都看花了,但定睛一看,还是有区别的,你们发现了吗?3、看着这些长得相似,但实际上大大小小、形状各异、零零乱乱的三角形,你想研究些什么?板书:三角形分类。

4、学生自由讨论,给三角形分类.谁愿意上来展示一下你的研究成果?5、学生展示分类结果:从角分:直角三角形、锐角三角形和钝角三角形。

讲解直角三角形的直角边、斜边。

从学具中找出直角三角形,说说你是怎么知道它是直角三角形的?从边分:等腰三角形和没有相等的边的三角形。

讲解:等腰三角形的各部分名称。

从你们的学具中找出等腰三角形,你怎么知道它是等腰三角形的?在等腰三角形中有没有三条边都相等的?(等边三角形)找出等边三角形并证明.三、实践应用1、画三角形。

选择你最喜欢的三角形画下来,并向同学们介绍你的三角形.2、猜三角形:出示一个直角出示一个钝角出示一个锐角(能不能正确猜出是什么三角形?为什么?3、填一填4、找一找:在孔雀图中找出你喜欢的三角形说一说。

四、总结,拓展在这节课的探秘中你了解到了什么?你还想研究些什么?北师大版小学四年级下册数学《三角形分类》教案篇2教学目标:1.让每位学生通过动手操作,经历给三角形分类的过程,认识并识别锐角三角形、直角三角形、钝角三角形、等腰三角形和等边三角形,了解各种类型三角形的特点。

八年级数学上册等腰三角形和直角三角形(人教版)

八年级数学上册等腰三角形和直角三角形(人教版)

等腰三角形和直角三角形[知识梳理]1.等腰三角形的性质与判定2.直角三角形的性质与判定[基础训练]1.等腰三角形一底角为30°,底边上的高为9cm ,则这个等腰三角形的腰长是_____cm,顶角是_______.2.等腰直角三角形一条直角边长1cm ,那么它斜边上的高是_______cm.3.在△ABC 中,AB=AC ,DM 是AB 的中垂线,△BCD的周长为14cm ,BC=5cm ,则AB=_______cm.4.如果等腰三角形的两边分别长为3cm 和5cm ,那么它的周长为________cm.5.在Rt △ABC 中,CD 是斜边上的中线,CE 是高,AB=10cm,DE=2.5cm.则直角边AC 的长为_______cm.6.两个等腰三角形全等的条件是( ) A.有两条边对应相等 B.有两个角对应相等 C.有一腰和底角对应相等. D.有一腰和一角对应相等.7.下列命题是真命题的是( ) A.等腰三角形顶角的外角平分与底边平行. B.等腰三角形的高,中线,角平分线互相重合. C.顶角相等的两个等腰三角形全等. D.等腰三角形一边不可以是另一边的二倍.8.c b a ,,是三角形的三条边,如果ca bc ab c b a ++=++222,那么这个三角形是( )A.等腰(非等边)三角形B.等边三角形C.不等边直角三角形D.等腰直角三角形[典型例析]例1.如图,等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形分成15和6两部分,求这个三角形的周长。

例2.如图,折叠矩形的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.例3.已知在△ABC中,∠C=90°,CD⊥AB于D,设BC=a,AC=b,AB=c,CD=h.求证:(1)c+h>a+b,(2)以a+b、h、c+h为边的三角形是直角三角形.[发展探究]如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O,给出下列四个条件:①∠EBO=∠DCO②∠BEO=∠CDO③BE=CD④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形)(2)选择第(1)小题中的一种情形,证明△ABC是等腰三角形.[优化评价]1.等腰三角形的腰长为10cm,面积为25cm,则顶角的度数为_______9cm,那么这个三角形的周长是_______2.等腰直角三角形的斜边是23.如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连接DC,以DC为边作等边△DCE,B、E在CD的同侧,若AB=2,则BE=_______4.已知△ABC 的∠ABC 、∠ACB 的平分线相交于F ,过F 作DE ∥BC ,交AB 于D ,交AC 于E ,则BD+CE=_______5.等腰三角形一腰上的高与腰之比为22,则顶角的度数为_______ 6.等腰三角形一腰上的中线把周长分为63和36两部分,其腰长为( ) A.24 B.42 C.21 D.24或427.直角三角形两锐角的角平分线所成的角的度数是( ) A.45° B.135° C.45°或135° D.都不对8.已知等腰△ABC 的底边BC=8cm,且BC AC -=2cm,则腰AC 的长为( ) A.10cm 或6cm B.10cm C.6cm D.8cm 或6cm9.已知一个直角三角形的面积为12cm 2,周长为212cm,那么这个直角三角形外接圆的半径是________cm.10.阅读下面的解题过程:已知a 、b 、c 为△ABC 的三边,且满足442222b a c b c a -=-,试判断△ABC 的形状. 解:∵442222b a c b c a -=- (A )∴))(()(2222222b a b a b a c -+=- (B )∴222b a c += (C )∴△ABC 是直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:_____ (2)错误的原因为_____________________ (3)本题正确的结论是_________________11.如图,矩形ABCD ,折叠一边AD 使点D 落在BC 边的点F 处,折痕为AE ,已知AB=8cm,BC=10,以D 为原点,AD 、CD 分别为x 轴和y 轴,建立如图所示的直角坐标系,求经过A 、F 、E 三点的抛物线的函数解析式.。

