2016年中考数学压轴题动点问题

合集下载

2016年中考数学压轴题70题精选(含答案及解析)

2016年中考数学压轴题70题精选(含答案及解析)

2016年中考数学压轴题70题精选(含答案)【001】如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与ΔABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由。

【002】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC 于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。

【003】抛物线)0(2≠++=a c bx ax y 的顶点为M ,与x 轴的交点为A 、B (点B 在点A 的右侧),△ABM 的三个内角∠M 、∠A 、∠B 所对的边分别为m 、a 、b 。

若关于x 的一元二次方程0)(2)(2=+++-a m bx x a m 有两个相等的实数根。

(1)判断△ABM 的形状,并说明理由。

(2)当顶点M 的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。

(3)若平行于x 轴的直线与抛物线交于C 、D 两点,以CD 为直径的圆恰好与x 轴相切,求该圆的圆心坐标。

【004】一次函数y ax b =+的图象分别与x 轴、y 轴交于点,M N ,与反比例函数ky x=的图象相交于点,A B .过点A 分别作AC x ⊥轴,AE y ⊥轴,垂足分别为,C E ;过点B 分别作BF x ⊥轴,BD y ⊥轴,垂足分别为F D ,,AC 与BD 交于点K ,连接CD . (1)若点A B ,在反比例函数ky x=的图象的同一分支上,如图1,试证明: ①AEDK CFBK S S =四边形四边形; ②AN BM =.(2)若点A B ,分别在反比例函数ky x=的图象的不同分支上,如图2,则AN 与BM 还相等吗?试证明你的结论.)【005】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A 的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S 与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【006】如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M . (1)求抛物线对应的函数表达式;(2)经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过AB E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由; (4)当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).【007】如图9,已知正比例函数和反比例函数的图象都经过点(33)A ,. (1)求正比例函数和反比例函数的解析式;(2)把直线O A 向下平移后与反比例函数的图象交于点(6)B m ,,求m 的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x 轴、y 轴分别交于C 、D ,求过A 、B 、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E ,使四边形O ECD 的面积1S 与四边形O ABD 的面积S 满足:123S S?若存在,求点E 的坐标; 若不存在,请说明理由.【008】如图,在平面直角坐标系xOy 中,半径为1的圆的圆心O 在坐标原点,且与两坐标轴分别交于A B C D 、、、四点.抛物线2y ax bx c =++与y 轴交于点D ,与直线y x =交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. (3)过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.【009】如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.【010】如图,抛物线24y ax bx a =+-经过(10)A -,、(04)C ,两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点(1)D m m +,在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标;(3)在(2)的条件下,连接BD ,点P 为抛物线上一点, 且45DBP ∠=°,求点P 的坐标.7),且顶点C的横坐标为4,该图象在【011】如图,二次函数的图象经过点D(0,39x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【012】如图,已知抛物线2y x bx c =++经过(10)A ,,(02)B ,两点,顶点为D . (1)求抛物线的解析式;(2)将OAB △绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB △的面积是1NDD △面积的2倍,求点N 的坐标.(第26【013】如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3). ①判断EF 与AB 的位置关系,并证明你的结论;②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。

2016中考数学压轴题解析版

2016中考数学压轴题解析版

上所述,满足条件的点 P 的坐标为(﹣8,﹣15) 、 (2 ,﹣ ) 、 (10,﹣39) .
.此时点 P 的坐标为(2 ,﹣ ) . ,即 m 2﹣7m﹣30=0.
解得 m= ﹣3(舍去)或 m=10 ,此时点 P 的坐标为(10,﹣39) .
6、十套模拟二:
8、山东模拟二:如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A (3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛 物线于点M,设点P的横坐标为t. 2 y x 3 y x 2x 3 (1)分别求出直线AB和这条抛物线的解析式. (2)若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面 积. (3)是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四 边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.
(3) 存在点 P , 使得以点 P、 A、 N 为顶点的三角形与△MAO 相似. 设P (m, ) .
在 Rt△MAO 中,AO=3MO ,要使两个三角形相似,由题意可知,点 P 不可能在第一象限.
①设点 P 在第二象限时,∵点 P 不可能在直线 MN 上,∴只能 PN=3NM, ∴ ,即 m 2+11m+24=0.解得 m=﹣3(舍去)或 m=﹣8.又﹣3
2
∴AO=1,OC=3, OB=3,P M= x 2 x 3 ,PN =x. ∴S 四边形 ABPC= S AOC + S POB + S POC
2
y M O N
C
第 25 题图 2(备用)
1 1 1 = AO·OC + OB·PM+ OC ·PN 2 2 2 1 1 1 2 = ×1×3+ ×3×( x 2 x 3 )+ ×3×x 2 2 2 3 2 9 = x x6 2 2 3 3 2 75 = (x ) . ………………………8 分 2 2 8

