2019年人大附中新高一分班考试数学试题-真题2019.8
2019年重点高中高一新生分班考试数学卷含答案(汇编)

2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B. C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。
2019年人大附中新初一入学分班考试数学试题-真题-2019.8

2019年人大附中新初一入学分班考试数学试题-真题2019.8姓名学校成绩一、选择题(本大题共13小题,共52分)1.判断下列各式的值,何者最大?()A.25×132-152B.16×172-182C.9×212-132D.4×312-1222.表是A、B、C、D四组数据.判断哪一组数据的平均数(算术平均数)最小()3.如图为某餐厅的价目表,今日每份餐点价格均为价目表价格的九折.若恂恂今日在此餐厅点了橙汁鸡丁饭后想再点第二份餐点,且两份餐点的总花费不超过200元,则她的第二份餐点最多有几种选择?()A.5B.7C.9D.114.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?()A.24B.28C.31D.325.已知A 地在B 地的西方,且有一以A 、B 两地为端点的东西向直线道路,其全长为400公里.今在此道路上距离A 地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A 地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A 地多少公里?( )A . 309B . 316C . 336D .3396.已知果农贩卖的西红柿,其重量与价钱成线型函数关系,今小华向果农买一竹篮的西红柿,含竹篮秤得总重量为15公斤,付西红柿的钱250元.若他再加买0.5公斤的西红柿,需多付10元,则空竹篮的重量为多少公斤?( )A .1.5B .2C .2.5D .37.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3︰4︰5.若不计杯子厚度,则甲杯内水的高度变为多少公分?( )A .5.4B .5.7C .7.2D .7.5第7题图第8题图8.图为歌神KTV 的两种计费方案说明.若晓莉和朋友们打算在此KTV 的一间包厢里连续欢唱6小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们至少有多少人在同一间包厢里欢唱?( )A .6B .7C .8D .99.阿伟的游戏机充满电后,可用来连续播放音乐36个小时或连续玩游戏6个小时.若游戏机在早上7点充满电后,阿伟马上使用游戏机播放音乐直到下午3点,并从下午3点继续使用游戏机玩游戏直到它没电,则他的游戏机何时没电?( ) A . 晚上7点20分 B . 晚上7点40分 C .晚上8点20分 D . 晚上8点40分10.某天,5个同学去打羽球,从上午8:55一直到上午11:15.若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为几分钟?( )A . 112B . 136C . 140D . 17511.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?( )A . 5B . 6C . 7D . 10第12题图12.如图,一圆桌周围有20个箱子,依顺时针方向编号1~20.小明在1号箱子中丢入一颗红球后,沿着圆桌依顺时针方向行走,每经过一个箱子就依下列规则丢入一颗球:1. 若前一个箱子丢红球,经过的箱子就丢绿球.2. 若前一个箱子丢绿球,经过的箱子就丢白球.3. 若前一个箱子丢白球,经过的箱子就丢红球.已知他沿着圆桌走了100圈,求4号箱内有几颗红球?( ) A . 33B . 34C . 99D . 1003 24 6第11题图13.将图(1)的正方形色纸沿其中一条对角线对折后,再沿原正方形的另一条对角线对折,如图(2)所示.最后将图(2)的色纸剪下一纸片,如图(3)所示.若下列有一图形为图(3)的展开图,则此图为何?( )二、填空题(本大题共8小题,共24分)14.计算48÷(158+3524)= . 15.若a :b =3:2,b :c =5:4,则a :b :c = .16.若A=101×9996×10005,B=10004×9997×101,则A ﹣B= .17.以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.根据上文,判断布丁和棒棒糖的单价相差 元.18.有30张分别标示1~30号的纸牌.先将号码数为3的倍数的纸牌拿掉,然后从剩下的纸牌中,拿掉号码数为2的倍数的纸牌.若将最后剩下的纸牌,依号码数由小到大排列,则第5张纸牌的号码为 .19.某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间为 分钟.图(1) 图(2) 图(3)(A) (B) (C) (D)20.图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为克.21.图(①)为一正面白色,反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上黏贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图(②)所示.若图(②)中白色与灰色区域的面积比为8:3,图(②)纸片的面积为33,则图(①)纸片的面积为.三、解答题(本大题共2小题,共24分)22.图(①)为雅婷左手拿着3张深灰色与2张浅灰色的牌迭在一起的情形.以下是她每次洗牌的三个步骤:步骤一:用右手拿出迭在最下面的2张牌,如图(②).步骤二:将右手拿的2张牌依序交错插入左手拿的3张牌之间,如图(③).步骤三:用左手拿着颜色顺序已改变的5张牌,如图(④).若依上述三个步骤洗牌,从图(①)的情形开始洗牌若干次后,其颜色顺序会再次与图(①)相同,请写出一个洗牌次数可能的值,并得到洗牌次数的规律.23.大冠买了一包宣纸练习书法,每星期一写1张,每星期二写2张,每星期三写3张,每星期四写4张,每星期五写5张,每星期六写6张,每星期日写7张.若大冠从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数已超过120张,则5月30日可能为星期几?请求出所有可能的答案并完整说明理由.。
2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟,试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.卷 Ⅰ一.选择题(本题10小题,共30分.选出各题中唯一正确选项,不选、多选、错选,均不得分)1.﹣8的绝对值等于( )A .B .﹣8C .8D . 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.下面图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .4.如图是一个正方体,则它的表面展开图可以是( )5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .B .C .D . 6.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,,∠AOB=60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.如图,已知∠AOB=30°,以O为圆心、a为半径画弧交OA、OB于A1、B1,再分别以A1、B1为圆心、a为半径画弧交于点C1,以上称为一次操作.再以C1为圆心a为半径重新操作,得到C2.重复以上步骤操作,记最后一个两弧的交点(离点O最远)为C K,则点C K到射线OB的距离为()A. B.C.a D.卷Ⅱ二.填空题(本题有6小题,每题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.因式分解:4m3﹣m = .13.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为 cm.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.16.如图在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度,按照这种移动规律移动下去,第n次移动到点A n,到达点A如果点A n与原点的距离不小于50,那么n的最小值是,n取最小值时A n表示的数是三.