中考数学压轴题(对称问题、双动点对称问题)
2023年中考数学压轴题专题20 二次函数与对称变换综合问题【含答案】

专题20二次函数与对称变换综合问题【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标,及其“镜像抛物线”y=﹣(x﹣2)2+4的顶点坐标.写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.8.(2022秋•乐陵市校级月考)如图,已知二次函数的图象经过A(2,0)、B(0,﹣6)两点.(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.(4)若点D为抛物线与x轴的另一个交点,在抛物线上是否存在一点M,使△ADM的面积为△ABC的面积的2倍,若存在,请求出M的坐标,若不存在,请说明理由.9.(2022秋•永城市月考)如图,关于x的二次函数y=﹣x2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且过点D(﹣1,4).(1)求b的值及该二次函数图象的对称轴;(2)连接AC,AD,CD,求△ADC的面积;(3)在AC上方抛物线上有一动点M,请直接写出△ACM的面积取到最大值时,点M的坐标.10.(2022秋•越秀区校级月考)如图,在平面直角坐标系xOy中,A(1,0),B(0,2),以AB为边向右作等腰直角△ABC,∠BAC=90°,AB=AC,二次函数的图象经过点C.(1)求二次函数的解析式;(2)平移该二次函数图象的对称轴所在的直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出直线l平移的最远距离;(3)将△ABC以AC所在直线为对称轴翻折,得到△AB'C,那么在二次函数图象上是否存在点P,使△PB'C是以B'C为直角边的直角三角形?若存在,请求出P点坐标;若不存在,请说明理由.11.(2022秋•西城区校级期中)定义:若两个函数的图象关于某一点Q中心对称,则称这两个函数关于点Q互为“对称函数”.例如,函数y=x2与y=﹣x2关于原点O互为“对称函数”.(1)函数y=﹣x+1关于原点O的“对称函数”的函数解析式为,函数y=(x﹣2)2﹣1关于原点O的“对称函数”的函数解析式为;(2)已知函数y=x2﹣2x与函数G关于点Q(0,1)互为“对称函数”,若函数y=x2﹣2x 与函数G的函数值y都随自变量x的增大而减小,求x的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0),与函数N关于点C互为“对称函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.12.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是.(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.13.(2022春•西湖区校级期末)如图所示,在矩形AOCD中,把点D沿AE对折,使点D 落在OC上的F点.已知AO=8,AD=10.(1)求F点的坐标;(2)如果一条不与抛物线对称轴平行的直线与抛物线仅一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过O,F,且直线y=6x﹣36是该抛物线的切线.求抛物线的解析式.并验证点M(5,﹣5)是否在该抛物线上.(3)在(2)的条件下,若点P是位于该二次函数对称轴右侧图象上不与顶点重合的任意一点,试比较∠POF与∠MOF的大小(不必证明),并写出此时点P的横坐标x P的取值范围.14.(2022•南京模拟)已知,如图,抛物线与坐标轴相交于点A(﹣1,0),C(0,﹣3)两点,对称轴为直线x=1,对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P是抛物线上的点,当∠ACP=45°时,求点P的坐标;(3)点F为二次函数图象上与点C对称的点,点M在抛物线上,点N在抛物线的对称轴上,是否存在以点F,A,M,N为顶点的平行四边形?若存在,直接写出点M的坐标,若不存在,说明理由.15.(2022•兴宁区校级模拟)如图,已知二次函数y=ax2+bx+c的图象经过点C(2,﹣3),且与x轴交于原点及点B(8,0),点A为抛物线的顶点.(1)求二次函数的表达式;(2)在抛物线的对称轴上是否存在点M,使△ABM是等腰三角形?如果存在,请求出点M 的坐标.如果不存在,请说明理由;(3)若点P为⊙O上的动点,且⊙O的半径为,求的最小值.16.(2022•南京模拟)已知二次函数解析式为y=x﹣1(a≠0),该抛物线与y 轴交于点A,其顶点记为B,点A关于抛物线对称轴的对称点记为C.已知点D在抛物线上,且点D的横坐标为2,DE⊥y轴交抛物线于点E.(1)求点D的纵坐标.(2)当△ABC是等腰直角三角形时,求出a的值.(3)当0≤x≤2时,函数的最大值与最小值的差为2时,求a的取值范围.(4)设点R(a﹣3,﹣1),点A、R关于直线DE的对称点分别为N、M,当抛物线在以A、R、M、N为顶点的四边形内部的图象中,y随x的增大而增大或y随x的增大而减小时,直接写出a的取值范围.17.(2021•九龙坡区校级模拟)若直线y=﹣2x+4与y轴交于点A,与x轴交于点B,二次函数y=ax2+3x+c的图象经过点A,交x轴于C、D两点,且抛物线的对称轴为直线x=.(1)求二次函数的解析式;(2)过点C作直线CE∥AB交y轴于点E,点P是直线CE上一动点,点Q是第一象限抛物线上一动点,求四边形APBQ面积的最大值与此时点Q的坐标;(3)在(2)的结论下,点E是抛物线的顶点,对称轴与x轴交于点G,直线EQ交x轴于点F,在抛物线的对称轴上是否存在一点M,使得∠MFQ+∠CAO=45°,求点M的坐标.18.(2022•成都模拟)如图1所示,直线y=x+3与x轴、y轴分别相交于点A,点B,点C(1,2)在经过点A,B的二次函数y=ax2+bx+c的图象上.(1)求抛物线的解析式;(2)点P为线段AB上(不与端点重合)的一动点,过点P作PQ∥y轴交抛物线于点Q,求PQ+PB取得最大值时点P的坐标;(3)如图2,连接BC并延长,交x轴于点D,E为第三象限抛物线上一点,连接DE,点G为x轴上一点,且G(﹣1,0),直线CG与DE交于点F,点H在线段CF上,且∠CFD+∠ABH=45°,连接BH交OA于点M,已知∠GDF=∠HBO,求点H的坐标.19.(2022秋•甘井子区校级月考)抛物线y=x2+bx+c过A(﹣1,0),B(3,0)两点,与y轴相交于点C,点C、D关于抛物线的对称轴对称.(1)抛物线的解析式是,△ABD的面积为;(2)在直线AD下方的抛物线上存在点P,使△APD的面积最大,求出最大面积.(3)当t≤x≤t+1时,函数y=x2+bx+c的最小值为5,求t的值.(4)若点M在y轴上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请直接写出此时M点的坐标.20.(2021秋•沙坪坝区月考)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点E与点C关于抛物线对称轴对称,抛物线的对称轴与x轴交于点G.(1)求直线AE的解析式及△ACE的面积.(2)如图1,连接AE,交y轴于点D,点P为直线AE上方抛物线一点,连接PD、PE,直线l过点B且平行于AE,点F为直线l上一点,连接FD、FE,当四边形PDFE面积最大时,在y轴上有一点N,连接PN,过点N作NM垂直于抛物线对称轴于点M,求的最小值.(3)连接AC,将△AOC向右平移得△A'O'C',当A'C'的中点恰好落在∠CAB的平分线上时,将△A'O'C'绕点O'旋转,记旋转后的三角形为△A″O′C″,在旋转过程中,直线A″C″与y轴交于点K,与直线AC交于点H,在平面中是否存在一点Q,使得以C、K、H、Q为顶点的四边形是以KH为边的菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【例1】(2021秋•开化县月考)定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标(2,﹣4),及其“镜像抛物线”y =﹣(x﹣2)2+4的顶点坐标(2,4).写出抛物线的“镜像抛物线”为.(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)【分析】(1)根据定义直接求解即可;(2)①分别求出B(1,1﹣3a),C(1,3a﹣1),B'(3,1﹣3a),C'(3,3a﹣1),由正方形的性质可得BB'=BC,即2=6a﹣2,求出a即可;②由①求出B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),在此区域内找出所含的整数点即可.【解答】解:(1)y=(x﹣2)2﹣4的顶点坐标为(2,﹣4),y=﹣(x﹣2)2+4的顶点坐标为(2,4),的“镜像抛物线”为,故答案为:(2,﹣4),(2,4),;(2)①∵y=ax2﹣4ax+1=a(x﹣2)2+1﹣4a,∴抛物线L的“镜像抛物线”为y=﹣a(x﹣2)2﹣1+4a,∵点B的横坐标为1,∴B(1,1﹣3a),C(1,3a﹣1),∵抛物线的对称轴为直线x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=2,BC=6a﹣2,∵四边形BB'C'C为正方形,∴2=6a﹣2,∴a=;②∵a=,∴B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),∴正方形BB'C'C所含(包括边界)整点有(1,﹣1),(1,1),(3,﹣1),(3,1),(1,0),(3,0),(2,﹣1),(2,0),(2,1)共9个.【例2】(2022•巩义市模拟)已知,二次函数y=ax2+bx﹣3的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于C点,点A的坐标为(﹣1,0),且OB=OC.(1)求二次函数的解析式;(2)当0≤x≤4时,求二次函数的最大值和最小值分别为多少?(3)设点C'与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC'与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)根据OB=OC可得B点的坐标为(3,0),把A、B的坐标代入二次函数y=ax2+bx﹣3,求出a、b的值即可;(2)求出二次函数的顶点坐标为(1,﹣4),根据二次函数的性质即可得出答案;(3)先设出P的坐标,根据相似三角形的性质列出方程,解出方程即可得到点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣3的图象与y轴交于C点,∴C(0,﹣3).∵OB=OC,点A在点B的左边,∴B(3,0).∵点A的坐标为(﹣1,0),由题意可得,解得:,∴二次函数的解析式为y=x2﹣2x﹣3;(2)∵二次函数的解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴二次函数顶点坐标为(1,﹣4),∴当x=1时,y=﹣4,最小值∵当0≤x≤1时,y随着x的增大而减小,∴当x=0时,y=﹣3,∵当1<x≤4时,y随着x的增大而增大,∴当x=4时,y=5.∴当0≤x≤4时,函数的最大值为5,最小值为﹣4;(3)在y轴上存在点P,使△PCC'与△POB相似,理由如下:设P(0,m),如图,∵点C'与点C关于该抛物线的对称轴直线x=1对称,C(0,﹣3).