中考数学动点问题经验与解析

中考数学动点问题经验与解析

中考数学动点问题经验与解析作者:孔祥莉来源:《新校园(下)》2016年第05期摘要:数学动点题一般出现在中考数学题的最后或者倒数第二道题,誉为压轴题,是大多数学生的“失分重灾区”,少数学生对之又爱又恨,大部分学生则抱以“望而却步”的态度。

本文将动点题的常考题型分成三角形问题、四边形问题、动点与函数结合问题,并依次展开解析,引出此类问题的解题思路,对动点题解题方法进行简单总结。

关键词:中考;数学;动点问题;解题思路一、中考数学动点问题思路解析例1.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx-4(a≠0)的图象与x轴交于A (-2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D。

(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形;若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n例2.在平面直角坐标系中,抛物线y=-1/2 x2+bx+c与x轴交于点A,B,与y轴交于点C,直线经过A,C两点。

(1)求抛物线的解析式;(2)在AC上方的抛物线上有一动点P。

①如图1,当点P运动到某位置时,以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时P点的坐标。

②如图2,过点O、P的直线y=kx交AC于点E,若PE:OE=3:8,求k的值。

二、三角形问题中考动点题的三角形问题通常是指动点运动产生三角形的题型,通常以是否能够构成等腰三角形、求形成特定三角形时的点满足的条件或者何种条件下求形成三角形面积最大等形式进行考察。

如例1(2),即为求形成等腰三角形时点所满足的条件,属于较为简单的题型,解题思路如下:首先充分理解题意,并采用数形结合的解题方法推测出满足△CDE为等腰三角形的可能有三种:CD=CE,CD=DE,CE=DE;在此基础上思考如何利用上述三个等式,会发现E点坐标是一个重要的值,并想办法将其表示出来:根据题意和已知条件可以求得B、D两点坐标,C点已知,代入B、C两点坐标可以求得BC所在直线的一次函数解析式(y=1/2 x-4),从而表示出E点坐标(m,1/2m-4)。

2016年全国中考数学真题分类 选择题中的压轴题——几何图形中的动点与函数图象的选择(习题解析)

2016年全国中考数学真题分类 选择题中的压轴题——几何图形中的动点与函数图象的选择(习题解析)