解答题(本题有8小题,第17~19题每题6分,第20、21题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2)解方程:18.(6分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.七年级参加社会实践活动天数的频数分布表七年级参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请估计该市七年级学生参加社会实践活动不少于5天的人数.19.(6分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.(8分)如图,矩形纸片ABCD中,AD=5,S ABCD=15,在边BC上取一点F,使BF=4,剪下△ABF,将它平移至△DCE的位置,拼成四边形AFED.①求证四边形AFED是菱形;②求四边形AFED两条对角线的长.21.(8分) 某市需要新建一批公交车候车亭,设计师设计了如图1所示产品.产品示意图的侧面如图2,其中支柱长DC 为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 为长1.5m ,BC 为镶接柱,点B 是顶棚的镶接点,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E 在支柱DC 的延长线上,此时经测量得镶接点B与点E 的距离为0.35m .( , ,精确到0.01m .)(1)求E 到BC 的距离和EC 长度;(2)求点A 到地面的距离.22.(10分)如图,已知反比例函数(x >0,k 是常数)的图象经过点A (1,4),点 B (m ,n ),其中m >1,AM⊥x 轴,垂足为M ,BN⊥y 轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标.23.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线 经过原点O ,与x 轴的另一个交点为A ,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】图②中过点B (0,1)作直线l 平行x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m 的取值范围.24.(12分)如图,在每一个四边形ABCD 中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.G(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,P在四边形ABCD的边AD上运动,作出使∠BPC最大的点P,说明此时∠BPC最大的理由;并求出cos∠BPC的值;。
2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷班级: 姓名: 成绩: 一.选择题(本大题10小题,每小题3分,共30分) 1. 16的算术平方根是( )A. ±4B.4C.-4D.±22. 2018年广东省经济保持平稳健康发展,国家统计局核定,其实现地区生产总值(CDP)973000000元将数据973000000000用科学记数法表示为( ) A.9.73×1011 B.97.3×1011 C.9.73×1012 D.0.973×1033. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B C D 4. 下列计算中,正确的是( )A. 0(5)0-=B. 347x x x +=C. 23246()a b a b -=- D. 1222a a a -∙=5. 若一个多边形的内角和是1080°,则这个多边形的边数为( ) A.6 B.7 C.8 D.106. 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )A.1B. 14C. 12D. 347. 如图,在△ABC 中,点D,E 分别在边AB,AC 上,下列条件中不能判断△ABC △AED 的是( )A .∠AED=∠B B .∠ADE=∠C C .D .8. 下列一元二次方程中,没有实数根的是( )A.x 2-2x=0B.x 2+4x-1=0C.2x 2-4x+3=0D.3x 2=5x-2 9. 等腰三角形的周长为11cm,一边长为3cm,则另两边长为( )A. 3cm,5cmB. 4cm,4cmC.3cm,5cm 或4cm,4cmD.以上都不对 10.如图,过点A(4、5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B,C 两点,若函数(0)ky x x=>的图象与△ABC 的边有公共点,则A 的取值范围是( ) A. 5≤k ≤20 B. 8≤k ≤20 C. 5≤k ≤8 D. 9≤k ≤20二.填空题(本大題6小题,每小题4分,共24分)11.一组数据-3、2、2、0、2、1的众数是 。
2019-2020学年北京市人大附中高三(上)开学数学试卷(8月份)

2019-2020学年北京市人大附中高三(上)开学数学试卷(8月份)试题数:20.满分:01.(单选题.3分)设i为虚数单位.则复数z=1-i的模|z|=()A.1B. $\sqrt{2}$C.2D. $2\sqrt{2}$2.(单选题.3分)已知全集U=R.若集合A={x|x2-x<0}.则∁U A=()A.{x|x≤0.或x≥1}B.{x|x<0.或x>1}C.{x|0<x<1}D.{x|x≥1}3.(单选题.3分)命题p:∀x>0.e x>1.则¬p是()A.∃x0≤0. ${e^{x_0}}≤1$B.∃x0>0. ${e^{x_0}}≤1$C.∀x>0.e x≤1D.∀x≤0.e x≤14.(单选题.3分)若 $\overrightarrow{a}$ . $\overrightarrow{b}$ 是两个非零的平面向量.则“| $\overrightarrow{a}$ |=| $\overrightarrow{b}$ |”是“( $\overrightarrow{a}$ +$\overrightarrow{b}$ )•( $\overrightarrow{a}$ - $\overrightarrow{b}$ )=0”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件5.(单选题.3分)已知a=ln $\frac{1}{2}$ .b=sin $\frac{1}{2}$ .c= ${2}^{-\frac{1}{2}}$ .则a.b.c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(单选题.3分)一个四棱锥的三视图如图所示.那么对于这个四棱锥.下列说法中正确的是()A.最长棱的棱长为 $\sqrt{6}$B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形7.(单选题.3分)已知函数f(x)=|lnx|-1.g(x)=-x2+2x+3.用min{m.n}表示m.n中的最小值.设函数h(x)=min{f(x).g(x)}.则函数h(x)的零点个数为()A.1B.2C.3D.48.(单选题.3分)已知抛物线C:y2=4x.点P(m.0).O为坐标原点.若在抛物线C上存在一点Q.使得∠OQP=90°.则实数m的取值范围是()A.(4.8)B.(4.+∞)C.(0.4)D.(8.+∞)9.(填空题.3分)双曲线C: $\frac{x^2}{4}$ -y2=1的离心率是___ ;渐近线方程是___ .10.(填空题.3分)若等比数列{a n}满足a1+a3=5.且公比q=2.则a3+a5=___ .11.(填空题.3分)在△ABC中.a=3. $b=\sqrt{13}$ .B=60°.则c=___ ;△ABC的面积为___ .12.(填空题.3分)已知圆C的圆心位于第二象限且在直线y=2x+1上.若圆C与两个坐标轴都相切.则圆C的标准方程为___ .13.(填空题.3分)已知函数 $f(x)=asinx-2\sqrt{3}cosx$ 的一条对称轴为 $x=-\frac{π}{6}.f({x_1})+f({x_2})=0$ .且函数f(x)在(x1.x2)上具有单调性.则|x1+x2|的最小值为___ .14.(填空题.3分)函数f(x)=ae x+be-x(a∈R+.b∈R+).已知f(x)的最小值为4.则点(a.b)到直线 $2x+y-\sqrt{2}=0$ 距离的最小值为___ .15.(问答题.0分)设函数$f(x)=2sin({ωx})\bullet cos({ωx})-2\sqrt{3}{cos^2}({ωx})+\sqrt{3}({ω>0})$ 的图象上相邻最高点与最低点的距离为$\sqrt{{π^2}+16}$.