两年中考模拟2020年中考数学:等腰三角形与直角三角形(学生版)

两年中考模拟2020年中考数学:等腰三角形与直角三角形(学生版)

第四篇图形的性质专题18等腰三角形与直角三角形知识点名师点晴等腰三角形等腰三角形的性质理解等腰三角形的性质,并能解决等腰三角形的有关计算等腰三角形的判定掌握等腰三角形的判定方法,会证明一个三角形是等腰三角形等边三角形等边三角形的性质理解等边三角形的性质等边三角形的判定掌握等边三角形的判定方法,会证明一个三角形是等边三角形直角三角形直角三角形的性质理解直角三角形的有关性质直角三角形的判定掌握直角三角形的判定方法,会证明一个三角形是直角三角形勾股定理理解并掌握勾股定理及其逆定理归纳1:等腰三角形基础知识归纳:1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°.2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.基本方法归纳:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). ③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°—2∠B ,∠B =∠C =2180A ∠-︒ 注意问题归纳:等腰三角形的性质与判定经常用来计算三角形的角的有关问题,并证明角相等的问题.【例1】(2019内蒙古包头市,第10题,3分)已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是( )A .34B .30C .30或34D .30或36归纳 2:等边三角形基础知识归纳:1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.基本方法归纳:线段垂直平分线上的一点到这条线段的两端距离相等;到一条线段两端点距离相等的点,在这条线段的垂直平分线上.注意问题归纳:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【例2】(2019四川省宜宾市,第7题,3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF 的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A.32B.235C.33D.34归纳3:直角三角形基础知识归纳:有一个角是直角的三角形叫作直角三角形直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.基本方法归纳:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.【例3】(2019山东省东营市,第14题,3分)已知等腰三角形的底角是30°,腰长为23,则它的周长是.归纳4:勾股定理基础知识归纳:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;基本方法归纳:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.注意问题归纳:勾股定理的逆定理也是判定直角三角形一种常用的方法,通常与直角三角形的性质结合起来考查.【例4】(2019北京,第12题,2分)如图所示的网格是正方形网格,则∠P AB+∠PBA= °(点A,B,P是网格线交点).【2019年题组】一、选择题1.(2019四川省内江市,第9题,3分)一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或162.(2019宁夏,第5题,3分)如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°3.(2019山西省,第5题,3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°4.(2019衢州,第7题,3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°5.(2019湖北省荆州市,第5题,3分)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE 平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是()A.①②B.①③C.②③D.①②③6.(2019湖南省常德市,第7题,3分)如图,在等腰三角形△ABC中,AB=AC,图中所有三角形均相似,其中最小的三角形面积为1,△ABC的面积为42,则四边形DBCE的面积是()A.20B.22C.24D.267.(2019湖南省长沙市,第12题,3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD55BD的最小值是()A.25B.45C.53D.108.(2019辽宁省丹东市,第7题,3分)等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.129.(2019台湾,第4题,3分)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b10.(2019甘肃省天水市,第8题,4分)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(3C.3,1)D.33)11.(2019内蒙古赤峰市,第14题,3分)如图,小聪用一张面积为1的正方形纸片,按如下方式操作:①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为()A .22019B .201812C .201912 D .20201212.(2019台湾,第9题,3分)公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?( )A .84B .86C .160D .16213.(2019四川省内江市,第10题,3分)如图,在△ABC 中,AB =2,BC =3.6,∠B =60°,将△ABC 绕点A 顺时针旋转得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.614.(2019四川省成都市,第5题,3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为( )A .10°B .15°C .20°D .30°15.(2019四川省眉山市,第11题,3分)如图,在矩形ABCD 中,AB =6,BC =8,过对角线交点O 作EF ⊥AC 交AD 于点E ,交BC 于点F ,则DE 的长是( )A.1B.74C.2D.12516.(2019四川省绵阳市,第10题,3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.15B.55C.355D.9517.(2019滨州,第10题,3分)满足下列条件时,△ABC不是直角三角形的为()A.AB41=,BC=4,AC=5B.AB:B C:A C=3:4:5C.∠A:∠B:∠C=3:4:5D.|cosA12-|+(tanB33-)2=018.