2016年全国中考数学真题分类选择题中的压轴题——图形中的动点与函数图象的选择一、选择题1.(2016青海西宁,10,3分)如图4,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角ABCBAC,设点B的∆,使︒∠90=横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是[来源:Z§xx§]图4 A B C D【答案】A2.(2016甘肃定西,10,3分)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=xx=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=(4﹣x)x=﹣x2+2x,故选A【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x 的函数关系式.3.(2016湖南衡阳,12,3分)如图,已知A,B是反比例函数y=(k >0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A.B.C.D.【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【解答】解:设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S==a2•cos α•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选:A.4.(2016 镇江,17,3分)如图,在平面直角坐标系中,坐标原点O是正方形OABC 的一个顶点,已知点B坐标为(1,7),过点P(a,0)(a>0),作PE⊥x轴,与边OA交于点E(异于点O、A),现将四边形ABCE沿CE翻折,点A′、B′分别是点A、B的对应点,若点A′恰好落在直线PE上,则a的值等于()A. 54B.43C. 2D.3答案:C.二、填空题5.(2015•浙江舟山,16,4分)如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为 4 .【分析】首先根据题意正确画出从O→B→A运动一周的图形,分四种情况进行计算:①点P从O→B时,路程是线段PQ的长;②当点P从B→C时,点Q从O运动到Q,计算OQ的长就是运动的路程;③点P从C→A时,点Q由Q向左运动,路程为QQ′;④点P从A→O时,点Q运动的路程就是点P运动的路程;最后相加即可.【解答】解:在Rt△AOB中,∵∠ABO=30°,AO=1,∴AB=2,BO==,①当点P从O→B时,如图1、图2所示,点Q运动的路程为,②当点P从B→C时,如图3所示,这时QC⊥AB,则∠ACQ=90°∵∠ABO=30°∴∠BAO=60°∴∠OQD=90°﹣60°=30°∴cos30°=∴AQ==2∴OQ=2﹣1=1则点Q运动的路程为QO=1,③当点P从C→A时,如图3所示,点Q运动的路程为QQ′=2﹣,④当点P从A→O时,点Q运动的路程为AO=1,∴点Q运动的总路程为:+1+2﹣+1=4故答案为:4【点评】本题主要是应用三角函数定义来解直角三角形,此题的解题关键是理解题意,正确画出图形;线段的两个端点看成是两个动点,将线段移动问题转化为点移动问题.三、解答题6.(2016上海,25,14分) (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x 的函数解析式,并写出x的取值范围.【答案】解:(1)过点D作DH∥AB,垂足为点H.在Rt△DAH中,∠AHD=90°,AD=15,DH=12,∴AH22AD DH9.又∵AB=16,∴CD=BH=AB-AH=7.(2)∵∠AEG=∠DEA,又∠AGE=∠DAE,△AEG∽△DEA.由△AEG是以EG为腰的等腰三角形,可得△DEA是以AE为腰的等腰三角形.①当EG=EA时,∠EAG=∠AGE=∠DAB∴点G与点D重合过点E做EH⊥AD与H点cos∠A=AHAE =35,AH=152∴AE=252②当GE=GA时,△EAD∽△EGA.AE GE =ADAG∴AE=AD=15综上所述,AE=152或15(3)Rt △DHE 巾,∠DHE =90°,DE 22DH EH +2212(9)x +- ∵△AEG ∽△DEA ,AE DE =EGAE. ∴EG ()222129x +-DG =()22129x +-()222129x +-.∵DF ∥AE ,∴DF AE =DG EG ,yx =()2222129x x x +--.∴y =22518x x -,x 的取值范围为9<x <252.7. (2016 镇江,27,9分)(本小题满分9分)如图1,在菱形ABCD 中,5tan ∠ABC=2,点E 从点D 出发,以每秒1个单位长度的速度沿着射线DA 的方向匀速运动,设运动时间为t (秒).将线段CE 绕点C 顺时针旋转一个角α(α=∠BCD ),得到对应线段CF. (1)求证:BE=DF ;(2)当t= 秒时,DF 的长度有最小值,最小值等于 ;(3)如图2,连接BD ,EF ,BD 交EC ,EF 于点P 、Q ,当t 为何值时,△EPQ 是直角三角形?(4)如图3,将线段CD 绕点C 顺时针旋转一个角α(α=∠BCD ),得到对应线段CG.在点E 的运动过程中,当它的对应点F 位于AD 上方时,直接写出点F 到直线AD 的距离y 关于时间t 的函数表达式.DCAE图2QPDC AE 图3DC GA(1)证明:∠ECF=∠BCD , ∴∠ECF -∠ECD=∠BCD -∠ECD , 即∠DCF=∠BCE. ∵四边形ABCD 是菱形, ∴DC=BC ,在△DCF 和△BCE 中,DCF=BCE DC=BC CF CE =⎧⎪⎨⎪⎩∠∠ ∴△DCF ≌△BCE ,∴DF=BE ;……………………………………………………2分(2)当56)秒时,……………………………………………………3分 当DF 的长度有最小值,最小值等于12;……………………………………………………4分 (3)∵CE=CF , ∴∠CEQ <90°.①当∠EQD=90°时,如图1,∠ECF=∠BCD,BC=DC,EC=FC, ∴∠CBD=∠CEF,∵∠BPC=∠EPQ,∴∠BCP=∠EQP=90°.在Rt△CDE中,∠CED=90°,∵,tan∠ABC=tan∠ADC=2,∴DE=6,∴t=6秒;……………………………………………………6分②当∠EPQ=90°时,如图2,∵菱形ABCD对角线AC⊥BD,∴EC和AC重合.∴,∴秒;……………………………………………………7分图1图2(4)y=5t-12-5.……………………………………………………9分略解:点G即为t=0时,点E的对应点.当点F在直线AD上方时,如图3,连接GF,分别交直线AD、BC于点M、N,过点F作FH⊥AD,垂足为H,由(1)得∠1=∠2.易证△DCE≌△GCF,2016年全国中考数学精品文档11 ∴∠3=∠4.∵DE ∥BC ,∴∠1=∠3.∴∠2=∠4.∴GF ∥CD ,易得∠BCD=∠DCN=∠CNG.∵tan ∠ABC=tan ∠CGN=2, ∴GN=12.∴+12.∵GF=DE=t ×1=t,FM =t --12,∵tan ∠FMH=tan ∠ABC=2, ∴FH=5(t -12), 即-12-。

动点问题

动点问题


B 2 3
D 42 3
M
B
N
A 2 C 4
A
P
C
练习3、如图,已知梯形ABCD,AD // BC,
AD DC 4, BC 8,点N在BC上,CN 2, E是A 此时其最小值一定等于
中点,在AC上找一点M,使EM MN的值最小,