(Ⅰ)求函数f(x)的周期及ω的值;(Ⅱ)求函数f(x)的单调递增区间.16.(问答题.0分)某校高三1班共有48人.在“六选三”时.该班共有三个课程组合:理化生.理化历.史地政.其中.选择理化生的共有24人.选择理化历的共有16人.其余人选择了史地政.现采用分层抽样的方法从中抽取6人.调查他们每天完成作业的时间.(Ⅰ)应从这三个组合中分别抽取多少人?(Ⅱ)若抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上.2人在3小时以内.先从这6人中随机抽取3人进行座谈.用X表示抽取的3人中每天完成作业的时间超过3小时的人数.求随机变量X的分布列和数学期望.17.(问答题.0分)在四棱锥P-ABCD中.平面ABCD⊥平面PCD.底面ABCD为梯形.AB ||CD.AD⊥PC.M为PD中点.过A.B.M的平面与PC交于$N.DC=2\sqrt{3}.DA=PD=2.AB=1.∠PDC={120°}$ .(Ⅰ)求证:N为PC中点;(Ⅱ)求证:AD⊥平面PCD;(Ⅲ)T为PB中点.求二面角T-AC-B的大小.18.(问答题.0分)已知函数 $f(x)=\frac{1}{3}{x^3}-\frac{5}{2}{x^2}+a|x|-1$ .(Ⅰ)当a=6时.求函数f(x)在(0.+∞)上的单调区间;(Ⅱ)求证:当a<0时.函数f(x)既有极大值又有极小值.19.(问答题.0分)已知椭圆C $:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$ 的左右顶点分别为A.B.左焦点为F.O为原点.点P为椭圆C上不同于A.B的任一点.若直线PA与PB的斜率之积为 $-\frac{3}{4}$ .且椭圆C经过点 $({1.\frac{3}{2}})$(Ⅰ)求椭圆C的方程;(Ⅱ)若P点不在坐标轴上.直线PA.PB交y轴与M.N两点;若直线OT与过点MN为直径的圆相切.切点为T.问切线长|OT|是否为定值.若是.求出定值;若不是.请说明理由.20.(问答题.0分)定义:给定整数i.如果非空集合A满足如下3个条件:① A⊆N*;② A≠{1};③ ∀x.y∈N*.若x+y∈A.则xy-i∈A.则称集合A为“减i集”(Ⅰ)P={1.2}是否为“减0集”?是否为“减1集”?(Ⅱ)证明:不存在“减2集”;(Ⅲ)是否存在“减1集”?如果存在.求出所有的“减1集”;如果不存在.请说明理由.2019-2020学年北京市人大附中高三(上)开学数学试卷(8月份)参考答案与试题解析试题数:20.满分:01.(单选题.3分)设i为虚数单位.则复数z=1-i的模|z|=()A.1B. $\sqrt{2}$C.2D. $2\sqrt{2}$【正确答案】:B【解析】:若复数z=a+bi.则|z|= $\sqrt{{a}^{2}{+b}^{2}}$ .直接代入求出即可.【解答】:解:|z|= $\sqrt{{1}^{2}{+(-1)}^{2}}$ = $\sqrt{2}$ .故选:B.【点评】:本题考查了求复数的模问题.是一道基础题.2.(单选题.3分)已知全集U=R.若集合A={x|x2-x<0}.则∁U A=()A.{x|x≤0.或x≥1}B.{x|x<0.或x>1}C.{x|0<x<1}D.{x|x≥1}【正确答案】:A【解析】:求出A中不等式的解集确定出A.根据全集U=R.求出A的补集即可.【解答】:解:由A中不等式变形得:x(x-1)<0.解得:0<x<1.即A={x|0<x<1}.∵U=R.∴∁U A={x|x≤0.或x≥1}.故选:A.【点评】:此题考查了补集及其运算.熟练掌握补集的定义是解本题的关键.3.(单选题.3分)命题p:∀x>0.e x>1.则¬p是()A.∃x0≤0. ${e^{x_0}}≤1$B.∃x0>0. ${e^{x_0}}≤1$C.∀x>0.e x≤1D.∀x≤0.e x≤1【正确答案】:B【解析】:直接利用全称命题的否定是特称命题写出结果即可.【解答】:解:因为全称命题的否定是特称命题.所以命题p:∀x>0.e x>1.则¬p是∃x0>0. ${e^{x_0}}≤1$.故选:B.【点评】:本题考查特称命题与全称命题的否定关系.基本知识的考查.4.(单选题.3分)若 $\overrightarrow{a}$ . $\overrightarrow{b}$ 是两个非零的平面向量.则“| $\overrightarrow{a}$ |=| $\overrightarrow{b}$ |”是“( $\overrightarrow{a}$ +$\overrightarrow{b}$ )•( $\overrightarrow{a}$ - $\overrightarrow{b}$ )=0”的()A.充分且不必要条件B.必要且不充分条件C.充要条件D.既不充分也不必要条件【正确答案】:C【解析】:根据向量数量积的关系以及充分条件和必要条件的定义进行判断即可.【解答】:解:若“( $\overrightarrow{a}$ + $\overrightarrow{b}$ )•( $\overrightarrow{a}$ - $\overrightarrow{b}$ )=0.则 $\overrightarrow{a}$2-$\overrightarrow{b}$2=0.即 $\overrightarrow{a}$2= $\overrightarrow{b}$2.则|$\overrightarrow{a}$ |=| $\overrightarrow{b}$ |.反之亦然.充分性成立.故“| $\overrightarrow{a}$ |=| $\overrightarrow{b}$ |”是“( $\overrightarrow{a}$ +$\overrightarrow{b}$ )•( $\overrightarrow{a}$ - $\overrightarrow{b}$ )=0”的充要条件. 故选:C.【点评】:本题主要考查充分条件和必要条件的判断.根据向量数量积的公式是解决本题的关键.5.(单选题.3分)已知a=ln $\frac{1}{2}$ .b=sin $\frac{1}{2}$ .c= ${2}^{-\frac{1}{2}}$ .则a.b.c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a【正确答案】:A【解析】:判断a.b.c的值的范围.即可判断三个数的大小.【解答】:解:因为a=ln $\frac{1}{2}$ <0.b=sin $\frac{1}{2}$ $∈(0.\frac{1}{2})$ .c= ${2}^{-\frac{1}{2}}$ = $\frac{\sqrt{2}}{2}$ > $\frac{1}{2}$ .所以a<b<c.故选:A.【点评】:本题考查大小比较.估计表达式的值的范围是解题的关键.6.(单选题.3分)一个四棱锥的三视图如图所示.那么对于这个四棱锥.下列说法中正确的是()A.最长棱的棱长为 $\sqrt{6}$B.最长棱的棱长为3C.侧面四个三角形中有且仅有一个是正三角形D.侧面四个三角形都是直角三角形【正确答案】:D【解析】:由三视图可知:该几何体如图所示.PA⊥底面ABCD.PA=2.底面是一个直角梯形.其中BC || AD.AB⊥AD.BC=AB=1.AD=2.可得△PAD.△PAB.△PBC是直角三角形.再利用三垂线定理可得△PCD是直角三角形.即可得出.【解答】:解:由三视图可知:该几何体如图所示.PA⊥底面ABCD.PA=2.底面是一个直角梯形.其中BC || AD.AB⊥AD.BC=AB=1.AD=2.可得△PAD.△PAB.△PBC是直角三角形.取AD的中点O.连接OC.AC.可得四边形ABCO是平行四边形.∴OC=OD=OA=1.∴CD⊥AC.∵PA⊥底面ABCD.∴CD⊥PC.因此△PCD是直角三角形.综上可得:四棱锥的侧面四个三角形都是直角三角形.故选:D.【点评】:本题考查了线面垂直的判定与性质定理、三垂线定理的应用.考查了推理能力与计算能力.属于基础题.7.(单选题.3分)已知函数f(x)=|lnx|-1.g(x)=-x2+2x+3.用min{m.n}表示m.n中的最小值.设函数h(x)=min{f(x).g(x)}.则函数h(x)的零点个数为()A.1B.2C.3D.4【正确答案】:C【解析】:根据min{m.n}的定义.作出两个函数的图象.利用数形结合进行求解即可.【解答】:解:作出函数f(x)和g(x)的图象如图.两个图象的下面部分图象.由g(x)=-x2+2x+3=0.得x=-1.或x=3.由f(x)=|lnx|-1=0.得x=e或x= $\frac{1}{e}$ .∵g(e)>0.∴当x>0时.函数h(x)的零点个数为3个.故选:C.【点评】:本题主要考查函数零点个数的判断.利用数形结合是解决本题的关键.注意函数定义域的作用.8.(单选题.3分)已知抛物线C:y2=4x.