(2019聊城,第11题,3分)如图,在等腰直角三角形ABC中,∠BAC=90°,一个三角尺的直角顶点与BC边的中点O重合,且两条直角边分别经过点A和点B,将三角尺绕点O按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB,AC分别交于点E,F时,下列结论中错误的是()A.AE+AF=AC B.∠BEO+∠OFC=180°C.OE+OF2=BC D.S四边形AEOF12=S△ABC19.(2019江苏省苏州市,第10题,3分)如图,在△ABC中,点D为BC边上的一点,且AD=AB=2,AD⊥AB.过点D作DE⊥AD,DE交AC于点E.若DE=1,则△ABC的面积为()A.42B.4C.25D.820.(2019浙江省宁波市,第9题,4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°21.(2019浙江省宁波市,第12题,4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和22.(2019浙江省湖州市,第9题,3分)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.22B.5C.352D.1023.(2019海南,第12题,3分)如图,在Rt△ABC中,∠C=90°,AB=5,BC=4.点P是边AC上一动点,过点P 作PQ∥AB交BC于点Q,D为线段PQ的中点,当BD平分∠ABC时,AP的长度为()A.813B.1513C.2513D.321324.(2019湖北省咸宁市,第2题,3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.25.(2019湖北省黄石市,第8题,3分)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°26.(2019辽宁省朝阳市,第7题,3分)把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是()A.83°B.57°C.54°D.33°27.(2019辽宁省锦州市,第7题,2分)在矩形ABCD中,AB=3,BC=4,M是对角线BD上的动点,过点M作ME ⊥BC于点E,连接AM,当△ADM是等腰三角形时,ME的长为()A.32B.65C.32或35D.32或65二、填空题28.(2019四川省宜宾市,第16题,3分)如图,△ABC和△CDE都是等边三角形,且点A、C、E在同一直线上,AD 与BE、BC分别交于点F、M,BE与CD交于点N.下列结论正确的是(写出所有正确结论的序号).①AM=BN;②△ABF≌△DNF;③∠FMC+∠FNC=180°;④111 MN AC CE=+29.(2019自贡,第18题,4分)如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)= .30.(2019江苏省连云港市,第15题,3分)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为.31.(2019江苏省镇江市,第8题,2分)如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1= °.32.(2019浙江省温州市,第16题,5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.33.(2019湖北省荆门市,第15题,3分)如图,在平面直角坐标系中,函数ykx(k>0,x>0)的图象与等边三角形OAB的边OA,AB分别交于点M,N,且OM=2MA,若AB=3,那么点N的横坐标为.34.(2019湖北省黄冈市,第16题,3分)如图,AC,BD在AB的同侧,AC=2,BD=8,AB=8,点M为AB的中点,若∠CMD=120°,则CD的最大值是.35.(2019辽宁省锦州市,第16题,3分)如图,边长为4的等边△ABC,AC边在x轴上,点B在y轴的正半轴上,以OB为边作等边△OBA1,边OA1与AB交于点O1,以O1B为边作等边△O1BA2,边O1A2与A1B交于点O2,以O2B为边作等边△O2BA3,边O2A3与A2B交于点O3,…,依此规律继续作等边△O n﹣1BA n,记△OO1A的面积为S1,△O1O2A1的面积为S2,△O2O3A2的面积为S3,…,△O n﹣1O n A n﹣1的面积为S n,则S n=.(n≥2,且n为整数)36.(2019广安,第13题,3分)等腰三角形的两边长分别为6cm,13cm,其周长为cm.37.(2019四川省成都市,第12题,4分)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=9,则CE的长为.38.(2019广西桂林市,第17题,3分)如图,在平面直角坐标系中,反比例ykx=(k>0)的图象和△ABC都在第一象限内,AB=AC52=,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位长度,A,C两点同时落在反比例函数图象上,则m的值为.39.(2019新疆,第14题,5分)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.40.(2019江苏省徐州市,第18题,3分)函数y=x+1的图象与x轴、y轴分别交于A、B两点,点C在x轴上.若△ABC为等腰三角形,则满足条件的点C共有个.41.(2019湖南省常德市,第14题,3分)如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A逆时针旋转45°得到△ACD',且点D'、D、B三点在同一条直线上,则∠ABD的度数是.42.(2019甘肃省白银市,第17题,4分)定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k= .43.(2019贵州省毕节市,第17题,5分)如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.44.(2019内蒙古通辽市,第15题,3分)腰长为5,高为4的等腰三角形的底边长为.45.(2019四川省巴中市,第15题,4分)如图,等边三角形ABC内有一点P,分別连结AP、BP、CP,若AP=6,BP=8,CP=10.则S△ABP+S△BPC=.46.(2019四川省广元市,第13题,3分)如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC绕点C逆时针旋转60°得到△DEC,连接BD,则BD2的值是.47.(2019四川省泸州市,第16题,3分)如图,在等腰Rt△ABC中,∠C=90°,AC=15,点E在边CB上,CE=2EB,点D在边AB上,CD⊥AE,垂足为F,则AD的长为.48.(2019山东省威海市,第13题,3分)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若∠1=23°,则∠2=°.49.(2019山东省威海市,第17题,3分)如图,在四边形ABCD中,AB∥CD,连接AC,BD.若∠ACB=90°,AC=BC,AB=BD,则∠ADC=°.50.(2019枣庄,第17题,4分)把两个同样大小含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A,且另外三个锐角顶点B,C,D在同一直线上.若AB=2,则CD= .51.