∴C′(2,﹣3).∴CC'∥OB,∵△PCC'与△POB相似,且PC与PO是对应边,∴,即:,解得:m=﹣9或m=﹣,∴存在,P(0,﹣9)或P(0,﹣).【例3】(2022•济宁二模)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于C点,已知B点的坐标为(3,0),C点的坐标为(0,3).(1)求抛物线的解析式;(2)图1中,点P为抛物线上的动点,且位于第二象限,过P,B两点作直线l交y轴于点D,交直线AC于点E.是否存在这样的直线l:以C,D,E为顶点的三角形与△ABE相似?若存在,请求出这样的直线l的解析式;若不存在,请说明理由.(3)图2中,点C和点C'关于抛物线的对称轴对称,点M在抛物线上,且∠MBA=∠CBC',求M点的横坐标.【分析】(1)利用待定系数法求解析式即可;(2)存在直线l,证明△ACO≌△DBO(ASA)得到OA=OD,求出A点坐标即可求出D点坐标,再利用待定系数法求直线解析式即可;(3)连接BM,CC′,作C′H⊥BC交BC于H,求出tan∠MBA=,进一步可求出N(0,)或N(0,﹣)分情况讨论,即可求出M的横坐标为﹣或﹣.【解答】(1)解:抛物线y=﹣x2+bx+c过B(3,0),C(0.3),∴,解得:,∴函数解析式为:y=﹣x2+2x+3;(2)解:存在直线l使得以C,D,E为顶点的三角形与△ABE相似,当l⊥AC时,以C,D,E为顶点的三角形与△ABE相似,∴∠ACD=∠EBO,在Rt△ACO和Rt△DBO中,,∴ΔΑCO≌△DBO(ASA),∴OA=OD,解﹣x2+2x+3=0,得:x1=3(不符合题意,舍去),x2=﹣1,∴A(﹣1,0),∴D(0,1),设直线的解析式为:y=kx+b,将B(3,0),D(0,1)代入解析式可得,解得:,∴直线的解析式为:y=x+1;(3)解:连接BM,CC′,作C′H⊥BC交BC于H,∵抛物线对称轴为直线:x==1,∴CC′=2,∵OB=OC,∴∠BCO=45°,∴∠C′CB=45°,∵C′H⊥BC,CC′=2,∴C′H=CH=,∵OB=OC=3,∴BC=3,∴BH=,∴tan∠CBC′=,∵∠MBA=∠CBC′,∴tan∠MBA=,∴ON=,∴N(0,)或N(0,﹣),当N(0,),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x+,解方程﹣x2+2x+3=﹣x+,得:(不符合题意,舍去),∴M的横坐标为﹣;当N(0,﹣),如图:∵B(3,0),∴,∴,∴直线BN解析式为:y=x﹣,解方程﹣x2+2x+3=x﹣,得:(不符合题意,舍去),∴M的横坐标为﹣,综上所述:M的横坐标为﹣或﹣.【例4】(2022•合肥四模)已知抛物线L1:y=ax2+bx﹣3与x轴交于点A(﹣3,0),B(1,0).(1)求抛物线的表达式;(2)若两个抛物线的交点在x轴上,且顶点关于x轴对称,则称这两个抛物线为“对称抛物线”,求抛物线L1对称抛物线L2的解析式;(3)在(2)的条件下,点M是x轴上方的抛物线L2上一动点,过点M作MN⊥x轴于点N,设M的横坐标为m,记W=MN﹣2ON,求W的最大值.【分析】(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,即可求解;(2)求出顶点的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,再将抛物线与x轴的交点为(﹣3,0)或(1,0)代入,即可求解析式;(3)由题意可知M(m,﹣m2﹣2m+3),N(m,0),则MN=﹣m2﹣2m+3,ON=|m|,分两种情况讨论;当﹣3<x≤0时,W=﹣m2+3,当m=0时,W有最大值3;当0≤x<1时,W=﹣(m+2)2+7,当m=0时,W有最大值3.【解答】解:(1)将点A(﹣3,0),B(1,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2+2x﹣3;(2)令y=0,则x2+2x﹣3=0,解得x=﹣3或x=1,∴抛物线与x轴的交点为(﹣3,0)或(1,0),∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点为(﹣1,﹣4),∴顶点关于x轴的对称点为(﹣1,4),设抛物线L2的解析式为y=n(x+1)2+4,∵抛物线经过点(﹣3,0)或(1,0),∴n=﹣1,∴y=﹣x2﹣2x+3;(3)∵点M是x轴上方的抛物线L2上一动点,∴﹣3<x<1,∵M的横坐标为m,∴M(m,﹣m2﹣2m+3),N(m,0),∴MN=﹣m2﹣2m+3,ON=|m|,当﹣3<x≤0时,W=MN﹣2ON=﹣m2﹣2m+3+2m=﹣m2+3,∴当m=0时,W有最大值3;当0≤x<1时,W=MN﹣2ON=﹣m2﹣2m+3﹣2m=﹣m2﹣4m+3=﹣(m+2)2+7,∴当m=0时,W有最大值3;综上所述:W的最大值为3.一.解答题(共20题)1.(2022•广陵区二模)已知二次函数y=﹣mx2﹣4mx﹣4m+4(m为常数,且m>0).(1)求二次函数的顶点坐标;(2)设该二次函数图象上两点A(a,y a)、B(a+2,y b),点A和点B间(含点A,B)的图象上有一点C,将点C纵坐标的最大值和最小值的差记为h.①当m=1时,若点A和点B关于二次函数对称轴对称,求h的值;②若存在点A和点B使得h的值是4,则m的取值范围是0<m≤4.【分析】(1)利用配方法求出顶点坐标即可.(2)①根据A,B关于抛物线的对称轴对称,求出a的值,在求出﹣3≤x≤﹣1时,二次函数的最大值,最小值,可得结论.②分四种情形:当a+2≤﹣2,即a≤﹣4时,当﹣4<a≤﹣3时,当﹣3<a≤﹣2时,当a >﹣2时,分别求出满足条件的m的取值范围,可得结论.【解答】解:(1)y=﹣mx2﹣4mx﹣4m+4=﹣m(x2+4x+4)+4=﹣m(x+2)2+4,∴二次函数的顶点坐标为(﹣2,4).(2)①∵点A、B关于对称轴对称=﹣2,∴a=﹣3,当m=1时,y=﹣x2﹣4x﹣4+4=﹣x2﹣4x,则当x=﹣3(或x=﹣1)时,y=3,最小值=4,当x=﹣2时,y最大值∴h=1.②结论:0<m≤4,理由如下:当a+2≤﹣2,即a≤﹣4时,h=y b﹣y a=﹣m(a+2+2)2+4﹣[﹣m(a+2)2+4]=﹣4m(a+3),∵h=4,∴4=﹣4m(a+3),∴a=﹣﹣3≤﹣4,∵m>0,解得m≤1,当﹣4<a≤﹣3时,h=4﹣y a=4﹣[﹣m(a+2)2+4]=m(a+2)2,∴可得a=﹣﹣2,∴﹣4<﹣﹣2≤﹣3,解得1<m≤4,当﹣3<a≤﹣2时,h=4﹣y b=4﹣[﹣m(a+2+2)2+4]=m(a+4)2,可得a=﹣4,∴﹣3<﹣4≤﹣2,不等式无解.当a>﹣2时,h=y a﹣y b=﹣m(a+2)2+4﹣[﹣m(a+2+2)2+4]=4m(a+3),可得a=﹣3,∴﹣3>﹣2,∴m<1,综上所述,满足条件的m的值为0<m≤4.故答案为:0<m≤4.2.(2022•绿园区二模)在平面直角坐标系中,已知某二次函数的图象同时经过点A(0,3)、B(2m,3)、C(m,m+3).其中,m≠0.(1)当m=1时.①该二次函数的图象的对称轴是直线x=1.②求该二次函数的表达式.(2)当|m|≤x≤|m|时,若该二次函数的最大值为4,求m的值.(3)若同时经过点A、B、C的圆恰好与x轴相切时,直接写出该二次函数的图象的顶点坐标.【分析】(1)①根据所给的点可知A、B两点关于抛物线对称轴对称,利用对称性可求对称轴;②利用待定系数法求函数的解析式即可;(2)用的待定系数法求函数的解析式y=﹣(x﹣m)2+m+3,再分两种情况讨论:当m>0时,m≤x≤m,当x=m时,函数有最大值m+3;当m<0时,﹣m≤x≤﹣m,当x=﹣m时,函数有最大值;分别求m的值即可求解;(3)先判断△ABC是等腰直角三角形,且∠ACB=90°,则过点A、B、C的圆是以AB的中点M为圆心,AB为半径,再分两种情况讨论:当m>0时,MN=AM=|m|=3,可求C 点坐标;当m<0时,CM=AM=3=|m|,可求C点坐标.【解答】解:(1)①∵A(0,3)、B(2m,3),∴A、B两点关于抛物线对称轴对称,∵m=1,∴抛物线的对称轴为直线x=1,故答案为:x=1;②设y=ax2+bx+c(a≠0),∵m=1,∴B(2,3)、C(1,4),将点A、B、C代入y=ax2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)∵A(0,3)、B(2m,3)两点关于抛物线的对称轴对称,∴抛物线的对称轴为直线x=m,设抛物线的解析式为y=a(x﹣m)2+m+3,将点A(0,3)代入,∴am2+m+3=3,∴a=﹣,∴y=﹣(x﹣m)2+m+3,当m>0时,m≤x≤m,∴当x=m时,函数有最大值m+3,∴m+3=4,∴m=1;当m<0时,﹣m≤x≤﹣m,∴当x=﹣m时,函数有最大值,∴4=﹣(﹣m﹣m)2+m+3,解得m=﹣;综上所述:m的值为1或﹣;(3)∵A(0,3)、B(2m,3)、C(m,m+3),∴AB=|2m|,AC=|m|,BC=|m|,∴△ABC是等腰直角三角形,且∠ACB=90°,∴过点A、B、C的圆是以AB的中点M为圆心,AB为半径,如图1,当m>0时,∵⊙M与x轴相切,∴MN=AM=|m|=3,∴m=3,∴C(3,6);如图2,当m<0时,∵⊙M与x轴相切,∴CM=AM=3=|m|,∴m=﹣3,∴C(﹣3,0);综上所述:该二次函数的图象的顶点坐标为(3,6)或(﹣3,0).3.(2022•荷塘区校级模拟)已知二次函数y=ax2+bx+c(a<0)与x轴交于A(x1,0),B (x2,0)两点,且(x1<0<x2),交y轴于点C,顶点为D.(1)a=﹣1,b=2,c=4,①求该二次函数的对称轴方程及顶点坐标;②定义:若点P在某函数图象上,且点P的横纵坐标互为相反数,则称点P为这个函数的“零和点”,求证:此二次函数有两个不同的“零和点”;(2)如图,过D、C两点的直线交x轴于点E,满足∠ACE=∠CBE,求ac的值.【分析】(1)①运用配方法将二次函数解析式化为顶点式,即可得出答案;②由y=﹣x与y=ax2+bx+c联立可得x2﹣3x﹣4=0,运用根的判别式可得Δ>0,即可得出结论;(2)如图,连接AC,先求出直线CD的解析式为y=x+c,可得E(﹣,0),再利用求根公式可得:A(,0),B(,0),再证明△EAC∽△ECB,可得CE2=AE•BE,即c2+=(+)(+),化简即可得出答案.【解答】解:(1)①当a=﹣1,b=2,c=4时,抛物线解析式为y=﹣x2+2x+4,∵y=﹣x2+2x+4=﹣(x﹣1)2+5,∴抛物线的对称轴为直线x=1,顶点为D(1,5);②当y=﹣x时,﹣x2+2x+4=﹣x,整理得:x2﹣3x﹣4=0,∵Δ=(﹣3)2﹣4×1×(﹣4)=25>0,∴二次函数y=﹣x2+2x+4有两个不同的“零和点”;(2)如图,连接AC,∵y=ax2+bx+c,∴C(0,c),顶点D(﹣,),设直线CD的解析式为y=kx+n,则,解得:,∴直线CD的解析式为y=x+c,∴E(﹣,0),∵A(,0),B(,0),∴AE=﹣(﹣)=+,BE=﹣(﹣)=+,∵∠ACE=∠CBE,∠AEC=∠CEB,∴△EAC∽△ECB,∴=,∴CE2=AE•BE,在Rt△CEO中,CE2=OC2+OE2=c2+()2=c2+,∴c2+=(+)(+),化简得:ac=﹣1,故ac的值为﹣1.4.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.【分析】(1)首先利用待定系数法确定函数解析式,然后利用对称轴方程求解;(2)根据平移的性质求得B(2,3),然后由“二次函数的图象与线段AB有公共点”得到4a﹣4a﹣3a≤3,通过解该不等式求得答案.