点P(m.0).O为坐标原点.若在抛物线C上存在一点Q.使得∠OQP=90°.则实数m的取值范围是()A.(4.8)B.(4.+∞)C.(0.4)D.(8.+∞)【正确答案】:B【解析】:求出以OP为直径的圆的方程.y2=4x代入整理.利用在抛物线C上存在一点Q.使得∠OQP=90°.即可求出实数m的取值范围.【解答】:解:以OP为直径的圆的方程为(x- $\frac{m}{2}$ )2+y2= $\frac{{m}^{2}}{4}$ . y2=4x代入整理可得x2+(4-m)x=0.∴x=0或x=m-4.∵在抛物线C上存在一点Q.使得∠OQP=90°.∴m-4>0.∴m>4.故选:B.【点评】:本题考查抛物线、圆的方程.考查学生的计算能力.比较基础.9.(填空题.3分)双曲线C: $\frac{x^2}{4}$ -y2=1的离心率是___ ;渐近线方程是___ .【正确答案】:[1] $\frac{\sqrt{5}}{2}$ ; [2]y= $±\frac{1}{2}$ x【解析】:求出双曲线的a.b.c.运用渐近线方程和离心率公式即可得到.【解答】:解:双曲线C: $\frac{x^2}{4}$ -y2=1的a=2.b=1.c= $\sqrt{4+1}$ = $\sqrt{5}$ .则e= $\frac{c}{a}$ = $\frac{\sqrt{5}}{2}$ .渐近线方程为y= $±\frac{1}{2}$ x.故答案为: $\frac{\sqrt{5}}{2}$ .y= $±\frac{1}{2}$ x.【点评】:本题考查双曲线的方程和性质.考查渐近线方程和离心率的求法.考查运算能力.属于基础题.10.(填空题.3分)若等比数列{a n}满足a1+a3=5.且公比q=2.则a3+a5=___ .【正确答案】:[1]20【解析】:利用等比数列的通项公式及其性质即可得出.【解答】:解:a3+a5=q2(a1+a3)=22×5=20.故答案为:20.【点评】:本题考查了等比数列的通项公式及其性质.考查了推理能力与计算能力.属于中档题.11.(填空题.3分)在△ABC中.a=3. $b=\sqrt{13}$ .B=60°.则c=___ ;△ABC的面积为___ .【正确答案】:[1]4; [2]3 $\sqrt{3}$【解析】:根据已知和余弦定理可求c的值.从而有三角形的面积公式解得所求.【解答】:解:由余弦定理可得:cosB= $\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$ .代入已知可得: $\frac{1}{2}$ = $\frac{9{+c}^{2}-13}{6c}$ .解得c=4.c=-1(舍去).∴S△ABC= $\frac{1}{2}$ acsinB=3 $\sqrt{3}$ .故答案为:4.3 $\sqrt{3}$ .【点评】:本题主要考查了余弦定理.三角形面积公式的应用.属于基本知识的考查.12.(填空题.3分)已知圆C的圆心位于第二象限且在直线y=2x+1上.若圆C与两个坐标轴都相切.则圆C的标准方程为___ .【正确答案】:[1] ${(x+\frac{1}{3})^2}+{(y-\frac{1}{3})^2}=\frac{1}{9}$【解析】:由已知得x=y或x=-y.圆心在y=2x+1上.又圆心位于第二象限.从而得到圆心坐标为:(- $\frac{1}{3}$ . $\frac{1}{3}$ ).再由半径就是圆心到切线距离.能求出圆的标准方程.【解答】:解:∵与坐标轴相切.∴圆心到两个坐标轴距离相等.∴x=y或x=-y.又圆心在y=2x+1上.若x=y.则x=y=-1;若x=-y.则x=- $\frac{1}{3}$ .y= $\frac{1}{3}$ .所以圆心是(-1.-1)或(- $\frac{1}{3}$ . $\frac{1}{3}$ ).∵圆心位于第二象限.∴圆心坐标为:(- $\frac{1}{3}$ . $\frac{1}{3}$ ).∵半径就是圆心到切线距离.即到坐标轴距离.∴r= $\frac{1}{3}$ .∴所求圆的标准方程为: ${(x+\frac{1}{3})^2}+{(y-\frac{1}{3})^2}=\frac{1}{9}$ .故答案为: ${(x+\frac{1}{3})^2}+{(y-\frac{1}{3})^2}=\frac{1}{9}$ .【点评】:本题考查圆的标准方程的求法.是基础题.解题时要认真审题.注意圆的性质的合理运用.13.(填空题.3分)已知函数 $f(x)=asinx-2\sqrt{3}cosx$ 的一条对称轴为 $x=-\frac{π}{6}.f({x_1})+f({x_2})=0$ .且函数f(x)在(x1.x2)上具有单调性.则|x1+x2|的最小值为___ .【正确答案】:[1] $\frac{2π}{3}$【解析】:利用辅助角公式化简.对称为x=- $\frac{π}{6}$ .f(x1)+f(x2)=0.且函数f(x)在(x1.x2)上具有单调性.可得对称中心.即可求出最小值.【解答】:解:函数f(x)=asinx-2 $\sqrt{3}$ cosx= $\sqrt{{a}^{2}+12}sin(x+θ).\;\;\;其中tanθ=-\frac{2\sqrt{3}}{a}$ .函数f(x)的一条对称轴为x=- $\frac{π}{6}$ .可得 $f(-\frac{π}{6})=-\frac{1}{2}\;a-2\sqrt{3}×\frac{\sqrt{3}}{2}=±\sqrt{{a}^{2}+12}$ .解得a=2.∴ $θ=-\frac{π}{3}$;对称中心横坐标由x- $\frac{π}{3}=kπ(k∈z).\;可得x=kπ+\frac{π}{3}(k∈z)$;又f(x1)+f(x2)=0.且函数f(x)在(x1.x2)上具有单调性.∴ $|\;{x}_{1}+{x}_{2}|=2|k+\frac{π}{3}|$ .当k=0时.可得 $|{x}_{1}+{x}_{2}|=\frac{2π}{3}$.故答案为: $\frac{2π}{3}$.【点评】:本题考查了正弦函数的最值和单调性的综合应用.属于中档题.14.(填空题.3分)函数f(x)=ae x+be-x(a∈R+.b∈R+).已知f(x)的最小值为4.则点(a.b)到直线 $2x+y-\sqrt{2}=0$ 距离的最小值为___ .【正确答案】:[1] $\frac{3\sqrt{10}}{5}$【解析】:利用基本不等式可得f(x)≥ $2\sqrt{ab}$ =4.然后用点到直线的距离公式求出点(a.b)到直线2x+y- $\sqrt{2}$ =0距离.计算其最小值即可.【解答】:解:∵a∈R+.b∈R+.∴f(x)=ae x+be-x≥ $2\sqrt{ae^x\bulletbe^{-x}}$ = $2\sqrt{ab}$ . 当且仅当ae x=be-x.即ae2x=b时取等号.∴ $f(x)_{min}=2\sqrt{ab}=4$ .∴ab=4.∴点(a.b)到直线 $2x+y-\sqrt{2}=0$ 距离.d= $\frac{|2a+b-\sqrt{2}|}{\sqrt{2^2+1^2}}$ ≥ $\frac{|2\sqrt{2ab}-\sqrt{2}|}{\sqrt{5}}$ = $\frac{3\sqrt{2}}{\sqrt{5}}$ = $\frac{3\sqrt{10}}{5}$ .∴ $d_{min}=\frac{3\sqrt{10}}{5}$ .故答案为: $\frac{3\sqrt{10}}{5}$ .【点评】:本题考查了基本不等式的应用和点到直线的距离公式.考查了转化思想.属中档题.15.(问答题.0分)设函数$f(x)=2sin({ωx})\bullet cos({ωx})-2\sqrt{3}{cos^2}({ωx})+\sqrt{3}({ω>0})$ 的图象上相邻最高点与最低点的距离为$\sqrt{{π^2}+16}$.(Ⅰ)求函数f(x)的周期及ω的值;(Ⅱ)求函数f(x)的单调递增区间.【正确答案】:【解析】:(Ⅰ)利用辅助角公式进行化简.结合条件求出ω的值即可.(Ⅱ)利用三角函数的单调性进行求解即可.【解答】:解:(Ⅰ)$f(x)=2sin({ωx})\bullet cos({ωx})-2\sqrt{3}{cos^2}({ωx})+\sqrt{3}({ω>0})$=sin2ωx- $\sqrt{3}$ cos2ωx=2sin(2ωx- $\frac{π}{3}$).则函数的周期T= $\frac{2π}{2ω}$ = $\frac{π}{ω}$ .振幅A=2.∵图象上相邻最高点与最低点的距离为 $\sqrt{{π^2}+16}$.∴A2+( $\frac{T}{4}$ )2=( $\frac{\sqrt{{π}^{2}+16}}{2}$)2.即4+( $\frac{T}{4}$ )2= $\frac{{π}^{2}+16}{4}$ = $\frac{{π}^{2}}{4}$ +4.