(2019山东省淄博市,第17题,4分)如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD12=AC时,tanα134=;如图2,当CD13=AC时,tanα2512=;如图3,当CD14=AC时,tanα3724=;……依此类推,当CD11n=+AC(n为正整数)时,tanαn= .52.(2019山西省,第15题,3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为cm.53.(2019广西,第18题,3分)如图,AB与CD相交于点O,AB=CD,∠AOC=60°,∠ACD+∠ABD=210°,则线段AB,AC,BD之间的等量关系式为.54.(2019江苏省宿迁市,第17题,3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C 在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是.55.(2019湖北省鄂州市,第15题,3分)如图,已知线段AB=4,O是AB的中点,直线l经过点O,∠1=60°,P点是直线l上一点,当△APB为直角三角形时,则BP= .56.(2019湖南省株洲市,第13题,3分)如图所示.在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB= .57.(2019湖南省株洲市,第18题,3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.58.(2019湖南省邵阳市,第17题,3分)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是.59.(2019西藏,第15题,3分)若实数m 、n 满足|m ﹣3|4n +-=0,且m 、n 恰好是直角三角形的两条边,则该直角三角形的斜边长为 .60.(2019贵州省毕节市,第19题,5分)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F =∠ACB =90°,∠E =45°,∠A =60°,AC =10,则CD 的长度是 .61.(2019贵州省铜仁市,第16题,4分)如图,在△ABC 中,D 是AC 的中点,且BD ⊥AC ,ED ∥BC ,ED 交AB 于点E ,BC =7cm ,AC =6cm ,则△AED 的周长等于 cm .62.(2019辽宁省丹东市,第13题,3分)如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC .若DE =1,则BC 的长是 .63.(2019辽宁省大连市,第13题,3分)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 .64.(2019辽宁省抚顺市,第17题,3分)如图,在Rt △ABC 中,∠ACB =90°,CA =CB =2,D 是△ABC 所在平面内一点,以A ,B ,C ,D 为顶点的四边形是平行四边形,则BD 的长为 .65.(2019黑龙江省鸡西市,第9题,3分)一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.66.(2019黑龙江省齐齐哈尔市,第16题,3分)等腰△ABC中,BD⊥AC,垂足为点D,且BD12=AC,则等腰△ABC底角的度数为.三、解答题67.(2019内蒙古呼和浩特市,第18题,6分)如图,在△ABC中,内角A、B、C所对的边分别为a、b、c.(1)若a=6,b=8,c=12,请直接写出∠A与∠B的和与∠C的大小关系;(2)求证:△ABC的内角和等于180°;(3)若()12a b caa b c c++=-+,求证:△ABC是直角三角形.68.(2019四川省巴中市,第18题,8分)如图,等腰直角三角板如图放置.直角顶点C在直线m上,分别过点A、B作AE⊥直线m于点E,BD⊥直线m于点D.(1)求证:EC=BD;(2)若设△AEC三边分别为a、b、c,利用此图证明勾股定理.69.(2019四川省达州市,第20题,7分)如图,在Rt△ABC中,∠ACB=90°,AC=2,BC=3.(1)尺规作图:不写作法,保留作图痕迹.①作∠ACB的平分线,交斜边AB于点D;②过点D作BC的垂线,垂足为点E.(2)在(1)作出的图形中,求DE的长.70.(2019山东省菏泽市,第23题,10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°.(1)如图1,连接BE,CD,BE的廷长线交AC于点F,交CD于点P,求证:B P⊥CD;(2)如图2,把△ADE绕点A顺时针旋转,当点D落在AB上时,连接BE,CD,CD的延长线交BE于点P,若BC=62,AD=3,求△PDE的面积.【2018年题组】一、选择题1.(2018浙江省湖州市,第5题,3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°2.(2018兰州,第5题,4分)如图,AB∥CD,AD=CD,∠1=65°,则∠2的度数是()A.50°B.60°C.65°D.70°3.(2018贵州省安顺市,第6题,3分)一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或94.(2018辽宁省丹东市,第5题,3分)如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC=4,则AB的长为()A.3B.4C.5D.65.(2018辽宁省营口市,第6题,3分)如图,在△ABC中,AB=AC,∠BAC=100°,在同一平面内,将△ABC绕点A 顺时针旋转到△AB1C1的位置,连接BB1,若BB1∥AC1,则∠CAC1的度数是()A.10°B.20°C.30°D.40°6.(2018台湾省,第11题,3分)如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115B.120C.125D.1307.(2018山东省德州市,第12题,4分)如图,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°,绕点O旋转∠FOG,分别交线段AB、BC于D、E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于433;④△BDE周长的最小值为6.上述结论中正确的个数是()A.1B.2C.3D.48.(2018四川省达州市,第8题,3分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2C.52D.39.(2018广西梧州市,第7题,3分)如图,在△ABC中,AB=AC,∠C=70°,△AB'C'与△ABC关于直线EF对称,∠CAF=10°,连接BB',则∠ABB'的度数是()A.30°B.35°C.40°D.45°10.(2018江苏省宿迁市,第6题,3分)若实数m、n满足等式|m﹣4n =0,且m、n恰好是等腰△ABC 的两条边的边长,则△ABC的周长是()A.12B.10C.8D.611.(2018广西玉林市,第9题,3分)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直12.(2018浙江省台州市,第10题,4分)如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B'DE,若B'D,B'E分别交AC于点F,G,连接OF,OG,则下列判断错误的是()A.