【解答】解:(1)∵二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0),∴把(3,0)代入y=ax2+bx﹣3a,得9a+3b﹣3a=0,化简,得b=﹣2a,∴二次函数的对称轴为:.(2)∵点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,∴B(2,3),∵a<0,开口向下,∴二次函数图象与线段AB有交点时,4a﹣4a﹣3a≤3,解得a≥﹣1,故a的取值范围是:﹣1≤a<0.5.(2022•兴化市二模)已知一次函数y=kx+m的图象过点(2,3),A(k,y1)、B(k+1,y2)是二次函数y=x2﹣(m﹣2)x+2m图象上的两点.(1)若该二次函数图象的对称轴是直线x=1,分别求出一次函数和二次函数的表达式;(2)当点A、B在二次函数的图象上运动时,满足|y1﹣y2|=1,求m的值;(3)点A、B的位置随着k的变化而变化,设点A、B的运动路线分别与直线x=n交于点P、Q,当PQ=2时,求n的值.【分析】(1)利用对称轴为1求出m的值,可得二次函数的解析式,将点(2,3)和m=4代入一次函数y=kx+m,可得一次函数的解析式;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,求出|y1﹣y2|=1,再利用y=kx+m过点(2,3),得出m=3﹣2k,代入①式,最后得出结果;(3)将A,B坐标代入分别表示出y P和y Q,再由m=3﹣2k,得出y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,再将k=n,k+1=n代入,得出用n表示的y P和y Q,,进而得出|y P﹣y Q|=|2n﹣4|=2,求解即可.【解答】解:(1)∵对称轴为x=1,∴,∴,解得m=4,∴二次函数的表达式为:y=x2﹣(4﹣2)x+2x4=x2﹣2x+8,将点(2,3)和m=4代入一次函数y=kx+m,得到3=2k+4,解得:k=﹣,∴一次函数的表达式为y=﹣x+4;∴一次函数表达式:,二次函数的表达式:y=x2﹣2x+8;(2)将A(k,y1)、B(k+1,y2)两点分别代入y=x2﹣(m﹣2)x+2m,得到y1=k2﹣(m﹣2)k+2m,y2=(k+1)2﹣(m﹣2)(k+1)+2m,∵|y1﹣y2|=1,∴y1﹣y2=±1,∴k2﹣(m﹣2)k+2m﹣[(k+1)2﹣(m﹣2)(k+1)+2m]=±1,整理得:m﹣2k﹣3=±1①,∵y=kx+m过点(2,3),代入得:m=3﹣2k,将m=3﹣2k代入①式得:k=±,即k=或k=﹣,当k=时,m=3﹣2×=;当k=﹣时,m=3﹣2×(﹣)=,综上所述,m=或m=.(3)解:将A(k,)B(k+1,y2)代入二次函数y=x2﹣(m﹣2)x+2m,得y P=k2﹣(m﹣2)k+2m,y Q=(k+1)2﹣(m﹣2)(k+1)+2m,又∵一次函数y=kx+m过点(2,3),代入得:m=3﹣2k,∴y P=3k2﹣5k+6,y Q=3k2﹣k+6,∵k=n,k+1=n,把k=n代入得y P=3n2﹣5n+6,把k=n﹣1代入y Q=3(n﹣1)2﹣(n﹣1)+6,∴|y P﹣y Q|=|2n﹣4|=2,解得n=1或3.6.(2022•三门峡一模)已知二次函数y=ax2﹣2ax+2a(a≠0).(1)该二次函数图象的对称轴是直线x=1;(2)若该二次函数的图象开口向上,当﹣1≤x≤4时,y的最大值是5,求抛物线的解析式;(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当x2取大于3的任何实数时,均满足y1<y2,请结合图象,直接写出x1的取值范围.【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)结合图象,分两种情况讨论,当x2取大于3的任何实数时,均满足y1<y2,推出当抛物线开口向上,当﹣1≤x1≤3时,满足条件,由此即可解决问题.【解答】解:(1)对称轴x=﹣=1.故答案为1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,且当﹣1≤x≤4时,y的最大值是5,∴当x=4时,y的最大值为5,∴16a﹣8a+2a=5,∴a=,∴抛物线的解析式为y=x2﹣x+1;(3)如图,∵对称轴为直线x=1,∴x=﹣1与x=3时的y值相等,∵x2>3时,均满足y1<y2,②当a<0时,抛物线开口向下,如图1,不成立;②当a>0时,抛物线开口向上,如图2,当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3;∴由①②知:当a>0时,抛物线开口向上.当x2取大于3的任何实数时,均满足y1<y2,此时,x1的取值范围是:﹣1≤x1≤3.7.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN 相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.【分析】(1)先求得点C的坐标,设抛物线的解析式为y=a(x+1)(x﹣4),将点C的坐标代入求得a的值,从而得到抛物线的解析式;(2)①当点C、D、N为顶点的三角形与△FEN相似时分两种情况:△CDN∽△FEN和△CDN∽△NEF,列比例式可解答;②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,证明△AEM是等腰直角三角形,得AM=AE,计算点M的坐标,证明△MGA ≌△AHE(AAS),则EH=AG=6,AH=GM=2,利用待定系数法可得直线EA的解析式为y=−2x+8,与二次函数解析式联立方程,解出可得结论;(3)分T在x轴上,x轴上方和下方三种情况:根据符合条件的Q恰好有2个正确画图可得结论.【解答】解:(1)y=ax2+bx+4,当x=0时,y=4,∴C(0,4),设抛物线的解析式为y=a(x+1)(x−4),将点C的坐标代入得:−4a=4,解得a=−1,∴抛物线的解析式为y=−x2+3x+4;(2)①如图1,抛物线的对称轴是:x=−=,∴CD=,EF=+==,设点N的坐标为(,a)则ND=4−a,NE=a,当△CDN∽△FEN时,=,即=,解得a=,∴点N的坐标为(,);当△CDN∽△NEF时,=,即=,解得:a1=a2=2,∴点N的坐标为(,2),综上所述,点N的坐标为(,)或(,2);②如图2所示:过点A作GH∥y轴,过点M作MG⊥GH于G,过点A作AE⊥AM,交MP于点E,∵∠AMP=45°,∠MAE=90°,∴△AEM是等腰直角三角形,∴AM=AE,将x=1代入抛物线的解析式得:y=6,∴点M的坐标为(1,6),∴MG=2,AG=6,∵∠GAM+∠EAH=90°,∠EAH+∠AEH=90°,∴∠GAM=∠AEH,∵∠G=∠H=90°,。
专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

《中考压轴题》专题24:动态几何之双(多)动点形成的函数关系问题一、选择题1.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是A .AE=6cmB .4sin EBC 5∠=C .当0<t ≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。
中考压轴题-二次函数综合(八大题型+解题方法)——冲刺2024年中考数学考点押题(全国通用)(解析)

中考压轴题-二次函数综合 (八大题型+解题方法)1、求证“两线段相等”的问题:借助于函数解析式,先把动点坐标用一个字母表示出来;然后看两线段的长度是什么距离即是“点点”距离,还是“点轴距离”,还是“点线距离”,再运用两点之间的距离公式或点到x 轴y 轴的距离公式或点到直线的距离公式,分别把两条线段的长度表示出来,分别把它们进行化简,即可证得两线段相等;2、“平行于y 轴的动线段长度的最大值”的问题:由于平行于y 轴的线段上各个点的横坐标相等常设为t,借助于两个端点所在的函数图象解析式,把两个端点的纵坐标分别用含有字母t 的代数式表示出来,再由两个端点的高低情况,运用平行于y 轴的线段长度计算公式-y y 下上,把动线段的长度就表示成为一个自变量为t,且开口向下的二次函数解析式,利用二次函数的性质,即可求得动线段长度的最大值及端点坐标;3、求一个已知点关于一条已知直线的对称点的坐标问题:先用点斜式或称K ,且与已知直线垂直的直线解析式,再求出两直线的交点坐标,最后用中点坐标公式即可;4、“抛物线上是否存在一点,使之到定直线的距离最大”的问题:方法1先求出定直线的斜率,由此可设出与定直线平行且与抛物线相切的直线的解析式注意该直线与定直线的斜率相等,因为平行直线斜率k 相等,再由该直线与抛物线的解析式组成方程组,用代入法把字母y 消掉,得到一个关于x 的的一元二次方程,由题有△=2b -4ac=0因为该直线与抛物线相切,只有一个交点,所以2b -4ac=0从而就可求出该切线的解析式,再把该切线解析式与抛物线的解析式组成方程组,求出x 、y 的值,即为切点坐标,然后再利用点到直线的距离公式,计算该切点到定直线的距离,即为最大距离; 方法2该问题等价于相应动三角形的面积最大问题,从而可先求出该三角形取得最大面积时,动点的坐标,再用点到直线的距离公式,求出其最大距离;方法3先把抛物线的方程对自变量求导,运用导数的几何意义,当该导数等于定直线的斜率时,求出的点的坐标即为符合题意的点,其最大距离运用点到直线的距离公式可以轻松求出;5、常数问题:1点到直线的距离中的常数问题:“抛物线上是否存在一点,使之到定直线的距离等于一个 固定常数”的问题:先借助于抛物线的解析式,把动点坐标用一个字母表示出来,再利用点到直线的距离公式建立一个方程,解此方程,即可求出动点的横坐标,进而利用抛物线解析式,求出动点的纵坐标,从而抛物线上的动点坐标就求出来了;2三角形面积中的常数问题:“抛物线上是否存在一点,使之与定线段构成的动三角形的面积等于一个定常数”的问题:先求出定线段的长度,再表示出动点其坐标需用一个字母表示到定直线的距离,再运用三角形的面积公式建立方程,解此方程,即可求出动点的横坐标,再利用抛物线的解析式,可求出动点纵坐标,从而抛物线上的动点坐标就求出来了;3几条线段的齐次幂的商为常数的问题:用K 点法设出直线方程,求出与抛物线或其它直线的交点坐标,再运用两点间的距离公式和根与系数的关系,把问题中的所有线段表示出来,并化解即可;6、“在定直线常为抛物线的对称轴,或x 轴或y 轴或其它的定直线上是否存在一点,使之到两定点的距离之和最小”的问题:先求出两个定点中的任一个定点关于定直线的对称点的坐标,再把该对称点和另一个定点连结得到一条线段,该线段的长度〈应用两点间的距离公式计算〉即为符合题中要求的最小距离,而该线段与定直线的交点就是符合距离之和最小的点,其坐标很易求出利用求交点坐标的方法;7、三角形周长的“最值最大值或最小值”问题:① “在定直线上是否存在一点,使之和两个定点构成的三角形周长最小”的问题简称“一边固定两边动的问题:由于有两个定点,所以该三角形有一定边其长度可利用两点间距离公式计算,只需另两边的和最小即可;② “在抛物线上是否存在一点,使之到定直线的垂线,与y 轴的平行线和定直线,这三线构成的动直角三角形的周长最大”的问题简称“三边均动的问题:在图中寻找一个和动直角三角形相似的定直角三角形,在动点坐标一母示后,运用=C C 动动定定斜边斜边,把动三角形的周长转化为一个开口向下的抛物线来破解;8、三角形面积的最大值问题:① “抛物线上是否存在一点,使之和一条定线段构成的三角形面积最大”的问题简称“一边固定两边动的问题”:方法1:先利用两点间的距离公式求出定线段的长度;然后再利用上面3的方法,求出抛物线上的动点到该定直线的最大距离;最后利用三角形的面积公式= 