即( $\frac{T}{4}$ )2= $\frac{{π}^{2}}{4}$ .即 $\frac{T}{4}$ = $\frac{π}{2}$ .得T=2π= $\frac{π}{ω}$ .得ω= $\frac{1}{2}$ .故函数f(x)的周期为2π.ω= $\frac{1}{2}$ .(Ⅱ)由(Ⅰ)知f(x)=2sin(x- $\frac{π}{3}$).由2kπ- $\frac{π}{2}$≤x- $\frac{π}{3}$≤2kπ+ $\frac{π}{2}$ .k∈Z.得2kπ- $\frac{π}{6}$≤x≤2kπ+ $\frac{5π}{6}$ .k∈Z.即函数的单调递增区间为[2kπ- $\frac{π}{6}$ .2kπ+ $\frac{5π}{6}$ ].k∈Z.【点评】:本题主要考查三角函数的图象和性质.结合辅助角公式进行化简求出ω的值是解决本题的关键.16.(问答题.0分)某校高三1班共有48人.在“六选三”时.该班共有三个课程组合:理化生.理化历.史地政.其中.选择理化生的共有24人.选择理化历的共有16人.其余人选择了史地政.现采用分层抽样的方法从中抽取6人.调查他们每天完成作业的时间.(Ⅰ)应从这三个组合中分别抽取多少人?(Ⅱ)若抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上.2人在3小时以内.先从这6人中随机抽取3人进行座谈.用X表示抽取的3人中每天完成作业的时间超过3小时的人数.求随机变量X的分布列和数学期望.【正确答案】:【解析】:(Ⅰ)利用分层抽样的性质直接求解.(Ⅱ)X的可能取值为1.2.3.分别求出相应的概率.由此能求出随机变量X的分布列和数学期望.【解答】:解:(Ⅰ)某校高三1班共有48人.在“六选三”时.选择理化生的共有24人.选择理化历的共有16人.其余人选择了史地政.现采用分层抽样的方法从中抽取6人.调查他们每天完成作业的时间.应从选择理化生的组合中抽取:6× $\frac{24}{48}$ =3人.从选择理化历的组合中抽取:6× $\frac{16}{48}$ =2人.从选择史地政的组合中抽取:6× $\frac{48-24-16}{48}$ =1人.(Ⅱ)抽出的6人中有4人每天完成六科(含语数英)作业所需时间在3小时以上.2人在3小时以内.先从这6人中随机抽取3人进行座谈.用X表示抽取的3人中每天完成作业的时间超过3小时的人数.则X的可能取值为1.2.3.P(X=1)= $\frac{{C}_{4}^{1}{C}_{2}^{2}}{{C}_{6}^{3}}$ = $\frac{1}{5}$ .P(X=2)= $\frac{{C}_{4}^{2}{C}_{2}^{1}}{{C}_{6}^{3}}$ = $\frac{3}{5}$ .P(X=3)= $\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$ = $\frac{1}{5}$ .∴随机变量X的分布列为:【点评】:本题考查分层抽样的求法.考查离散型随机变量的分布列的求法.考查古典概型、排列组合等基础知识.考查运算求解能力.是中档题.17.(问答题.0分)在四棱锥P-ABCD中.平面ABCD⊥平面PCD.底面ABCD为梯形.AB ||CD.AD⊥PC.M为PD中点.过A.B.M的平面与PC交于$N.DC=2\sqrt{3}.DA=PD=2.AB=1.∠PDC={120°}$ .(Ⅰ)求证:N为PC中点;(Ⅱ)求证:AD⊥平面PCD;(Ⅲ)T为PB中点.求二面角T-AC-B的大小.【正确答案】:【解析】:(Ⅰ)推导出AB || 平面PCD.从而MN || AB.MN || CD.再由M为PD中点.能证明N 为PC中点.(Ⅱ)在平面PCD中过点D作DH⊥DC.交PC于H.证明DH⊥平面ABCD.推出DH⊥AD.然后证明AD⊥平面PCD.(Ⅲ)推导出AD⊥CD.DH⊥CD.DH⊥AD.以D为原点.DA.DC.DH所在直线分别为x.y.z轴.建立空间直角坐标系.利用向量法能求出二面角T-AC-B的大小.【解答】:解:(Ⅰ)证明:∵底面ABCD为梯形.AB || CD.M为PD中点.过A.B.M的平面与PC交于N.∴平面ABNM∩平面PCD=MN.∵AB || CD.AB⊄平面PCD.CD⊂平面PCD.∴AB || 平面PCD.∵MN⊂平面PCD.且MN⊂平面ABNM.∴MN || AB.∴MN || CD.∵M为PD中点.∴N为PC中点.(Ⅱ)证明:在平面PCD中过点D作DH⊥DC.交PC于H.∵平面ABCD⊥平面PCD.DH⊂平面PCD.平面ABCD∩平面PCD=CD.∴DH⊥平面ABCD.∵AD⊂平面ABCD.∴DH⊥AD.又AD⊥PC.且PC∩DH=H.∴AD⊥平面PCD.(Ⅲ)解:∵AD⊥平面PCD.∴AD⊥CD.又DH⊥CD.DH⊥AD.以D为原点.DA.DC.DH所在直线分别为x.y.z轴.建立空间直角坐标系.∴D(0.0.0).A(2.0.0).C(0.2 $\sqrt{3}$ .0).B(2.1.0).P(0.-1. $\sqrt{3}$ ).∵T为PB中点.∴T(1.0. $\frac{\sqrt{3}}{2}$ ).$\overrightarrow{AC}$ =(-2.2 $\sqrt{3}$ .0). $\overrightarrow{AT}$ =(-1.0.$\frac{\sqrt{3}}{2}$ ).设平面ACT的法向量 $\overrightarrow{n}$ =(x.y.z).则 $\left\{\begin{array}{l}{\overrightarrow{n}\bullet \overrightarrow{AC}=-2x+2\sqrt{3}y=0}\\{\overrightarrow{n}\bullet \overrightarrow{AT}=-x+\frac{\sqrt{3}}{2}z=0}\end{array}\right.$ .取x= $\sqrt{3}$ .得 $\overrightarrow{n}$ =( $\sqrt{3}$ .1.2).平面ABC的法向量 $\overrightarrow{m}$ =(0.0.1).设二面角T-AC-B的大小为θ.则cosθ= $\frac{|\overrightarrow{m}\bullet\overrightarrow{n}|}{|\overrightarrow{m}|\bullet |\overrightarrow{n}|}$ =$\frac{2}{\sqrt{8}}$ = $\frac{\sqrt{2}}{2}$ .∴θ=45°.∴二面角T-AC-B的大小为45°.【点评】:本题考查点是线段中点的证明.考查线面垂直的证明.考查二面角的求法.考查空间中线线、线面、面面间的位置关系等基础知识.考查运算求解能力.是中档题.18.(问答题.0分)已知函数 $f(x)=\frac{1}{3}{x^3}-\frac{5}{2}{x^2}+a|x|-1$ .(Ⅰ)当a=6时.求函数f(x)在(0.+∞)上的单调区间;(Ⅱ)求证:当a<0时.函数f(x)既有极大值又有极小值.【正确答案】:【解析】:(Ⅰ)求a=6且x>0时f(x)的导数.利用导数判断f(x)的单调性.从而求得f (x)在(0.+∞)上的单调区间;(Ⅱ)由a<0时.讨论x<0和x>0时.利用导数研究函数f(x)的单调性.从而判断函数f(x)是否存在极大与极小值.【解答】:解:(Ⅰ)当a=6.且x>0时. $f(x)=\frac{1}{3}{x^3}-\frac{5}{2}{x^2}+6x-1$ .所以f'(x)=x2-5x+6=(x-2)(x-3).令f'(x)=0.得x=2.或x=3;当x变化时.f'(x).f(x)的变化情况如下表:(Ⅱ)当a<0时.若x<0.则 $f(x)=\frac{1}{3}{x^3}-\frac{5}{2}{x^2}-ax-1$ .所以f'(x)=x2-5x-a=x(x-5)-a;因为x<0.a<0.所以f'(x)>0;若x>0.则 $f(x)=\frac{1}{3}{x^3}-\frac{5}{2}{x^2}+ax-1$ .所以f'(x)=x2-5x+a;令f'(x)=0.△=25-4a>0.所以有两个不相等的实根x1.x2.且x1x2<0;不妨设x2>0.所以当x变化时.f'(x).f(x)的变化情况如下表:所以当a<0时.f(x)即存在极大值又有极小值.【点评】:本题考查了利用导数研究函数的单调性与极值问题.也考查了分类讨论思想与方程根的应用问题.是中档题.19.(问答题.0分)已知椭圆C $:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$ 的左右顶点分别为A.B.左焦点为F.O为原点.点P为椭圆C上不同于A.B的任一点.若直线PA与PB的斜率之积为 $-\frac{3}{4}$ .且椭圆C经过点 $({1.