△ADF≌△CGEB.△B'FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值13.(2018兰州,第7题,4分)如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A3333B C24 . .D.314.(2018福建省A,第5题,4分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°15.(2018辽宁省鞍山市,第7题,3分)如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=2,则EG的长为()A.334B.433C.332D.416.(2018内蒙古包头市,第8题,3分)如图,在△ABC中,AB=AC,△ADE的顶点D,E分别在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=145°,则∠EDC的度数为()A.17.5°B.12.5°C.12°D.10°17.(2018吉林省长春市,第8题,3分)如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=2,则k的值为()A.4B.22C.2D.218.(2018四川省内江市,第12题,3分)如图,在平面直角坐标系中,△ABC的顶点A在第一象限,点B,C的坐标分别为(2,1),(6,1),∠BAC=90°,AB=AC,直线AB交y轴于点P,若△ABC与△A'B'C'关于点P成中心对称,则点A'的坐标为()A.(﹣4,﹣5)B.(﹣5,﹣4)C.(﹣3,﹣4)D.(﹣4,﹣3)19.(2018四川省凉山州,第3题,4分)如图,数轴上点A对应的数为2,AB⊥OA于A,且AB=1,以O为圆心,OB 长为半径作弧,交数轴于点C,则OC长为()A.3B.2C.3D.520.(2018四川省南充市,第8题,3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD 的中点,若BC=2,则EF的长度为()A.12B.1C.32D321.(2018四川省攀枝花市,第4题,3分)如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A .30°B .15°C .10°D .20°22.(2018四川省泸州市,第8题,3分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .323.(2018四川省绵阳市,第11题,3分)如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE 2=,AD 6=,则两个三角形重叠部分的面积为( )A .2B .32-C .31-D .33-24.(2018山东省东营市,第10题,3分)如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC .给出下列结论:①BD =CE ;②∠ABD +∠ECB =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A .①②③④B .②④C .①②③D .①③④25.(2018山东省枣庄市,第10题,3分)如图是由8个全等的小矩形组成的大正方形,线段AB 的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接P A 、PB ,那么使△ABP 为等腰直角三角形的点P 的个数是()A.2个B.3个C.4个D.5个26.(2018山东省枣庄市,第12题,3分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为()A.32B.43C.53D.8527.(2018山东省淄博市,第11题,4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为()A.4B.6C.43D.828.(2018山东省淄博市,第12题,4分)如图,P为等边三角形ABC内的一点,且P到三个顶点A,B,C的距离分别为3,4,5,则△ABC的面积为()A.25394+B.25392+C.18253+D.3182+29.(2018山东省滨州市,第1题,3分)在直角三角形中,若勾为3,股为4,则弦为()A.5B.6C.7D.830.(2018山东省莱芜市,第8题,3分)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=kx的图象上,则k=()A.3B.4C.6D.1231.(2018山东省菏泽市,第3题,3分)如图,直线a∥b,等腰直角三角板的两个顶点分别落在直线a、b上,若∠1=30°,则∠2的度数是()A.45°B.30°C.15°D.10°32.(2018山东省青岛市,第6题,3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=32,则BC的长是()A.322B.32C.3D.3333.(2018山西省,第8题,3分)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C,此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12B.6C.62D.6334.(2018广西贺州市,第10题,3分)如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.32B.33C.6D.6235.(2018江苏省南通市,第5题,3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5B.2,3,4C.4,6,7D.5,11,1236.(2018江苏省扬州市,第7题,3分)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是()A.BC=EC B.EC=BE C.BC=BE D.AE=EC37.(2018江苏省扬州市,第8题,3分)如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③38.(2018浙江省温州市,第10题,4分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.994D.53239.(2018海南省,第12题,3分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6B.8C.10D.1240.(2018湖北省孝感市,第10题,3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE ⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(3﹣1)EF.其中正确结论的个数为()A.5B.4C.3D.241.(2018湖北省荆州市,第4题,3分)如图,两条直线l1∥l2,Rt△ACB中,∠C=90°,AC=BC,顶点A、B分别在l1和l2上,∠1=20°,则∠2的度数是()A.45°B.55°C.65°D.75°42.(2018湖北省荆门市,第11题,3分)如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()。