12底×高;即可求出该三角形面积的最大值,同时在求解过程中,切点即为符合题意要求的点;方法2:过动点向y 轴作平行线找到与定线段或所在直线的交点,从而把动三角形分割成两个基本模型的三角形,动点坐标一母示后,进一步可得到)()(左(定)右(定)下(动)上(动)动三角形x x y y 21−⋅−=S ,转化为一个开口向下的二次函数问题来求出最大值;②“三边均动的动三角形面积最大”的问题简称“三边均动”的问题:先把动三角形分割成两个基本模型的三角形有一边在x 轴或y 轴上的三角形,或者有一边平行于x 轴或y 轴的三角形,称为基本模型的三角形面积之差,设出动点在x 轴或y 轴上的点的坐标,而此类题型,题中一定含有一组平行线,从而可以得出分割后的一个三角形与图中另一个三角形相似常为图中最大的那一个三角形;利用相似三角形的性质对应边的比等于对应高的比可表示出分割后的一个三角形的高;从而可以表示出动三角形的面积的一个开口向下的二次函数关系式,相应问题也就轻松解决了;9、“一抛物线上是否存在一点,使之和另外三个定点构成的四边形面积最大的问题”:由于该四边形有三个定点,,即可得到一个定三角形的面积之和,所以只需动三角形的面积最大,就会使动四边形的面积最大,而动三角形面积最大值的求法及抛物线上动点坐标求法与7相同;10、“定四边形面积的求解”问题: 有两种常见解决的方案:方案一:连接一条对角线,分成两个三角形面积之和;方案二:过不在x 轴或y 轴上的四边形的一个顶点,向x 轴或y 轴作垂线,或者把该点与原点连结起来,分割成一个梯形常为直角梯形和一些三角形的面积之和或差,或几个基本模型的三角形面积的和差11、“两个三角形相似”的问题: 两个定三角形是否相似:(1)已知有一个角相等的情形:运用两点间的距离公式求出已知角的两条夹边,看看是否成比例 若成比例,则相似;否则不相似;(2)不知道是否有一个角相等的情形:运用两点间的距离公式求出两个三角形各边的长,看看是否成比例若成比例,则相似;否则不相似;一个定三角形和动三角形相似:(1)已知有一个角相等的情形:先借助于相应的函数关系式,把动点坐标表示出来一母示,然后把两个目标三角形题中要相似的那两个三角形中相等的那个已知角作为夹角,分别计算或表示出夹角的两边,让形成相等的夹角的那两边对应成比例要注意是否有两种情况,列出方程,解此方程即可求出动点的横坐标,进而求出纵坐标,注意去掉不合题意的点;2不知道是否有一个角相等的情形:这种情形在相似性中属于高端问题,破解方法是,在定三角形中,由各个顶点坐标求出定三角形三边的长度,用观察法得出某一个角可能是特殊角,再为该角寻找一个直角三角形,用三角函数的方法得出特殊角的度数,在动点坐标“一母示”后,分析在动三角形中哪个角可以和定三角形中的那个特殊角相等,借助于特殊角,为动点寻找一个直角三角形,求出动点坐标,从而转化为已知有一个角相等的两个定三角形是否相似的问题了,只需再验证已知角的两边是否成比例若成比例,则所求动点坐标符合题意,否则这样的点不存在;简称“找特角,求动点标,再验证”;或称为“一找角,二求标,三验证”;12、“某函数图象上是否存在一点,使之与另两个定点构成等腰三角形”的问题:首先弄清题中是否规定了哪个点为等腰三角形的顶点;若某边底,则只有一种情况;若某边为腰,有两种情况;若只说该三点构成等腰三角形则有三种情况;先借助于动点所在图象的解析式,表示出动点的坐标一母示,按分类的情况,分别利用相应类别下两腰相等,使用两点间的距离公式,建立方程;解出此方程,即可求出动点的横坐标,再借助动点所在图象的函数关系式,可求出动点纵坐标,注意去掉不合题意的点就是不能构成三角形这个题意;13、“某图象上是否存在一点,使之与另外三个点构成平行四边形”问题:这类问题,在题中的四个点中,至少有两个定点,用动点坐标“一母示”分别设出余下所有动点的坐标若有两个动点,显然每个动点应各选用一个参数字母来“一母示”出动点坐标,任选一个已知点作为对角线的起点,列出所有可能的对角线显然最多有3条,此时与之对应的另一条对角线也就确定了,然后运用中点坐标公式,求出每一种情况两条对角线的中点坐标,由平行四边形的判定定理可知,两中点重合,其坐标对应相等,列出两个方程,求解即可;进一步有:①若是否存在这样的动点构成矩形呢先让动点构成平行四边形,再验证两条对角线相等否若相等,则所求动点能构成矩形,否则这样的动点不存在;②若是否存在这样的动点构成棱形呢先让动点构成平行四边形,再验证任意一组邻边相等否若相等,则所求动点能构成棱形,否则这样的动点不存在;③若是否存在这样的动点构成正方形呢先让动点构成平行四边形,再验证任意一组邻边是否相等和两条对角线是否相等若都相等,则所求动点能构成正方形,否则这样的动点不存在;14、“抛物线上是否存在一点,使两个图形的面积之间存在和差倍分关系”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,后面的19实为本类型的特殊情形;先用动点坐标“一母示”的方法设出直接动点坐标,分别表示如果图形是动图形就只能表示出其面积或计算如果图形是定图形就计算出它的具体面积,然后由题意建立两个图形面积关系的一个方程,解之即可;注意去掉不合题意的点,如果问题中求的是间接动点坐标,那么在求出直接动点坐标后,再往下继续求解即可;15、“某图形〈直线或抛物线〉上是否存在一点,使之与另两定点构成直角三角形”的问题:若夹直角的两边与y轴都不平行:先设出动点坐标一母示,视题目分类的情况,分别用斜率公式算出夹直角的两边的斜率,再运用两直线没有与y轴平行的直线垂直的斜率结论两直线的斜率相乘等于-1,得到一个方程,解之即可;若夹直角的两边中有一边与y 轴平行,此时不能使用斜率公式;补救措施是:过余下的那一个点没在平行于y轴的那条直线上的点直接向平行于y的直线作垂线或过直角点作平行于y轴的直线的垂线与另一相关图象相交,则相关点的坐标可轻松搞定;16、“某图象上是否存在一点,使之与另两定点构成等腰直角三角形”的问题;①若定点为直角顶点,先用k点法求出另一直角边所在直线的解析式如斜率不存在,根据定直角点,可以直接写出另一直角边所在直线的方程,利用该解析式与所求点所在的图象的解析式组成方程组,求出交点坐标,再用两点间的距离公式计算出两条直角边等否若等,该交点合题,反之不合题,舍去;②若动点为直角顶点:先利用k点法求出定线段的中垂线的解析式,再把该解析式与所求点所在图象的解析式组成方程组,求出交点坐标,再分别计算出该点与两定点所在的两条直线的斜率,把这两个斜率相乘,看其结果是否为-1 若为-1,则就说明所求交点合题;反之,舍去;17、“题中含有两角相等,求相关点的坐标或线段长度”等的问题:题中含有两角相等,则意味着应该运用三角形相似来解决,此时寻找三角形相似中的基本模型“A”或“X”是关键和突破口;18、“在相关函数的解析式已知或易求出的情况下,题中又含有某动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或线段长”的问题:此为“单动问题”〈即定解析式和动图形相结合的问题〉,本类型实际上是前面14的特殊情形;先把动图形化为一些直角梯形或基本模型的三角形有一边在x 轴或y轴上,或者有一边平行于x 轴或y 轴面积的和或差,设出相关点的坐标一母示,按化分后的图形建立一个面积关系的方程,解之即可;一句话,该问题简称“单动问题”,解题方法是“设点动点标,图形转化分割,列出面积方程”;19、“在相关函数解析式不确定系数中还含有某一个参数字母的情况下,题中又含有动图形常为动三角形或动四边形的面积为定常数,求相关点的坐标或参数的值”的问题:此为“双动问题”即动解析式和动图形相结合的问题;如果动图形不是基本模型,就先把动图形的面积进行转化或分割转化或分割后的图形须为基本模型,设出动点坐标一母示,利用转化或分割后的图形建立面积关系的方程或方程组;解此方程,求出相应点的横坐标,再利用该点所在函数图象的解析式,表示出该点的纵坐标注意,此时,一定不能把该点坐标再代入对应函数图象的解析式,这样会把所有字母消掉;再注意图中另一个点与该点的位置关系或其它关系,方法是常由已知或利用2问的结论,从几何知识的角度进行判断,表示出另一个点的坐标,最后把刚表示出来的这个点的坐标再代入相应解析式,得到仅含一个字母的方程,解之即可;如果动图形是基本模型,就无须分割或转化了,直接先设出动点坐标一母式,然后列出面积方程,往下操作方式就与不是基本模型的情况完全相同;一句话,该问题简称“双动问题”,解题方法是“转化分割,设点标,建方程,再代入,得结论”;常用公式或结论:1横线段的长 = 横标之差的绝对值 =-x x 大小=-x x 右左纵线段的长=纵标之差的绝对值=-y y 大小=-y y 下上 2点轴距离:点P 0x ,0y 到X 轴的距离为0y ,到Y 轴的距离为o x ; 3两点间的距离公式:若A 11,x y ,B 2,2x y , 则AB=目录:题型1:存在性问题 题型2:最值问题 题型3:定值问题 题型4:定点问题题型5:动点问题综合 题型6:对称问题 题型7:新定义题 题型8:二次函数与圆题型1:存在性问题1.(2024·四川广安·二模)如图,抛物线2y x bx c =−++交x 轴于()4,0A −,B 两点,交y 轴于点()0,4C .(1)求抛物线的函数解析式.(2)点D 在线段OA 上运动,过点D 作x 轴的垂线,与AC 交于点Q ,与抛物线交于点P ,连接AP 、CP ,求四边形AOCP 的面积的最大值.(3)在抛物线的对称轴上是否存在点M ,使得以点A 、C 、M 为顶点的三角形是直角三角形?若存在,请求出点M【答案】(1)234y x x =−−+;(2)四边形AOCP 的面积最大为16;(3)点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.【分析】本题主要考查了二次函数综合,熟练掌握用待定系数法求解函数解析式的方法和步骤,以及二次函数的图象和性质,是解题的关键. (1)把()4,0A −,()0,4C 代入2y x bx c =−++,求出b 和c 的值,即可得出函数解析式; (2)易得182AOCSOA OC =⋅=,设()2,34P t t t −−+,则(),4Q t t +,求出24PQ t t =−−,则()()212282ACP C A S PQ x x t =⋅−=−++,根据四边形AOCP 的面积()22216ACP AOCS St =+=−++,结合二次函数的增减性,即可解答;(3)设3,2M m ⎛⎫− ⎪⎝⎭,根据两点之间距离公式得出232AC =,22254AM m =+,229(4)4CM m =+−,然后分情况根据勾股定理列出方程求解即可.【解析】(1)解:把()4,0A −,()0,4C 代入2y x bx c =−++得:01644b c c =−−+⎧⎨=⎩,解得:34b c =−⎧⎨=⎩,∴该二次函数的解析式234y x x =−−+;(2)解:∵()4,0A −,()0,4C ,∴4,4OA OC ==,∴1144822AOC S OA OC =⋅=⨯⨯=△,设直线AC 的解析式为4y kx =+, 代入()4,0A −得,044k =−+,解得1k =,∴直线AC 的解析式为4y x =+, 设()2,34P t t t −−+,则(),4Q t t +,∴()223444PQ t t t t t=−−+−+=−−∴()()()22114422822ACPC A SPQ x x t t t =⋅−=−−⨯=−++,∴四边形AOCP 的面积()22216ACP AOCSSt =+=−++,∵20−<,∴当2t =−时,四边形AOCP 的面积最大为16; (3)解:设3,2M m ⎛⎫− ⎪⎝⎭,∵()4,0A −,()0,4C ,∴2224432AC =+=,2222325424AM m m ⎛⎫=−++=+ ⎪⎝⎭,()()2222394424CM m m ⎛⎫=−+−=+− ⎪⎝⎭,当斜边为AC 时,AM CM AC 222+=,即()2225943244m m +++−=,整理得:24150m m ++=,无解;当斜边为AM 时,222AC CM AM +=,即2292532(4)44m m ++−=+,解得:112m =;∴311,22M ⎛⎫− ⎪⎝⎭当斜边为CM 时,222AC AM CM +=,即2225932(4)44m m ++=+−, 解得:52m =−;∴35,22M ⎛⎫−− ⎪⎝⎭综上:点M 的坐标为35,22⎛⎫−− ⎪⎝⎭或311,22⎛⎫− ⎪⎝⎭.2.