\frac{3}{2}})$(Ⅰ)求椭圆C的方程;(Ⅱ)若P点不在坐标轴上.直线PA.PB交y轴与M.N两点;若直线OT与过点MN为直径的圆相切.切点为T.问切线长|OT|是否为定值.若是.求出定值;若不是.请说明理由.【正确答案】:【解析】:(Ⅰ)由斜率之积的a.b的关系.又过一点又得a.b的关系.解出a.b的值.求出椭圆的方程;(Ⅱ)由(Ⅰ)得A.B的坐标.设P的坐标.满足椭圆的方程.得直线AP.BP.求出M.N的坐标.再用圆中切割线定理得切线长的值.【解答】:解:(Ⅰ)设P(x.y).由题意得A(-a.0).B(a.0).∴k AP•k BP=$\frac{y}{x+a}$ $\bullet \frac{y}{x-a}$ = $\frac{{y}^{2}}{{x}^{2}-{a}^{2}}$ .∴$\frac{{y}^{2}}{{x}^{2}-{a}^{2}}$ =- $\frac{3}{4}$ 而$\frac{{x}^{2}}{{a}^{2}}$ $+\frac{{y}^{2}}{{b}^{2}}$ =1得:b2= $\frac{3}{4}$ a2① .又过(1. $\frac{3}{2}$ )∴ $\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}$ =1 ② .所以由① ② 得:a2=4.b2=3;所以椭圆C的方程: $\frac{{x}^{2}}{4}$ + $\frac{{y}^{2}}{3}$ =1;(Ⅱ)由(Ⅰ)得:A(-2.0).B(2.0)设P(m.n).$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}=1$ .则直线的方程PA:y= $\frac{n}{m+2}$ (x+2).令x=0.则y= $\frac{2n}{m+2}$ .所以M的坐标(0. $\frac{2n}{2+m}$ ).直线PB的方程:y= $\frac{n}{m-2}$ (x-2).令x=0.y= $\frac{-n}{m-2}$ .所以坐标N(0. $\frac{-2n}{m-2}$ ).∵△OTN∽△OMT∴ $\frac{OT}{OM}=\frac{ON}{OT}$ .∴OT2=|ON|•|OM|=|$\frac{4{n}^{2}}{{m}^{2}-4}$ |=3|所以切线长|OT|2= $\sqrt{3}$ .【点评】:考查直线与椭圆的综合.属于中难题.20.(问答题.0分)定义:给定整数i.如果非空集合A满足如下3个条件:① A⊆N*;② A≠{1};③ ∀x.y∈N*.若x+y∈A.则xy-i∈A.则称集合A为“减i集”(Ⅰ)P={1.2}是否为“减0集”?是否为“减1集”?(Ⅱ)证明:不存在“减2集”;(Ⅲ)是否存在“减1集”?如果存在.求出所有的“减1集”;如果不存在.请说明理由.【正确答案】:【解析】:(Ⅰ)P⊆N*.P≠{1}.1+1=2∈P.1×1-0∈P.即可得出P是“减0集”.同理可得P不是“减1集”.(Ⅱ)假设存在A是“减2集”.则若x+y∈A.那么xy-2∈A.当x+y=xy-2时.有(x-1)(y-1)=3.对x.y分类讨论即可得出矛盾.当x+y≠xy-2时.则x+y=xy-1或者x+y=xy-m(m>2).同样得出矛盾.(Ⅲ)存在“减1集”A.A≠{1}.假设1∈A.则A中除了元素1以外.必然还含有其它元素.假设2∈A.1+1∈A.而1×1-1∉A.因此2∉A.假设3∈A.1+2∈A.而1×2-1∈A.因此3∈A.因此可以有A={1.3}.假设4∈A.1+3∈A.而1×3-1∉A.因此4∉A.假设5∈A.1+4∈A.1×4-1∈A.2+3=5.2×3-1∈A.因此5∈A.因此可以有A={1.3.5}.以此类推可得所有的A.【解答】:解:(Ⅰ)∵P⊆N*.P≠{1}.1+1=2∈P.1×1-0∈P.∴P是“减0集”同理.∵P⊆N*.P≠{1}.1+1=2∈P.1×1-1∉P.∴P不是“减1集”.(Ⅱ)假设存在A是“减2集”.则若x+y∈A.那么xy-2∈A. ① 当x+y=xy-2时.有(x-1)(y-1)=3.则x.y一个为2.一个为4.所以集合A中有元素6.但是3+3∈A.3×3-2∉A.与A是“减2集”.矛盾;② 当x+y≠xy-2时.则x+y=xy-1或者x+y=xy-m(m>2).若x+y=xy-1.m=1时M为除1以外的最小元素.则x=M-1.y=1时.xy-2=M-3小于M.如果要符合题意必须M=4.此时取x=2.y=2.xy-2=2不属于A.故不符合题意.m>2时.(x-1)(y-1)=m+1.同样得出矛盾.综上可得:不存在A是“减2集”.(Ⅲ)存在“减1集”A.A≠{1}.① 假设1∈A.则A中除了元素1以外.必然还含有其它元素.假设2∈A.1+1∈A.而1×1-1∉A.因此2∉A.假设3∈A.1+2∈A.而1×2-1∈A.因此3∈A.因此可以有A={1.3}.假设4∈A.1+3∈A.而1×3-1∉A.因此4∉A.假设5∈A.1+4∈A.1×4-1∈A.2+3=5.2×3-1∈A.因此5∈A.因此可以有A={1.3.5}.以此类推可得:A={1.3.5.…….2n-1.……}.(n∈N*).以及A的满足以下条件的非空子集:{1.3}.{1.3.5}.{1.3.5.7}.…….【点评】:本题考查了新定义、元素与集合之间的关系、逻辑推理.考查了推理能力与计算能力.属于难题.。
北京市人民大学附属中学2019-2020学年高一上学期期中考试数学试题(含解析)

人大附中2019-2020学年第一学期期中考试高一数学试卷2019年11月说明:本试卷分I 卷和II 卷,I 卷17道题,共100分;II 卷7道题,共50分;I 卷、II 卷共24题,合计150分,作为期中成绩。
考试时间120分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上.I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.) 1.设集合{}{}=32,=13X x Z x Y y Z y ∈-<<∈-≤≤,则X Y ⋂=( )A. {}0,1B.{}1,0,1-C.{}0,1,2D.{}1,0,1,2-2.下列各组函数是同一函数的是( )A.xy x=与1y = B.()21y x =-与1y x =-C.2x y x =与y x =D.321x x y x +=+与y x =3.下列函数中,在区间()0,2是增函数的是( )A.1y x =-+B.245y x x =-+C.y x =D.1y x= 4.命题“∀x R ∈,都有20x ≥”的否定为( )A. ∀x R ∈,都有20x <B.不存在x R ∈,使得20x <C. ∃0x R ∈,使得200x ≥ D. ∃0x R ∈,使得200x < 5.己知函数()f x 的图象是两条线段(如图,不含端点),则13f f⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=( )A.13-B.13C.23-D.236.已知,a b 是实数,则“0a b >>且0c d <<”是“a bd c<”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件7.如下图,是吴老师散步时所走的离家距离()y 与行走时间()x 之间的函数关系的图 象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是( )8.已知集合{}523M x R x =∈--为正整数,则M 的所有非空真子集的个数是( ) A. 30 B.31 C. 510 D. 511二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.方程组322327x y x y +=⎧⎨-=⎩的解集用列举法表示为______________.10.已知函数()2,02,0x x f x x x +≤⎧=⎨-+>⎩,则方程()2f x x =的解集为__________.11.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x 的值__________. 12.若函数f(x)=x 2-2(a-1)x+2在区间()1,4上不是单调函数,那么实数a 的取值范围是__________.13.几位同学在研究函数()()1xf x x R x=∈+时给出了下面几个结论: ①函数()f x 的值域为()1,1-; ②若12x x ≠,则一定有()()12f x f x ≠; ③()f x 在()0,+∞是增函数;④若规定()()1f x f x =,且对任意正整数n 都有:()()()1n n f x f f x +=,则()1n xf x n x=+对任意*n N ∈恒成立.上述结论中正确结论的序号为_______________.14.