小学四年级数学三角形的分类与性质归纳

小学四年级数学三角形的分类与性质归纳
4.直角三角形
直角三角形是指一个角为90度的三角形。直角三角形的两个边相互垂直,即形成一个直角。其中,斜边是直角三角形中最长的一条边。
5.锐角三角形
锐角三角形是指所有角都小于90度的三角形。在锐角三角形中,三个角的度数之和小于180度。
6.钝角三角形
钝角三角形是指一个角大于90度的三角形。在钝角三角形中,有且只有一个角大于90度,其他两个角都小于90度。
(本文总字数:823字)
```
A
/ \
/ \
/ \
B-------C
```
图2等腰三角形
3.普通三角形
普通三角形是指三条边的长度都不相等的三角形。在普通三角形中,三个角的大小也不相等。例如,如图3所示的三角形ABC就是一个普通三角形。
```
A
/ \
/ \
/ \
B--------C
```
图3普通三角形
三、三角形的性质归纳
除了按照边的长度进行分类,三角形的性质也可以根据角度和边的关系进行归纳总结。以下是小学四年级数学中常见的三角形性质:
小学四年级数学三角形的分类与性质归纳
小学四年级数学:三角形的分类与性质归纳
在小学四年级的数学学习中,三角形是一个重要的几何形状。对于学生来说,了解三角形的分类以及其性质归纳,可以帮助他们更好地理解和应用数学知识。本文将对小学四年级数学中的三角形的分类与性质进行探讨。
一、三角形的定义
三角形是由三条线段(边)所组成的图形。其中,两条边之和大于第三条边,两角边之和大于第三个角,是构成三角形的基本条件。
二、三角形的分类
根据三角形边的长度,我们可以将三角形分为以下三种类型:
1.等边三角形
等边三角形是指三条边的长度完全相等的三角形。在等边三角形中,每个角都是60度。例如,如图1所示的三角形ABC就是一个等边三角形。

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形

初中数学难点之八:等腰三角形、等边三角形、直角三角形等腰三角形、等边三角形、直角三角形是初中数学重点考察内容,也是学习的难点。

一、等腰三角形的概念1. 定义有两条边相等的三角形叫做等腰三角形。

两条相等的边叫做腰,所夹的角叫做顶角,另一边叫做底边,底边与腰形成的两个角叫做底角。

2. 性质(1)等腰三角形是轴对称图形,底边中线是对称轴(底边的高、顶角的角的角平分线都是对称轴)(2)等腰三角形两个底角相等,简称等边对等角。

(3)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)两内角相等的三角形叫做等腰三角形(2)两个边相等的三角形叫做等腰三角形二、等边三角形1. 定义三条边都相等的三角形叫做等边三角形。

2. 性质(1)等边三角形有三条对称轴,中线是对称轴(2)等边三角形三个角相等,每个角都为60º(3)等边三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称三线合一。

3. 判定(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形叫做等边三角形(3)有一个内角是60º的等腰三角形是等边三角形。

三、直角三角形1. 定义有一个角是直角的三角形叫做直角三角形2. 性质(1)直角三角形两个锐角互余(2)直角三角形斜边上的中线等于斜边的一半(3)直角三角形中,30º角所对的直角边等于斜边的一半(4)勾股定理:a2+b2=c2(a、b为直角边,c为斜边)3. 判定(1)有一个角是直角的三角形,或者两个锐角和为90º的三角形为直角三角形。

(2)一边的中线等于这条边的一半,这个三角形是直角三角形。

(3)勾股定理逆定理:如果有a2+b2=c2(a、b、c为三角形的三个边),则三角行为直角三角形四、基础题型1. 例题1如图,边长为4的等边ΔABC中,D、E分别为AB、BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为?解:连接DE,因为:EF⊥AC,∠C=60º所以∠FEC=30º,因为:ΔABC为等边三角形,DE为中位线所以有:2. 考察知识点(1)等边三角形及内角为60º(2)三角形中位线(3)直角三角形30度内角所对直角边等于斜边的一半(4)直角三角形勾股定理3. 解题思路和技巧DG是非常孤立的,既不是中位线,也不平行某一边,即不是三角形的某一边,也不是规则四边形的边,很难下手,因此必须画辅助线把DG融入某个三角形内,因为D、E分别是所在边的中点,连接起来是三角形的中位线,因此连接DE,尝试解题。