(2024·内蒙古乌海·模拟预测)如图(1),在平面直角坐标系中,抛物线()240y ax bx a =+−≠与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为()1,0−,且OC OB =,点D 和点C 关于抛物线的对称轴对称.(1)分别求出a ,b 的值和直线AD 的解析式;(2)直线AD 下方的抛物线上有一点P ,过点P 作PH AD ⊥于点H ,作PM 平行于y 轴交直线AD 于点M ,交x 轴于点E ,求PHM 的周长的最大值;(3)在(2)的条件下,如图2,在直线EP 的右侧、x 轴下方的抛物线上是否存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似?如果存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)1a =,3b =−,=1y x −−(2)4+(3)存在,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭【分析】本题主要考查的是二次函数的综合应用,掌握二次函数的交点式、配方法求二次函数的最值、相似三角形的判定、等腰直角三角形的判定、一元二次方程的求根公式,列出PM 的长与a 的函数关系式是解题的关键.(1)先求得C 的坐标,从而得到点B 的坐标,设抛物线的解析式为()()14y a x x =+−,将点C 的坐标代入求解即可;先求得抛物线的对称轴,从而得到点()3,4D −,然后可求得直线AD 的解析式=1y x −−;(2)求得45BAD ∠=︒,接下来证明PMD △为等腰直角三角形,所当PM 有最大值时三角形的周长最大,设()2,34P a a a −−,()1M a −−,则223PM aa =−++,然后利用配方可求得PM 的最大值,最后根据MPH△的周长(1PM=求解即可;(3)当90EGN ∠=︒时,如果OA EG OC GN = 或OA GNOC EN =时,则AOC ∽EGN △,设点G 的坐标为(),0a ,则()2,34N a a a −−,则1EG a =−,234NG aa =−++,然后根据题意列方程求解即可.【解析】(1)点A 的坐标为()1,0−,1OA ∴=.令0x =,则4y =−,()0,4C ∴−,4OC =,OC OB =Q , 4OB ∴=,()4,0B ∴,设抛物线的解析式为()()14y a x x =+−,将0x =,4y =−代入得:44a −=−,解得1a =,∴抛物线的解析式为234y x x =−−;1a ∴=,3b =−; 抛物线的对称轴为33212x −=−=⨯,()0,4C −,点D 和点C 关于抛物线的对称轴对称,()3,4D ∴−;设直线AD 的解析式为y kx b =+.将()1,0A −、()3,4D −代入得:034k b k b −+=⎧⎨+=−⎩,解得1k =−,1b =-,∴直线AD 的解析式=1y x −−;(2)直线AD 的解析式=1y x −−,∴直线AD 的一次项系数1k =−,45BAD ∴∠=︒. PM 平行于y 轴,90AEP ∴∠=︒,45PMH AME ∴∠=∠=︒.MPH ∴的周长(122PM MH PH PM MP PM PM =++=++=. 设()2,34P a a a −−,则(),1M a a −−, 则()22213423(1)4PM a a a a a a =−−−−−=−++=−−+.∴当1a =时,PM 有最大值,最大值为4.MPH ∴的周长的最大值(414=⨯=+(3)在直线EP 的右侧、x 轴下方的抛物线上存在点N ,过点N 作NG x ⊥轴交x 轴于点G ,使得以点E 、N 、G 为顶点的三角形与AOC 相似;理由如下:设点G 的坐标为(),0a ,则()2,34N a a a −−①如图2.1,若OA EG OC GN = 时,AOC ∽EGN △. 则 211344a a a −=−++,整理得:280a a +−=.得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭; ②如图2.2,若OA GN OC EN =时,AOC ∽NGE ,则21434a a a −=−++,整理得:2411170a a −−=,得:a =负值舍去),∴点G为⎫⎪⎪⎝⎭, 综上所述,点G的坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 3.(2024·重庆·一模)如图,在平面直角坐标系中,抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B ,与y 轴交于点C ,连接BC ,AC .(1)求抛物线的表达式;(2)P 为直线BC 上方抛物线上一点,过点P 作PD BC ⊥于点D ,过点P 作PE x 轴交抛物线于点E,求4+PD PE 的最大值及此时点P 的坐标; (3)点C 关于抛物线对称轴对称的点为Q ,将抛物线沿射线CAy ',新抛物线y '与y 轴交于点M ,新抛物线y '的对称轴与x 轴交于点N ,连接AM ,MN ,点R 在直线BC 上,连接QR .当QR 与AMN 一边平行时,直接写出点R 的坐标,并写出其中一种符合条件的解答过程.【答案】(1)2y x x =++(2)当154t =时,PE的最大值,15,416P ⎛ ⎝⎭, (3)R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(.【分析】(1)利用待定系数法求抛物线解析式即可;(2)先求得2y x =2x =,过点P 作PG x ⊥轴交BC 于点F ,利用勾股定理求得BC ==DPF OBC ∽,得PF DP BC OB =即PF PD=,从而得PF =,求出设直线BC的解析式后,设2,P t ⎛+ ⎝,则,F t ⎛+ ⎝,从而2PF =+,当点P在E 点右侧时()424PE t t t =−−=−,从而得2154t ⎫=−⎪⎝⎭,利用二次函数的性质即可求解;当点P 在E 点左侧时:442PE t t t =−−=−时,同理可求.然后比较4+PE 的最大值即可得出答案. (3)先求得1OA=,OC AC =设抛物线2y =H ⎛ ⎝⎭平移后为P ,过点P 作PW ⊥直线2x =,则AOC PWH ∽,得1OA OC AC WP HW PH ====,进而得平移后的抛物线2y x +'=,从而求得()1,0N,M ⎛ ⎝⎭,然后分QR AM ∥,QR MN ∥,QR AN ∥三种情况,利用二次函数的性质及一次函数的与二元一次方程的关系求解即可得解.【解析】(1)解:∵抛物线2y ax bx =+x 轴交于点()1,0A −,()5,0B 两点,代入坐标得:02550a b a b ⎧−=⎪⎨+=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为255y x x =−++(2)解:∵)2225555y x x x =−+=−−+,∴2y x =2x=,顶点为⎛ ⎝⎭ 过点P 作PG x ⊥轴交BC 于点F ,当0x =时,200y =∴(C ∵()5,0B ∴BC ==∵PG x ⊥轴,PD BC ⊥,x 轴y ⊥轴,∴909090CBO BFG DPF PFD PDF BOC ∠∠∠∠∠∠+=︒+=︒==︒,,∵PFD BFG ∠∠=∴DPF CBO ∠∠=∴DPF OBC ∽,∴PF DP BC OB =即PF PD =,∴PF PD =∴44+PD PE =PF +PE ,设直线BC :y kx b =+,把(C ,()5,0B 代入得:05k b b =+⎧⎪=,解得5k b ⎧=−⎪⎨⎪=⎩, ∴直线BC:y =设2,P t ⎛ ⎝,则,F t ⎛+ ⎝,∴22PF ⎛⎛=−+=+ ⎝⎝,∵2y x =2x =,PE x 轴,∴24,E t ⎛−+ ⎝当点P 在E 点右侧时:()424PE t t t =−−=−,当24PE t =−时:∴+PD PE =PF +()221524545416t t ⎛⎫=−+−=−−+ ⎪⎝⎭ ∴当154t =时,的最大值∴2151544⎛⎫= ⎪⎝⎭,∴154P ⎛ ⎝⎭; 当点P 在E 点左侧时:442PE t t t =−−=−时,∴+PD PE =PF +()225424t t ⎫=−=−⎪⎝⎭, ∴当54t =时,的最大值.2,55P t ⎛−+ ⎝∴25544⎛⎫ ⎪⎝⎭∴5,416P ⎛ ⎝⎭,∵> 综上所诉,当点P 在E 点右侧时:即154t =时,的最大值,154P ⎛ ⎝⎭, (3)解:设直线AC :y mx n =+,把()1,0A −,(C , ∴1OA =,OC =∴AC ==设抛物线2y x =H ⎛ ⎝⎭平移后为P , 过点P 作PW ⊥直线2x =,则AOC PWH ∽,∴1OA OC AC WP HW PH ====∴1PW =,HW=∴21,5P ⎛−⎝即1,5P ⎛ ⎝⎭,∴平移后的抛物线)22155555y x x x =−−+=−++', ∴()1,0N令0x =,y '=,∴M ⎛ ⎝⎭ 如图,当QR AM ∥时,设直线AM 的解析式为:y px q =+,把M ⎛ ⎝⎭,()1,0A −代入得:0p q q =−+⎧=解得p q ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线AM的解析式为:y =, ∴设直线QR的解析式为:y x n =∵(C ,Q 和C 关于2x =对称,∴(Q把(Q代入5y x n =+45n +,解得n =,∴直线QR的解析式为:y = 联立直线QR的解析式y =与直线BC:y x =+55y x y x ⎧=−⎪⎪⎨⎪=⎪⎩,解得3x y =⎧⎪⎨=⎪⎩,∴R ⎛ ⎝⎭ 同理可得:当QR MN ∥时,6,5R ⎛− ⎝⎭ 当QR AN ∥时,(R所有符合条件的R点的坐标为⎛ ⎝⎭或6,⎛ ⎝⎭或(. 【点睛】本题考查待定系数法求抛物线解析式,勾股定理,抛物线的性质,抛物线平移,一次函数的平移,相似三角形的判定及性质,图形与坐标,掌握待定系数法求抛物线解析式,抛物线的性质,抛物线平移,相似三角形的判定及性质,图形与坐标,利用辅助线画出准确图形是解题关键.题型2:最值问题4.(2024·安徽合肥·二模)在平面直角坐标系中,O 为坐标原点,抛物线23y ax bx =+−与x 轴交于()1,0A −,()3,0B 两点,与y 轴交于点C ,连接BC .(1)求a ,b 的值;(2)点M 为线段BC 上一动点(不与B ,C 重合),过点M 作MP x ⊥轴于点P ,交抛物线于点N . (ⅰ)如图1,当3PA PB=时,求线段MN 的长; (ⅱ)如图2,在抛物线上找一点Q ,连接AM ,QN ,QP ,使得PQN V 与APM △的面积相等,当线段NQ 的长度最小时,求点M 的横坐标m 的值.【答案】(1)1a =,2b =−(2)(ⅰ)2MN =;(ⅱ)m 的值为32或12【分析】本题考查诶粗函数的图象和性质,掌握待定系数法和利用函数性质求面积是解题的关键.