函数()()2241,2f x x x g x x a =-+=+,若存在121,,12x x ⎡⎤∈⎢⎥⎣⎦,使得()()12f x g x =,则a 的取值范围是______________.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤, 请将答案写在答题纸上的相应位置.)15.设全集是实数集{}{}22,2730,0R A x x x B x x a =-+≤=+<.(1)当4a =-时,求A B ⋂和A B ⋃; (2)若()R C A B B ⋂=,求实数a 的取值范围.16.已知二次函数()()22,f x x bx c b c R =++∈.(1)已知()0f x ≤的解集为{}11x x -≤≤,求实数,b c 的值;(2)已知223c b b =++,设1x 、2x 是关于x 的方程()0f x =的两根,且()()12118x x ++=,求实数b 的值;(3)已知()f x 满足()10f =,且关于x 的方程()0f x x b ++=的两实数根分别在区间()()3,2,0,1--内,求实数b 的取值范围.17.已知函数()4f x x x=+,(1)判断函数()f x 的奇偶性; (2)指出该函数在区间(0,2]上的单调性,并用函数单调性定义证明;(3)已知函数()()(),05,0,0f x x g x f x x x >⎧⎪==⎨⎪-<⎩,当[]1,x t ∈-时()g x 的取值范围是[5,)+∞,求实数t 取值范围.(只需写出答案)II 卷 (共7道题,满分50分)四、选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)18.已知两个函数()f x 和()g x 的定义域和值域都是集合{}1,2,3,其定义如下表:则方程()1g f x x =+⎡⎤⎣⎦的解集为( )A.{}1B.{}2C.{}1,2D.{}1,2,319.已知()f x 是定义在()4,4-上的偶函数,且在()4,0-上是增函数,()()3f a f <,则实a ( )A.()3,3-B.()(),33,-∞-⋃+∞C.()4,3--D.()()4,33,4--⋃ 20.已知函数()225f x x ax =-+在[]1,3x ∈上有零点,则正数a 的所有可取的值的集合为( )A.7,33⎡⎤⎢⎥⎣⎦B.)+∞C. ⎤⎦D.五、填空题(本大题共3小题,每小题6分,共18分.请把结果填在答题纸上的相应位置.)21.已知函数()f x =则函数()f x 的最大值为_______,函数()f x 的最小值为________.22.关于x 的方程()()g x t t R =∈的实根个数记()f t . (1)若()1g x x =+,则()f t =____________;(2)若()()2,0,2,0,x x g x a R x ax a x ≤⎧=∈⎨-++>⎩,存在t 使得()()2f t f t +>成立,则a 的取值范围是_____.23.对于区间[](),a b a b <,若函数()y f x =同时满足: ①()f x 在[],a b 上是单调函数;②函数()[],,y f x x a b =∈的值域是[],a b ,则称区间[],a b 为函数()f x 的“保值,区间.(1)写出函数2y x =的一个“保值”区间为_____________;(2)若函数()()20f x x m m =+≠存在“保值区间,则实数m 的取值范围为_____________.六、解答题(本大题共1小题,满分14分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)24.已知x 为实数,用[]x 表示不超过x 的最大整数. (1)若函数()[]f x x =,求f(1.2),f(-1.2)的值;(2)若函数()()122x x f x x R +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦,求()f x 的值域; (3)若存在m R ∈且m Z ∉,使得()[]()f m fm =,则称函数()f x 是Ω函数,若函数()af x x x=+是Ω函数,求a 的取值范围.参考答案与解析I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.)1.答案:B解析:因为X={-2,-1,0,1},Y={-1,0,1,2,3}所以X ∩Y={-1,0,1},即选B 。
北京市人大附中2019-2020学年高一上学期期中考试数学试题含解析

人大附中2019-2020学年第一学期期中考试高一数学试卷I 卷(共17题,满分100分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确案填涂在答题纸上的相应位置.)1.设集合{}{}=32,=13X x Z x Y y Z y ∈-<<∈-≤≤,则X Y ⋂=( ) A. {}0,1B. {}1,0,1-C. {}0,1,2D.{}1,0,1,2-【答案】B 【解析】 【分析】根据表示元素的范围以及表示元素是整数先分别用列举法写出集合,X Y ,然后再计算X Y ⋂的结果.【详解】因为{}2,1,0,1X =--,{}1,0,1,2,3Y =-,所以{}1,0,1X Y ⋂=-. 故选:B.【点睛】本题考查集合集合的表示方法以及集合的交集运算,难度较易. 2.下列各组函数是同一函数的是( )A. x y x=与1y =B. y =1y x =-C. 2x y x=与y x = D. 321x x y x +=+与y x=【答案】D 【解析】 【分析】选项A 、C 中分析每组函数的定义域是否相同;选项B 中分析分析函数的值域;选项D 中分析函数的定义域和值域. 【详解】x y x=的定义域为{x|x≠0},1y =的定义域为R ,故A 选项错误;y =值域为[)0,+∞,1y x =-值域为R ,故B 选项错误;2x y x=与的定义域为{x|x≠0},y x =定义域为R ,故C 选项错误; 321x x y x +=+与y x=的定义域和值域均为R ,故D 选项正确. 故选:D .【点睛】判断两个函数是否为同一函数可以先从定义域进行分析,定义域不同,则不是同一函数;定义域相同则再分析对应关系,若对应关系也相同则为同一函数,若对应关系不相同则不是同一函数.3.下列函数中,在区间()0,2是增函数的是( ) A. 1y x =-+ B. 245y x x =-+C. y =D. 1y x=【答案】C 【解析】 【分析】直接判断一次函数、二次函数、反比例函数、幂函数在区间()0,2上的单调性即可得到结果. 【详解】1y x =-+、245y x x =-+、1y x=在区间()0,2是减函数, y =()0,2是增函数.故选:C.【点睛】一次函数的单调性判断:()0y kx b k =+≠,当0k >时在R 上递增,当k 0<时在R 上递减;二次函数的单调性判断:()20y ax bx c a =++≠,当0a >时在,2b a ⎛⎫-∞-⎪⎝⎭上递减,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递增;当0a <时在,2b a ⎛⎫-∞- ⎪⎝⎭上递增,在,2b a ⎛⎫-+∞ ⎪⎝⎭上递减. 4.命题“对任意x ∈R ,都有x 2≥0”的否定为( ) A. 对任意x ∈R ,都有x 2<0 B. 不存在x ∈R ,都有x 2<0 C. 存在x 0∈R ,使得x 02≥0D. 存在x 0∈R ,使得x 02<0【答案】D 【解析】因为全称命题的否定是特称命题,所以命题“对任意x ∈R ,都有x 2≥0”的否定为.存在x 0∈R ,使得x 02<0. 故选D .【此处有视频,请去附件查看】5.已知函数()f x 的图象是两条线段(如图,不含端点),则13f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( )A. 13- B.13C. 23-D.23【答案】B 【解析】 【分析】根据函数图象先用分段函数的形式写出()f x 的解析式,然后根据分段函数的解析式计算出13f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值. 【详解】由图象可知:()()()1,0,10,01,1,0x x f x x x x ⎧-∈⎪==⎨⎪+∈-⎩,所以112113333f f f f ⎡⎤⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:B.【点睛】本题考查分段函数求值问题,难度较易.对于给定图象的函数,首先可考虑通过图象求出函数的解析式,然后再考虑计算函数值.6.