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

2023年中考数学真题分项汇编(全国通用)等腰三角形与直角三角形(共26道)(学生版)

等腰三角形与直角三角形(共26道)一、单选题1(2023·江苏徐州·统考中考真题)如图,在△ABC中,∠B=90°,∠A=30°,BC=2,D为AB的中点.若点E在边AC上,且ADAB=DEBC,则AE的长为()A.1B.2C.1或32D.1或22(2023·甘肃兰州·统考中考真题)如图,在矩形ABCD中,点E为BA延长线上一点,F为CE的中点,以B为圆心,BF长为半径的圆弧过AD与CE的交点G,连接BG.若AB=4,CE=10,则AG= ()A.2B.2.5C.3D.3.53(2023·北京·统考中考真题)如图,点A、B、C在同一条线上,点B在点A,C之间,点D,E在直线AC同侧,AB<BC,∠A=∠C=90°,△EAB≌△BCD,连接DE,设AB=a,BC=b,DE=c,给出下面三个结论:①a+b<c;②a+b>a2+b2;③2a+b>c;上述结论中,所有正确结论的序号是()A.①②B.①③C.②③D.①②③4(2023·江苏无锡·统考中考真题)如图△ABC中,∠ACB=90°,AB=4,AC=x,∠BAC=α,O为AB中点,若点D为直线BC下方一点,且△BCD与△ABC相似,则下列结论:①若α=45°,BC与OD相交于E,则点E不一定是△ABD的重心;②若α=60°,则AD的最大值为27;③若α=60°,△ABC∽△CBD,则OD的长为23;④若△ABC∽△BCD,则当x=2时,AC+CD取得最大值.其中正确的为()A.①④B.②③C.①②④D.①③④5(2023·浙江·统考中考真题)如图,在四边形ABCD中,AD∥BC,∠C=45°,以AB为腰作等腰直角三角形BAE,顶点E恰好落在CD边上,若AD=1,则CE的长是()A.2B.2C.2D.126(2023·四川眉山·统考中考真题)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK⋅HD=2HE2.其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题7(2023·湖南·统考中考真题)七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为dm3.8(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.9(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.10(2023·湖北·统考中考真题)如图,△BAC ,△DEB 和△AEF 都是等腰直角三角形,∠BAC =∠DEB =∠AEF =90°,点E 在△ABC 内,BE >AE ,连接DF 交AE 于点G ,DE 交AB 于点H ,连接CF .给出下面四个结论:①∠DBA =∠EBC ;②∠BHE =∠EGF ;③AB =DF ;④AD =CF .其中所有正确结论的序号是.11(2023·山东·统考中考真题)如图,△ABC 是边长为6的等边三角形,点D ,E 在边BC 上,若∠DAE =30°,tan ∠EAC =13,则BD =.12(2023·山东日照·统考中考真题)如图,矩形ABCD 中,AB =6,AD =8,点P 在对角线BD 上,过点P 作MN ⊥BD ,交边AD ,BC 于点M ,N ,过点M 作ME ⊥AD 交BD 于点E ,连接EN ,BM ,DN .下列结论:①EM =EN ;②四边形MBND 的面积不变;③当AM :MD =1:2时,S △MPE =9625;④BM +MN+ND 的最小值是20.其中所有正确结论的序号是.13(2023·四川遂宁·统考中考真题)如图,以△ABC的边AB、AC为腰分别向外作等腰直角△ABE、△ACD,连结ED、BD、EC,过点A的直线l分别交线段DF、BC于点M、N,以下说法:①当AB=AC= BC时,∠AED=30°;②EC=BD;③若AB=3,AC=4,BC=6,则DE=23;④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)14(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B 分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为15(2023·江苏苏州·统考中考真题)如图,∠BAC=90°,AB=AC=32.过点C作CD⊥BC,延长CD,连接AE,ED.若ED=2AE,则BE=.(结果保留根号)CB到E,使BE=1316(2023·山西·统考中考真题)如图,在四边形ABCD中,∠BCD=90°,对角线AC,BD相交于点O.若AB=AC=5,BC=6,∠ADB=2∠CBD,则AD的长为.17(2023·湖北十堰·统考中考真题)在某次数学探究活动中,小明将一张斜边为4的等腰直角三角形ABC∠A=90°硬纸片剪切成如图所示的四块(其中D,E,F分别为AB,AC,BC的中点,G,H分别为DE,BF的中点),小明将这四块纸片重新组合拼成四边形(相互不重叠,不留空隙),则所能拼成的四边形中周长的最小值为,最大值为.