(1)运用待定系数法求函数解析式即可;(2)(ⅰ)先计算BC 的解析式,然后设(),3M m m −,则3PM PB m ==−,1PA m =+,根据题意得到方程133m m +=−求出m 值,即可求出MN 的长;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,然后分为点Q 在PN 的左侧和点Q 在PN 的右侧两种情况,根据勾股定理解题即可.【解析】(1)由题意得309330a b a b −−=⎧⎨+−=⎩,解得12a b =⎧⎨=−⎩;(2)(ⅰ)当0x =时,3y =−,∴()0,3C −,设直线BC 为3y kx =−,∵点()3,0B ,∴330k −=,解得1k =,∴直线BC 为3y x =−,设(),3M m m −,则3PM PB m ==−,1PA m =+, ∵3PA PB =, ∴133m m +=−,解得2m =,经检验2m =符合题意,当2m =时,222233y =−⨯−=−, ∴3PN =,31PM PB m ==−=,∴2MN =;(ⅱ)作QR PN ⊥于点R ,由(ⅰ)可得1PA m =+,3PB PM m =−−,223PN m m =−++,PQN V 的面积为()21232m m QR −++⋅,APM △的面积为()()1312m m −+,∴()()()211233122m m QR m m −++⋅=−+,解得1QR =;当点Q 在PN 的左侧时,如图1,Q 点的横坐标为1m QR m −=−,纵坐标为()()2212134m m m m −−⨯−−=−,∴R 点的坐标为()2,4m mm−,∵N 点坐标为()2,23m mm −−,∴32RN m =−,∴()22231NQ m =−+,∴当32m =时,NQ 取最小值;当点Q 在PN 的右侧时,如图2,Q 点的横坐标为1m QR m +=+,纵坐标为()()2212134m m m +−⨯+−=−,∴R 点的坐标为()2,4m m−,∵N 点的坐标为()2,23m mm −−,∴21RN m =−, ∴()222211NQ m =−+,∴当12m =时,NQ 取最小值.综上,m 的值为32或12.。
中考数学压轴题专题-动点综合问题

专题15动点综合问题【考点1】动点之全等三角形问题【例1】1.如图,CA⊥BC,垂足为C,AC=2Cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s 的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动_______秒时,△BCA与点P、N、B为顶点的三角形全等.(2个全等三角形不重合)【变式1-1】已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是线段OB、OC上的动点(1)如果动点E 、F 满足BE =OF (如图),且AE ⊥BF 时,问点E 在什么位置?并证明你的结论;(2)如果动点E 、F 满足BE =CF (如图),写出所有以点E 或F 为顶点的全等三角形(不得添加辅助线).【变式1-2】如图①,将长方形纸片沿对角线剪成两个全等的直角三角形ABC 、EDF ,其中AB =8cm ,BC =6cm ,AC =10cm .现将△ABC 和△EDF 按如图②的方式摆放(点A 与点D 、点B 与点E 分别重合).动点P 从点A 出发,沿AC 以2cm /s 的速度向点C 匀速移动;同时,动点Q 从点E 出发,沿射线ED 以acm /s (0<a <3)的速度匀速移动,连接PQ 、CQ 、FQ ,设移动时间为ts (0≤t ≤5).(1)当t =2时,S △AQF =3S △BQC ,则a =;(2)当以P 、C 、Q 为顶点的三角形与△BQC 全等时,求a 的值;(3)如图③,在动点P 、Q 出发的同时,△ABC 也以3cm /s 的速度沿射线ED 匀速移动,当以A 、P 、Q 为顶点的三角形与△EFQ 全等时,求a 与t 的值.【考点2】动点之直角三角形问题【例2】如图,在四边形纸片ABCD 中,//AB CD ,60A ∠=︒,30B ∠=︒,2CD =,4BC =,点E 是AB 边上的动点,点F 是折线A D C --上的动点,将纸片ABCD 沿直线EF 折叠,使点A 的对应点A '落在AB 边上,连接A C ',若A BC ' 是直角三角形,则AE 的长为________.【变式2-1】(2019·辽宁中考模拟)如图,已知二次函数y =ax 2+bx+4的图象与x 轴交于点A(4,0)和点D(﹣1,0),与y 轴交于点C ,过点C 作BC 平行于x 轴交抛物线于点B ,连接AC(1)求这个二次函数的表达式;(2)点M 从点O 出发以每秒2个单位长度的速度向点A 运动;点N 从点B 同时出发,以每秒1个单位长度的速度向点C 运动,其中一个动点到达终点时,另一个动点也随之停动,过点N 作NQ 垂直于BC 交AC 于点Q ,连结MQ.①求△AQM 的面积S 与运动时间t 之间的函数关系式,写出自变量的取值范围;当t 为何值时,S 有最大值,并求出S 的最大值;②是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,说明理由.【变式2-2】如图,在矩形OAHC 中,8,12OC OA ==,B 为CH 中点,连接AB .动点M 从点O 出发沿OA 边向点A 运动,动点N 从点A 出发沿AB 边向点B 运动,两个动点同时出发,速度都是每秒1个单位长度,连接,,CM CN MN ,设运动时间为t (秒)(010)t <<.则t =_____时,CMN ∆为直角三角形【考点3】动点之等腰三角形问题【例3】如图,AB 是⊙O 的直径,BC 是弦,10cm AB =,6cm BC =.若点P 是直径AB 上一动点,当PBC 是等腰三角形时,AP =__________cm .【变式3-1】如图①,已知正方形ABCD 边长为2,点P 是AD 边上的一个动点,点A 关于直线BP 的对称点是点Q ,连结PQ 、DQ 、CQ 、BQ .设AP=x.(1)当1x =时,求BP 长;(2)如图②,若PQ 的延长线交CD 边于E ,并且90CQD ∠=o ,求证:CEQ ∆为等腰三角形;(3)若点P 是射线AD 上的一个动点,则当CDQ ∆为等腰三角形时,求x 的值.【变式3-2】(2019·河南中考模拟)如图,抛物线y=ax 2+bx+3交y 轴于点A ,交x 轴于点B (-3,0)和点C (1,0),顶点为点M .(1)求抛物线的解析式;(2)如图,点E 为x 轴上一动点,若△AME 的周长最小,请求出点E 的坐标;(3)点F 为直线AB 上一个动点,点P 为抛物线上一个动点,若△BFP 为等腰直角三角形,请直接写出点P 的坐标.【变式3-3】(2019·广西中考真题)已知抛物线2y mx =和直线y x b =-+都经过点()2,4M -,点O 为坐标原点,点P 为抛物线上的动点,直线y x b =-+与x 轴、y 轴分别交于A B 、两点.(1)求m b 、的值;(2)当PAM ∆是以AM 为底边的等腰三角形时,求点P 的坐标;(3)满足(2)的条件时,求sin BOP ∠的值.【考点4】动点之相似三角形问题【例4】如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC 是相似三角形,求AP的长.【变式4-1】已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=3 4AC(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【变式4-2】如图,正方形ABCD,点P为射线DC上的一个动点,点Q为AB的中点,连接PQ,DQ,过点P作PE⊥DQ于点E.(1)请找出图中一对相似三角形,并证明;(2)若AB=4,以点P,E,Q为顶点的三角形与△ADQ相似,试求出DP的长.【考点5】动点之平行四边形问题(含特殊四边形)【例5】如图,抛物线23y ax bx =++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 是抛物线上的动点,且满足2PAO PCO S S ∆∆=,求出P 点的坐标;(3)连接BC ,点E 是x 轴一动点,点F 是抛物线上一动点,若以B 、C 、E 、F 为顶点的四边形是平行四边形时,请直接写出点F 的坐标.备用图【变式5-1】(2019·江西中考真题)在图1,2,3中,已知,,点为线段上的动点,连接,以为边向上作菱形,且.(1)如图1,当点与点重合时,________°;(2)如图2,连接.①填空:_________(填“>”,“<”,“=”);②求证:点在的平分线上;(3)如图3,连接,,并延长交的延长线于点,当四边形是平行四边形时,求的值.【变式5-2】(2019·湖南中考真题)如图,二次函数213y x bx c =-++的图象过原点,与x 轴的另一个交点为()8,0(1)求该二次函数的解析式;(2)在x轴上方作x轴的平行线1y m=,交二次函数图象于A、B两点,过A、B两点分别作x轴的垂线,垂足分别为点D、点C.当矩形ABCD为正方形时,求m的值;(3)在(2)的条件下,动点P从点A出发沿射线AB以每秒1个单位长度匀速运动,同时动点Q以相同的速度从点A出发沿线段AD匀速运动,到达点D时立即原速返回,当动点Q返回到点A时,P、Q两点同时停止运动,设运动时间为t秒(0t>).过点P向x轴作垂线,交抛物线于点E,交直线AC于点F,问:以A、E、F、Q四点为顶点构成的四边形能否是平行四边形.若能,请求出t的值;若不能,请说明理由.【变式5-3】.如图,在平面直角坐标系中,AOB∆的顶点O是坐标原点,点A坐标为()1,3,A、B两点关于直线y x=对称,反比例函数()0ky xx=>图象经过点A,点P是直线y x=上一动点.(1)B点的坐标为______;(2)若点C是反比例函数图象上一点,是否存在这样的点C,使得以A、B、C、P四点为顶点的四边形是平行四边形?若存在,求出点C坐标;若不存在,请说明理由;(3)若点Q 是线段OP 上一点(O 不与O 、P 重合),当四边形AOBP 为菱形时,过点Q 分别作直线OA 和直线AP 的垂线,垂足分别为E 、F ,当QE QF QB ++的值最小时,求出Q 点坐标.【考点6】动点之线段面积问题【例6】如图,在平面直角坐标系中,平行四边形如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形.抛物线经过点A 、C 、A′三点.(1)求A 、A′、C 三点的坐标;(2)求平行四边形和平行四边形重叠部分的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,的面积最大?最大面积是多少?并写出此时M 的坐标.【变式6-1】(1)发现:如图1,点A 为线段BC 外一动点,且BC =α,AB b =(0)a b >>,当点A 位于时,线段AC 的长取得最大值,最大值为(用含,a b 的式子表示);(2)应用:如图2,点A 为线段BC 外一动点,4BC =,2AC =,以AB 为边作等边ABD ∆,连接CD ,求线段CD 的最大值;(3)拓展:如图3,线段3AB =,点P 为线段AB 外一动点,且2AP =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时PBM ∆的面积.【变式6-2】如图,矩形ABCD 中,3,4AD AB ==,点P 是对角线AC 上一动点(不与A C 、重合),连接PB ,过点P 作PE PB ⊥,交射线DC 于点E ,以线段,PE PB 为邻边作矩形BPEF ,过点P 作GH CD ⊥。
中考数学解答题压轴题突破 重难点突破十 几何综合题

(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.