已知,a b 是实数,则“0a b >>且0c d <<”是“a bd c<”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】考虑“0a b >>且0c d <<”与“a bd c<”互相推出的成立情况,判断出是何种条件. 【详解】根据不等式的性质可知:由“0a b >>且0c d <<”可以推出“a bd c<”,但由“a bd c<”不能推出“0a b >>且0c d <<”,例如:1,2,3,4a d c b =-===,此时推不出“0a b >>且0c d <<”, 所以是充分不必要条件. 故选:A.【点睛】对于充分、必要条件的判断要分两步考虑:判断充分性是否满足、判断必要性是否满足,再根据判断的结果得到是属于四种条件中的何种条件.7.如图所示,是吴老师散步时所走的离家距离()y 与行走时间()x 之间的函数关系的图象,若用黑点表示吴老师家的位置,则吴老师散步行走的路线可能是( )A. B.C. D.【答案】D 【解析】 【分析】根据图象中有一段为水平线段(表示离家的距离一直不变),逐项判断此时对应选项是否满足.【详解】图象显示有一段时间吴老师离家距离是个定值, 所以A 、B 、C 三个选项均不符合,只有D 选项符合题意. 故选:D .【点睛】本题考查实际问题中对应的函数图象问题,难度较易.8.已知集合{|523M x R x =∈--为正整数},则M 的所有非空真子集的个数是( ) A. 30 B. 31C. 510D. 511【答案】C 【解析】 【分析】根据523x --为正整数可计算出集合M 中的元素,然后根据非空真子集个数的计算公式22n -(n 是元素个数)计算出结果.【详解】因为523x --为正整数,所以M ={−12,0, 12,1,32,2,52,3,72},所以集合M 中共有9个元素,所以M 的非空真子集个数为29-2=510,故选:C.【点睛】本题考查用列举法表示集合以及计算集合的非空真子集的个数,难度较易.一个集合中含有n 个元素则: 集合的子集个数为:2n ;真子集、非空子集个数为:21n -; 非空真子集个数为:22n -.二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9.方程组322327x y x y +=⎧⎨-=⎩的解集用列举法表示为______________.【答案】(){}3,7-【解析】 【分析】首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对(),a b 的形式表示元素). 【详解】因为322327x y x y +=⎧⎨-=⎩,所以37x y =⎧⎨=-⎩,所以列举法表示解集为:(){}3,7-.故答案为:(){}3,7-.【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式:(),x y .10.已知函数()2,02,0x x f x x x +≤⎧=⎨-+>⎩,则方程()2f x x =的解集为__________.【答案】{}1,1- 【解析】 【分析】分别考虑0,0x x ≤>时()2f x x =的解,求出解时注意判断是否满足定义域的要求.【详解】当0x ≤时,22x x =+,所以1x =-或2x =(舍); 当0x >时,22x x =-+,所以1x =或2x =-(舍); 所以解集为:{}1,1-. 故答案为:{}1,1-.【点睛】本题考查函数与方程的简单应用,难度较易.已知()f x 是分段函数,求解方程()()f x g x =的解时,可以根据()f x 的定义域分段考虑,求出每一段符合要求的解,最后写出解集.11.某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】30 【解析】【详解】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.故答案为30.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12.若函数()()2212f x x a x =--+在区间()1,4上不是单调函数,那么实数a 的取值范围是__________. 【答案】(2,5) 【解析】 【分析】根据二次函数的对称轴以及开口方向与单调性的关系,判断出二次函数的对称轴在区间()1,4内,由此计算出a 的取值范围.【详解】因为函数f(x)=x 2-2(a-1)x+2在区间(1,4)上不是单调函数, 所以对称轴x=a-1位于区间(1,4)上,即1<a-1<4,所以2<a <5. 故答案为:()2,5.【点睛】判断二次函数的单调性,可以通过二次函数的开口方向以及对称轴来进行分析:开口向上,在对称轴左侧单调递减,在对称轴右侧单调递增;开口向下,在对称轴左侧单调递增,在对称轴右侧单调递减. 13.几位同学在研究函数()()1xf x x R x=∈+时给出了下面几个结论:①函数()f x 的值域为()1,1-;②若12x x ≠,则一定有()()12f x f x ≠;③()f x 在()0,∞+是增函数;④若规定()()1f x f x =,且对任意正整数n 都有:()()()1n n f x f f x +=,则()1n xf x n x=+对任意*n N ∈恒成立.上述结论中正确结论的序号为__________. 【答案】①②③④ 【解析】 【分析】考虑0,0,0x x x ><=时对应函数的值域、单调性、奇偶性即可判断出①②③是否正确,利用归纳推理的思想判断()1n xf x n x=+是否正确.【详解】()f x 的定义域为R ,当0x >时()()110,111x f x x x ==-∈++且()f x 是单调递增的, 当0x <时()()111,011x f x x x==-+∈---且()f x 是单调递增的, 当0x =时()00f =, 又因为()()1xf x f x x--==-+-,所以()f x 是奇函数,由此可判断出①②③正确, 因为()()()2112x f x f f x x ==+,()()()3213xf x f f x x ==+,......, 由归纳推理可得:()1n xf x n x=+,所以④正确.故答案为:①②③④.【点睛】本题考查函数的值域、单调性、奇偶性的综合运用,难度较难. (1)分段函数的值域可以采用分段求解,最后再取各段值域的并集;(2)分段函数在判断单调性时,除了要考虑每一段函数单调性,还需要考虑到在分段点处各段函数的函数值的大小关系.14.函数()()2241,2f x x x g x x a =-+=+,若存在121,,12x x ⎡⎤∈⎢⎥⎣⎦,使得()()12f x g x =,则a 的取值范围是___________. 【答案】33,2⎡⎤--⎢⎥⎣⎦【解析】 【分析】先根据1x 的范围计算出()1f x 的值域,然后分析()2f x 的值域,考虑当两个值域的交集不为空集时对应a 的取值范围即可.【详解】因为()2241f x x x =-+,所以当11,12x ⎡⎤∈⎢⎥⎣⎦时()111,2f x ⎡⎤∈--⎢⎥⎣⎦,因为()2g x x a =+,所以当21,12x ⎡⎤∈⎢⎥⎣⎦时()[]21,2g x a a ∈++,由题意可知[]11,1,22a a ⎡⎤--++≠∅⎢⎥⎣⎦I ,当[]11,1,22a a ⎡⎤--++=∅⎢⎥⎣⎦I 时,112a +>-或21a +<-,所以32a >-或3a <-, 综上可知:33,2a ⎡⎤∈--⎢⎥⎣⎦.故答案为:33,2⎡⎤--⎢⎥⎣⎦.【点睛】本题考查根据函数值域的关系求解参数范围,难度一般. 当两个函数的值域的交集不为空集时,若从正面分析参数的范围较复杂时,可考虑交集为空集时对应的参数范围,再求其补集即可求得结果.三、解答题(本大题共3小题,每题10分,共30分,解答应写出文字说明过程或演算步骤, 请将答案写在答题纸上的相应位置.)15.设全集是实数集R ,2{|2730}A x x x =-+≤,2{|0}B x x a =+<. (1)当4a =-时,求A B I 和A B U ; (2)若()R C A B B =I ,求实数a 的取值范围.【答案】⑴1[,2)2A B ⋂=,(2,3]A B ⋃=-.⑵1[,)4a ∈-+∞. 【解析】本试题主要是考查了集合的运算以及二次不等式的求解的综合运用。
2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷含答案(共23页)-本页仅作为预览文档封面,使用时请删除本页-2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B.C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm 7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。