三、解答题18(2023·北京·统考中考真题)在△ABC中、∠B=∠C=α0°<α<45°,AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图1,当点E在线段AC上时,求证:D是MC的中点;(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.19(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.20(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.21(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).22(2023·吉林长春·统考中考真题)如图①.在矩形ABCD.AB=3,AD=5,点E在边BC上,且BE=2.动点P从点E出发,沿折线EB-BA-AD以每秒1个单位长度的速度运动,作∠PEQ=90°,EQ交边AD或边DC于点Q,连续PQ.当点Q与点C重合时,点P停止运动.设点P的运动时间为t 秒.(t>0)(1)当点P和点B重合时,线段PQ的长为;(2)当点Q和点D重合时,求tan∠PQE;(3)当点P在边AD上运动时,△PQE的形状始终是等腰直角三角形.如图②.请说明理由;(4)作点E关于直线PQ的对称点F,连接PF、QF,当四边形EPFQ和矩形ABCD重叠部分图形为轴对称四边形时,直接写出t的取值范围.23(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.24(2023·重庆·统考中考真题)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB =4,直接写出PQ+QF的最小值.25(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四讲等腰三角形和直角三角形(学生版本)
第四讲等腰三角形和直角三角形
✧知识要点
◆等腰三角形
1.定义:有两边的三角形叫做等腰三角
形,其中的三角形叫做等边三角形
2.等腰三角形的性质:
⑴等腰三角形的两腰等腰三角形的两个底角简称为
⑵等腰三角形的顶角平分线、互相重合,简称为
⑶等腰三角形是轴对称图形,它有条对称轴,是
3.等腰三角形的判定:
⑴定义法:有两边相等的三角形是等腰三角形
⑵有两相等的三角形是等腰三角形,简称
4.等边三角形的性质:
⑴等边三角形的每个内角都都等于
⑵等边三角形也是对称图形,它有条对称轴
为a、b斜边为c则a、b、c满足
逆定理:若一个三角形的三边a、b、c 满足则这个三角形是直角三角形
2、勾股数,列举常见的勾股数三组、、
3、直角三角形的性质:
⑴直角三角形两锐角
(2)在直角三角形中如果有一个锐角是300,那么它的对边是边的一半
4、直角三角形的判定:
勾股定理的逆定理外
定义法:⑴有一个角是的三角形是直角三角形
⑵有两个角是的三角形是直角三角形
基础过关
1、2012•肇庆)等腰三角形两边长分别为4和
8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20 2、(2012•江西)等腰三角形的顶角为80°,
则它的底角是()
A.20°B.50°C.60°D.80°
3、 直角三角形的两直角边分别为5、12,则斜边
上的高为
( )
(A ) 6 (B ) 8 (C ) 1380
(D ) 1360 典例剖析
考点一:等腰三角形性质的运用
例1 (2012•襄阳)在等腰△ABC 中,∠A=30°,AB=8,则AB 边上的高CD 的长是 .
对应训练
1.(2012•广安)已知等腰△ABC中,AD⊥BC于
BC,则△ABC底角的度数为()点D,且AD=1
2
A.45°B.75°C.45°或75°
D.60°
考点二:线段垂直平分线
例2 (2012•毕节地区)如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E 是垂足,连接CD,若BD=1,则AC的长是()A.23 B.2 C.43 D.4
考点三:等边三角形的判定与性质
对应训练
3.(2012•湘潭)如图,△ABC
是边长为3的等边三角形,将
△ABC沿直线BC向右平移,使
B点与C点重合,得到△DCE,
连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.
考点四:角的平分线
例4 (2012•梅州)如图,
∠AOE=∠BOE=15°,EF∥OB,
EC⊥OB,若EC=1,则EF= .
对应训练
4.(2012•常德)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,DC=2,则D到AB边的距离是
考点五:勾股定理
例5 (2012•黔西南州)如图,在
△ABC中,∠ACB=90°,D是BC的中
点,DE⊥BC,CE∥AD,若AC=2,CE=4,
则四边形ACEB的周长为.
课后练习
1、2012•攀枝花)已知实数x,y满足
|x-4|+8
y =0,则以x,y的值为两边长的等腰三角形的周长是()
A.20或16 B.20 C.16
D.以上答案均不对
2、2012•本溪)如图在直角△ABC中,
∠BAC=90°,AB=8,AC=6,DE是AB
边的垂直平分线,垂足为D,交边BC于点E,连接AE,则△ACE的周长为()
A.16 B.15 C.14 D.13
3、(2012•荆门)如图,△ABC是等边
三角形,P是∠ABC的平分线BD上一点,
PE⊥AB于点E,线段BP的垂直平分线交BC
于点F,垂足为点Q.若BF=2,则PE的长()A.2 B.3.3D.3。

相关文档
最新文档