中考数学压轴题(对称问题、双动点对称问题)

(2014•济宁,第22题11分)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形P ACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.解答:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA=5,AC=10,∴OC===.∵S△OAC=OC•AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt△A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x=﹣3时,y=×(﹣3)2+3﹣=4.所以,点A′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y=x+…(9分)设点P的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形P ACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形P ACM是平行四边形.点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解..(2014•贵州黔西南州, 第26题16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A (﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△P AE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.第1题图分析:(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.(3)由最值时,P为(﹣,3),则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.解答:解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4).(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P(x,2x+6),∴S△APE=•PE•y P=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),当x=﹣=﹣时,S取最大值.(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P(﹣,3),∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵(3﹣m)2+()2=m2,∴m=.∵S△P′EN=•P′N•P′E=•EN•P′M,∴P′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′(,).当x=时,y=﹣()2﹣2•+3=≠,∴点P′不在该抛物线上.点评:本题考查了待定系数法求抛物线解析式,二次函数图象、性质及设边长利用勾股定理解直角三角形等常规考点,题目考点适中,考法新颖,适合学生练习巩固.(2014•攀枝花,第24题12分)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A 在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小?若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.分析:(1)令y=ax2﹣8ax+12a=0,解一元二次方程,求出点A、B的坐标;(2)由∠ACD=90°可知△ACD为直角三角形,利用勾股定理,列出方程求出a的值,进而求出抛物线的解析式;(3)△PAC的周长=AC+PA+PC,AC为定值,则当PA+PC取得最小值时,△PAC的周长最小.设点C关于对称轴的对称点为C′,连接AC′与对称轴交于点P,由轴对称的性质可知点P即为所求;(4)直线m运动过程中,有两种情形,需要分类讨论并计算,避免漏解.解答:解:(1)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令y=0,即ax2﹣8ax+12a=0,解得x1=2,x2=6,∴A(2,0),B(6,0).(2)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令x=0,得y=12a,∴C(0,12a),OC=12a.在Rt△COD中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;在Rt△COD中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;在Rt△COD中,由勾股定理得:DC2+AC2=AD2;即:(144a2+36)+(144a2+4)=82,解得:a=或a=﹣(舍去),∴抛物线的解析式为:y=x2﹣x+.(3)存在.对称轴为直线:x=﹣=4.由(2)知C(0,),则点C关于对称轴x=4的对称点为C′(8,),连接AC′,与对称轴交于点P,则点P为所求.此时△PAC周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b,则有:,解得,∴y=x﹣.当x=4时,y=,∴P(4,).过点C′作C′E⊥x轴于点E,则C′E=,AE=6,在Rt△AC′E中,由勾股定理得:AC′==4;在Rt△AOC中,由勾股定理得:AC==4.∴AC+AC′=4+4.∴存在满足条件的点P,点P坐标为(4,),△PAC周长的最小值为4+4.(4)①当﹣6≤t≤0时,如答图4﹣1所示.∵直线m平行于y轴,∴,即,解得:GH=(6+t)∴S=S△DGH=DH•GH=(6+t)•(6+t)=t2+2t+6;②当0<t≤2时,如答图4﹣2所示.∵直线m平行于y轴,∴,即,解得:GH=﹣t+2.∴S=S△COD+S梯形OCGH=OD•OC+(GH+OC)•OH=×6×2+(﹣t+2+2)•t=﹣t2+2t+6.∴S=.点评:本题是典型的二次函数压轴题,综合考查二次函数与一次函数的图象与性质、待定系数法、解一元二次方程、相似、勾股定理等知识点,难度不大.第(3)考查最值问题,注意利用轴对称的性质;第(4)问是动线型问题,考查分类讨论的数学思想,注意图形面积的计算.(2014•山东烟台,第26题12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.分析:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.解答:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.点评:本题考查了待定系数法求解析式,三角形相似的判定及性质,以及对称轴的性质和解三角函数等知识的理解和掌握.(2014年湖北咸宁23.(10分))如图1,P(m,n)是抛物线y=﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【探究】(1)填空:当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=﹣1上滑动,求A,B两点到直线l的距离之和的最小值.分析:(1)m记为P点的横坐标.m=0时,直接代入x=0,得P(0,﹣1),则OP,PH长易知.当m=4时,直接代入x=4,得P(4,3),OP可有勾股定理求得,PH=y P﹣(﹣2).(2)猜想OP=PH.证明时因为P为所有满足二次函数y=﹣1的点,一般可设(m,﹣1).类似(1)利用勾股定理和PH=y P﹣(﹣2)可求出OP与PH,比较即得结论.(3)考虑(2)结论,即函数y=﹣1的点到原点的距离等于其到l的距离.要求A、B两点到l距离的和,即A、B两点到原点的和,若AB不过点O,则OA+OB>AB=6,若AB过点O,则OA+OB=AB=6,所以OA+OB≥6,即A、B两点到l距离的和≥6,进而最小值即为6.解答:(1)解:OP=1,PH=1;OP=5,PH=5.如图1,记PH与x轴交点为Q,当m=0时,P(0,﹣1).此时OP=1,PH=1.当m=4时,P(4,3).此时PQ=3,OQ=4,∴OP==5,PH=y P﹣(﹣2)=3﹣(﹣2)=5.(2)猜想:OP=PH.证明:过点P作PQ⊥x轴于Q,∵P在二次函数y=﹣1上,∴设P(m,﹣1),则PQ=|﹣1|,OQ=|m|,∵△OPQ为直角三角形,∴OP=====,PH=y P﹣(﹣2)=(﹣1)﹣(﹣2)=,∴OP=PH.(3)解:如图2,连接OA,OB,过点A作AC⊥l于C,过点B作BD⊥l于D,此时AC即为A点到l的距离,BD即为B点到l的距离.则有OB=BD,OA=AC,在△AOB中,∵OB+OA>AB,∴BD+AC>AB.当AB过O点时,∵OB+OA=AB,∴BD+AC=AB.综上所述,BD+AC≥AB,∵AB=6,∴BD+AC≥6,即A,B两点到直线l的距离之和的最小值为6.点评:本题考查了学生对函数与其图象的理解,另外涉及一些点到直线距离,利用勾股定理就坐标系中两点间的距离及最短距离等知识点,总体来说难度不高,但知识新颖易引发学生对数学知识的兴趣,非常值得学生练习.(2014年河南) (23. 11分)如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-34x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。
中考数学压轴题:妙解双动点问题,一眼识题,学霸解题技巧!

中考数学压轴题:妙解双动点问题,一眼识题,学霸解
题技巧!
在中考数学中,双动点问题是一种常见的问题类型,这类问题要求考生掌握一定的数学思维和解题技巧。
下面我将通过一道中考数学压轴题来讲解如何妙解双动点问题。
题目:在直角坐标系中,点A的坐标为$(0,4)$,点B的坐标为$(3,0)$,点
C的坐标为$(2,0)$。
点D是动点,当以A、D、C为顶点的三角形面积与以B、D、C为顶点的三角形面积相等时,求点D的坐标。
首先,我们需要理解题目要求,即以A、D、C为顶点的三角形面积与以B、D、C为顶点的三角形面积相等。
根据三角形面积的计算公式,面积 = (底
× 高) / 2,因此我们可以推断出AD和BD的高相等。
第一步,过点D作DE垂直于BC于E,这样我们可以得到两个相似三角形:△ADE和△BDE。
由于两个三角形的对应边成比例,我们可以设DE的长度为x,然后根据相似三角形的性质求出AD和BD的长度。
第二步,根据题目条件,我们知道以A、D、C为顶点的三角形面积与以B、D、C为顶点的三角形面积相等,因此我们可以得到方程:$\frac{AD
\times DE}{2} = \frac{BC \times DE}{2}$。
解这个方程可以得到AD的长度。
第三步,根据AD和DE的长度,我们可以求出AE的长度,然后利用勾股定理求出AD的长度。
最后我们可以得到点D的坐标。
综上所述,通过妙解双动点问题,我们可以得到点D的坐标为$(1,2)$或$(\frac{3}{4},\frac{5}{2})$。
中考压轴题十大类型之动点问题

念书破万卷下笔如有神第一讲中考压轴题十大种类之动点问题一、解题策略和解法精讲解决动点问题的要点是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间见解和合情推理。
在动点的运动过程中察看图形的变化情况,理解图形在不同样地址的情况,做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”研究题的基本思路 ,这也是动向几何数学问题中最中心的数学本质。
二、精讲精练1.(2011 吉林)如图,梯形 ABCD 中, AD∥BC,∠ BAD=90°, CE⊥ AD 于点E,AD=8cm,BC=4cm,AB=5cm.从初始时辰开始,动点 P,Q 分别从点 A,B 同时出发,运动速度均为 1cm/s,动点 P 沿 A-B-C-E 方向运动,到点 E 停止;动点 Q 沿 B-C-E- D 方向运动,到点 D 停止,设运动时间为x s,△ PAQ 2的面积为 y cm ,(这里规定:线段是面积为0 的三角形)解答以下问题:(1)当x=2s 时, y=_____ cm2;当x =9 s 时, y=_______ cm2.2(2)当5 ≤x ≤14时,求y 与x 之间的函数关系式.(3)当动点P 在线段BC 上运动时,求出y4S 梯形ABCD时x 的值.15(4)直接写出在整个运动过程中,使 PQ 与四边形 ABCE 的对角线平行的所..有 x 的值.2.(2007 河北)如图,在等腰梯形 ABCD 中, AD∥BC,AB=DC=50,AD=75,BC=135.点 P 从点 B 出发沿折线段 BA-AD-DC 以每秒 5 个单位长的速度向点 C 匀速运动;点 Q 从点 C 出发沿线段 CB 方向以每秒 3 个单位长的速度匀速运动,过点 Q 向上作射线 QK⊥BC,交折线段 CD-DA-AB 于点 E.点 P、Q 同时开始运动,当点 P 与点 C 重合时停止运动,点 Q 也随之停止.设点 P、Q 运动的时间是 t 秒( t>0).(1)当点 P 抵达终点 C 时,求 t 的值,并指出此时BQ 的长;(2)当点 P 运动到 AD 上时, t 为何值能使 PQ∥DC ?(3)设射线 QK 扫过梯形 ABCD 的面积为 S,分别求出点 E 运动到 CD、DA 上时, S 与 t 的关系式;(4)△PQE 可否成为直角三角形?若能,写出 t 的取值范围;若不能够,请说明原因.A DK A DP EBQ CBC备用图3.(2008 河北)如图,在Rt△ABC中,∠ C=90°, AB=50,AC=30,D,E,F 分别是 AC,AB,BC 的中点.点 P 从点D出发沿折线 DE-EF-FC-CD 以每秒7 个单位长的速度匀速运动;点Q从点 B 出发沿BA方向以每秒 4 个单位长的速度匀速运动,过点 Q 作射线 QK AB ,交折线BC-CA于点 G .点 P,Q 同时出发,当点 P 绕行一周回到点D时停止运动,点Q也随之停止.设点P, Q 运动的时间是t秒( t 0 ).(1)D,F两点间的距离是;(2)射线QK可否把四边形CDEF分成面积相等的两部分?若能,求出t 的值.若不能够,说明原因;(3)当点 P 运动到折线EF FC 上,且点P又恰巧落在射线 QK 上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出 t 的值...C K CD F D FP GA EQB A E B备用图4(.2011 山西太原)如图,在平面直角坐标系中,四边形 OABC 是平行四边形.直线 l 经过O、C两点.点A的坐标为( 8,0),点B的坐标为( 11,4),动点P在线段 OA 上从点 O 出发以每秒 1 个单位的速度向点 A 运动,同时动点 Q 从点 A出发以每秒 2 个单位的速度沿A→ B→C 的方向向点 C 运动,过点 P 作 PM 垂直于 x 轴,与折线 O- C- B 订交于点 M.当 P、 Q 两点中有一点抵达终点时,另一点也随之停止运动,设点 P、Q 运动的时间为 t 秒 ( t 0 ) ,△ MPQ 的面积为 S.(1)点 C 的坐标为 ________,直线l的剖析式为 __________.(2)试求点 Q 与点 M 相遇前 S 与 t 的函数关系式,并写出相应的 t 的取值范围.(3)试求题 ( 2) 中当 t 为何值时, S 的值最大,并求出S 的最大值.(4)随着 P、Q 两点的运动,当点 M 在线段 CB 上运动时,设 PM 的延长线与直线 l 订交于点N.试试究:当t为何值时,△QMN为等腰三角形?请直接写出 t 的值.ylC BM Qyl C QBMOP AxylC M Q BO P A x5.( 2011四川重庆)如图,矩形ABCD 中,AB=6,BC=2 3,点 O 是 AB 的中点,点 P 在 AB 的延长线上,且 BP= 3.一动点 E 从 O 点出发,以每秒 1 个单位长度的速度沿OA 匀速运动,抵达A 点后,立刻以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1 个单位长度的速度沿射线PA 匀速运动,点E、F 同时出发,当两点相遇时停止运动.在点 E、F 的运动过程中,以 EF 为边作等边△EFG,使△EFG 和矩形 ABCD 在射线 PA 的同侧,设运动的时间为 t 秒(t≥0).(1)当等边△EFG 的边 FG 恰巧经过点 C 时,求运动时间 t 的值;(2)在整个运动过程中,设等边△ EFG 和矩形 ABCD 重叠部分的面积为 S,请直接写出 S与 t 之间的函数关系式和相应的自变量t 的取值范围;(3)设 EG 与矩形 ABCD 的对角线 AC 的交点为 H,可否存在这样的 t,使△AOH 是等腰三角形?若存在,求出对应的 t 的值;若不存在,请说明原因.D C D CEO B F P A E O B F P备用图 1D CAE O BF P备用图 2三、测试提高1. (2011 山东烟台)如图,在直角坐标系中, 梯形 ABCD 的底边 AB 在 x 轴上, 底边 CD 的端点 D 在 y 轴上.直线 CB 的表达式为 y4 x16,点 A 、D3 3的坐标分别为(- 4,0),(0,4).动点 P 自 A 点出发,在 AB 上匀速运动.动点 Q 自点 B 出发,在折线 BCD 上匀速运动,速度均为每秒 1 个单位.当其中一个动点抵达终点时, 它们同时停止运动. 设点 P 运动 t (秒)时,△OPQ 的面积为 S (不能够组成△ OPQ 的动点除外). (1)求出点 B 、C 的坐标; (2)求 S 随 t 变化的函数关系式;(3)当 t 为何值时 S 有最大值?并求出最大值.备用图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2014•济宁,第22题11分)如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形若存在,求出点P的坐标;若不存在,请说明理由.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出对称点A′的坐标,然后代入抛物线解析式,即可判定点A′是否在抛物线上.本问关键在于求出A′的坐标.如答图所示,作辅助线,构造一对相似三角形Rt△A′EA∽Rt△OAC,利用相似关系、对称性质、勾股定理,求出对称点A′的坐标;(3)本问为存在型问题.解题要点是利用平行四边形的定义,列出代数关系式求解.如答图所示,平行四边形的对边平行且相等,因此PM=AC=10;利用含未知数的代数式表示出PM的长度,然后列方程求解.解答:解:(1)∵y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,∴,解得.∴抛物线的解析式为y=x2﹣x﹣.(2)如答图所示,过点A′作A′E⊥x轴于E,AA′与OC交于点D,∵点C在直线y=2x上,∴C(5,10)∵点A和A′关于直线y=2x对称,∴OC⊥AA′,A′D=AD.∵OA =5,AC =10,∴OC ===.∵S△OAC=OC •AD=OA•AC,∴AD=.∴AA′=,在Rt△A′EA和Rt△OAC中,∵∠A′AE+∠A′AC=90°,∠ACD+∠A′AC=90°,∴∠A′AE=∠ACD.又∵∠A′EA=∠OAC=90°,∴Rt △A′EA∽Rt△OAC.∴,即.∴A′E=4,AE=8.∴OE=AE﹣OA=3.∴点A′的坐标为(﹣3,4),当x =﹣3时,y=×(﹣3)2+3﹣=4.所以,点A ′在该抛物线上.(3)存在.理由:设直线CA′的解析式为y=kx+b,则,解得∴直线CA′的解析式为y =x +…(9分)设点P 的坐标为(x,x2﹣x﹣),则点M为(x,x+).∵PM∥AC,∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,∴(x+)﹣(x2﹣x﹣)=10.解得x1=2,x2=5(不合题意,舍去)当x=2时,y=﹣.∴当点P运动到(2,﹣)时,四边形PACM是平行四边形.点评:本题是二次函数的综合题型,考查了二次函数的图象及性质、待定系数法、相似、平行四边形、勾股定理、对称等知识点,涉及考点较多,有一定的难度.第(2)问的要点是求对称点A′的坐标,第(3)问的要点是利用平行四边形的定义列方程求解..(2014•贵州黔西南州, 第26题16分)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.第1题图分析:(1)由抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,则代入求得a,b,c,进而得解析式与顶点D.(2)由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.(3)由最值时,P为(﹣,3),则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.解答:解:(1)∵抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线顶点坐标D为(﹣1,4).(2)∵A(﹣3,0),D(﹣1,4),∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P(x,2x+6),∴S△APE=•PE•y P=•(﹣x)•(2x+6)=﹣x2﹣3x (﹣3<x<﹣1),当x=﹣=﹣时,S取最大值.(3)如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P(﹣,3),∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵(3﹣m)2+()2=m2,∴m=.∵S△P′EN=•P′N•P′E=•EN•P′M,∴P ′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′(,).当x =时,y=﹣()2﹣2•+3=≠,∴点P′不在该抛物线上.点评:本题考查了待定系数法求抛物线解析式,二次函数图象、性质及设边长利用勾股定理解直角三角形等常规考点,题目考点适中,考法新颖,适合学生练习巩固.(2014•攀枝花,第24题12分)如图,抛物线y=ax2﹣8ax+12a(a>0)与x轴交于A、B两点(A 在B的左侧),与y轴交于点C,点D的坐标为(﹣6,0),且∠ACD=90°.(1)请直接写出A、B两点的坐标;(2)求抛物线的解析式;(3)抛物线的对称轴上是否存在点P,使得△PAC的周长最小若存在,求出点P的坐标及周长的最小值;若不存在,说明理由;(4)平行于y轴的直线m从点D出发沿x轴向右平行移动,到点A停止.设直线m与折线DCA 的交点为G,与x轴的交点为H(t,0).记△ACD在直线m左侧部分的面积为s,求s关于t的函数关系式及自变量t的取值范围.分析:(1)令y=ax2﹣8ax+12a=0,解一元二次方程,求出点A、B的坐标;(2)由∠ACD=90°可知△ACD为直角三角形,利用勾股定理,列出方程求出a的值,进而求出抛物线的解析式;(3)△PAC的周长=AC+PA+PC,AC为定值,则当PA+PC取得最小值时,△PAC的周长最小.设点C关于对称轴的对称点为C′,连接AC′与对称轴交于点P,由轴对称的性质可知点P即为所求;(4)直线m运动过程中,有两种情形,需要分类讨论并计算,避免漏解.解答:解:(1)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令y=0,即ax2﹣8ax+12a=0,解得x1=2,x2=6,∴A(2,0),B(6,0).(2)抛物线的解析式为:y=ax2﹣8ax+12a(a>0),令x=0,得y=12a,∴C(0,12a),OC=12a.在Rt△COD中,由勾股定理得:CD2=OC2+OD2=(12a)2+62=144a2+36;在Rt△COD中,由勾股定理得:AC2=OC2+OA2=(12a)2+22=144a2+4;在Rt△COD中,由勾股定理得:DC2+AC2=AD2;即:(144a2+36)+(144a2+4)=82,解得:a=或a=﹣(舍去),∴抛物线的解析式为:y=x2﹣x+.(3)存在.对称轴为直线:x=﹣=4.由(2)知C(0,),则点C关于对称轴x=4的对称点为C′(8,),连接AC′,与对称轴交于点P,则点P为所求.此时△PAC周长最小,最小值为AC+AC′.设直线AC′的解析式为y=kx+b,则有:,解得,∴y=x﹣.当x=4时,y=,∴P(4,).过点C′作C′E⊥x轴于点E,则C′E=,AE=6,在Rt△AC′E中,由勾股定理得:AC′==4;在Rt△AOC中,由勾股定理得:AC==4.∴AC+AC′=4+4.∴存在满足条件的点P,点P坐标为(4,),△PAC周长的最小值为4+4.(4)①当﹣6≤t≤0时,如答图4﹣1所示.∵直线m平行于y轴,∴,即,解得:GH=(6+t)∴S=S△DGH=DH•GH=(6+t)•(6+t)=t2+2t+6;②当0<t≤2时,如答图4﹣2所示.∵直线m平行于y轴,∴,即,解得:GH=﹣t+2.∴S=S△COD+S梯形OCGH=OD•OC+(GH+OC)•OH=×6×2+(﹣t+2+2)•t=﹣t2+2t+6.∴S=.点评:本题是典型的二次函数压轴题,综合考查二次函数与一次函数的图象与性质、待定系数法、解一元二次方程、相似、勾股定理等知识点,难度不大.第(3)考查最值问题,注意利用轴对称的性质;第(4)问是动线型问题,考查分类讨论的数学思想,注意图形面积的计算.(2014•山东烟台,第26题12分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y 轴,x轴上,∠ACB=90°,OA=,抛物线y=ax2﹣ax﹣a经过点B(2,),与y轴交于点D.(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上请说明理由;(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.分析:(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD∽△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.解答:(1)把点B的坐标代入抛物线的表达式,得=a×22﹣2a﹣a,解得a=,∴抛物线的表达式为y=x2﹣x﹣.(2)连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°∵∠ACB=90°,∴∠ACO+∠BCF=90°,∴∠ACO=∠CBF,∵∠AOC=∠CFB=90°,∴△AOC∽△CFB,∴=,设OC=m,则CF=2﹣m,则有=,解得m=m=1,∴OC=OF=1,当x=0时y=﹣,∴OD=,∴BF=OD,∵∠DOC=∠BFC=90°,∴△OCD∽△FCB,∴DC=CB,∠OCD=∠FCB,∴点B、C、D在同一直线上,∴点B与点D关于直线AC对称,∴点B关于直线AC的对称点在抛物线上.(3)过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则,解得k=﹣,∴y=﹣x+,代入抛物线的表达式﹣x+=x2﹣x﹣.解得x=2或x=﹣2,当x=﹣2时y=﹣x+=﹣×(﹣2)+=,∴点E的坐标为(﹣2,),∵tan∠EDG===,∴∠EDG=30°∵tan∠OAC===,∴∠OAC=30°,∴∠OAC=∠EDG,∴ED∥AC.点评:本题考查了待定系数法求解析式,三角形相似的判定及性质,以及对称轴的性质和解三角函数等知识的理解和掌握.(2014年湖北咸宁23.(10分))如图1,P(m,n)是抛物线y=﹣1上任意一点,l是过点(0,﹣2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.【探究】(1)填空:当m=0时,OP= 1 ,PH= 1 ;当m=4时,OP= 5 ,PH= 5 ;【证明】(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.【应用】(3)如图2,已知线段AB=6,端点A,B在抛物线y=﹣1上滑动,求A,B两点到直线l的距离之和的最小值.分析:(1)m记为P点的横坐标.m=0时,直接代入x=0,得P(0,﹣1),则OP,PH长易知.当m=4时,直接代入x=4,得P(4,3),OP可有勾股定理求得,PH=y P﹣(﹣2).(2)猜想OP=PH.证明时因为P为所有满足二次函数y=﹣1的点,一般可设(m,﹣1).类似(1)利用勾股定理和PH=y P﹣(﹣2)可求出OP与PH,比较即得结论.(3)考虑(2)结论,即函数y=﹣1的点到原点的距离等于其到l的距离.要求A、B两点到l距离的和,即A、B两点到原点的和,若AB不过点O,则OA+OB>AB=6,若AB过点O,则OA+OB=AB=6,所以OA+OB≥6,即A、B两点到l距离的和≥6,进而最小值即为6.解答:(1)解:OP=1,PH=1;OP=5,PH=5.如图1,记PH与x轴交点为Q,当m=0时,P(0,﹣1).此时OP=1,PH=1.当m=4时,P(4,3).此时PQ=3,OQ=4,∴OP==5,PH=y P﹣(﹣2)=3﹣(﹣2)=5.(2)猜想:OP=PH.证明:过点P作PQ⊥x轴于Q,∵P在二次函数y=﹣1上,∴设P(m,﹣1),则PQ=|﹣1|,OQ=|m|,∵△OPQ为直角三角形,∴OP=====,PH=y P﹣(﹣2)=(﹣1)﹣(﹣2)=,∴OP=PH.(3)解:如图2,连接OA,OB,过点A作AC⊥l于C,过点B作BD⊥l于D,此时AC即为A点到l的距离,BD即为B点到l的距离.则有OB=BD,OA=AC,在△AOB中,∵OB+OA>AB,∴BD+AC>AB.当AB过O点时,∵OB+OA=AB,∴BD+AC=AB.综上所述,BD+AC≥AB,∵AB=6,∴BD+AC≥6,即A,B两点到直线l的距离之和的最小值为6.点评:本题考查了学生对函数与其图象的理解,另外涉及一些点到直线距离,利用勾股定理就坐标系中两点间的距离及最短距离等知识点,总体来说难度不高,但知识新颖易引发学生对数学知识的兴趣,非常值得学生练习.( 2014年河南) (23. 11分)如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-34x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m。