B.8 D.10 C
A.6 C.4 E
A
D M N
D C
E
A B
解决动点问题 的好助手:
数形结合定相似 比例线段构方程
PDຫໍສະໝຸດ CEAB
P
例3、在平面直角坐标系中,四边形 OABC为矩形,点 0) (4 3) ,动点M,N 分别从点 A ,B的坐标分别为 (4,,, O,B同时出发,以每秒1个单位的速度运动,其中点 M 沿 OA向终点 A运动,点 N 沿BC向终点 C 运动, ,连结MP,当两动点 过点 N 作 NP BC ,交AC于点 P 运动了 t 秒时.

y A Q O P C x B

t 3 3t t 3 3t 或 1 3t 1 3t
即t
. .
2
2 1 5 或t 解得 t 2 3
1 又 0 ≤ t ≤1 当 t 2
t 1 0
或 3t
2
5
△OPQ 与 △BCP 相似.
2 或 t 时, 3
(1)点的坐标为( , )(用含t的代数式表示). P (2)记 △MPA的面积为S,求 S 与 t 的函数关系式(0 t 4) 秒时 S有最大值,最大值是 (3)当t y (4)若点Q 在 y 轴上,当S 有最大值且 N B C △QAN 为等腰三角形时,求直线AQ P 的解析式. F

中考数学常见题型几何动点问题

中考数学常见题型几何动点问题

中考数学压轴题型研究(一)——动点几何问题例1:在△ABC 中,∠B=60°,BA=24CM,BC=16CM, (1)求△ABC 的面积;(2)现有动点P 从A 点出发,沿射线AB 向点B 方向运动,动点Q 从C 点出发,沿射线CB 也向点B 方向运动。

如果点P 的速度是4CM/秒,点Q 的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ的面积是△ABC 的面积的一半?(3)在第(2)问题前提下,P ,Q 两点之间的距离是多少?例2: ()已知正方形ABCD 的边长是1,E 为CD 边的中点, P 为正方形ABCD 边上的一个动点,动点P 从A 点出发,沿A →B → C →E 运动,到达点E.若点P 经过的路程为自变量x ,△APE 的面积为函数y ,(1)写出y 与x 的关系式 (2)求当y =13时,x 的值等于多少?例3:如图1 ,在直角梯形ABCD 中,∠B=90°,DC ∥AB ,动点P 从B 点出发,沿梯形的边由B →C → D → A 运动,设点P 运动的路程为x ,△ABP 的面积为y , 如果关于x 的函数y 的图象如图2所示 ,那么△ABC 的面积为( )A .32B .18C .16D .10ACB By例4:直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.例5:已知:等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在ABC △的边AB 上沿AB 方向以1厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M N 、分别作AB 边的垂线,与ABC △的其它边交于P Q 、两点,线段MN 运动的时间为t 秒.(1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形?并求出该矩形的面积; (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围.例6:如图(3),在梯形ABCD 中,906DC AB A AD ∠==∥,°,厘米,4DC =厘米,BC 的坡度34i =∶,动点P 从A 出发以2厘米/秒的速度沿AB 方向向点B 运动,动点Q 从点B 出发以3厘米/秒的速度沿B C D →→方向向点D 运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC 的长;(2)当t 为何值时,PC 与BQ 相互平分;图(3)BC PQBA MN(3)连结PQ ,设PBQ △的面积为y ,探求y 与t 的函数关系式,求t 为何值时,y 有最大值?最大值是多少?二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

2016年中考数学压轴题及解析分类汇编

2016年中考数学压轴题及解析分类汇编

中考数学压轴题及解析分类汇编问题中考数学压轴:等腰三角形问题中考数学压轴:直角三角形问题问题中考数学压轴:梯形问题中考数学压轴:面积问题2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG . 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ =.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=,cos 1∠=①当3BQ BA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -. 例2、 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m与n的数量关系;(2)当tan∠A=12时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO 与△EFP相似,求点P的坐标.图1思路点拨1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD//x轴.3.如果△AEO与△EFP相似,因为夹角相等,根据对应边成比例,分两种情况.满分解答(1)如图1,因为点D(4,m)、E(2,n)在反比例函数kyx=的图像上,所以4,2.m kn k=⎧⎨=⎩整理,得n=2m.(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=12,EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).已知△BDE的面积为2,所以11(1)2222BD EH m⋅=+⨯=.解得m=1.因此D(4,1),E(2,2),B(4,3).因为点D(4,1)在反比例函数kyx=的图像上,所以k=4.因此反比例函数的解析式为4yx =.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EF AO FP ==.解得FP =1.此时点P 的坐标为(1,1).②如图4,当EA FPAO EF ==.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x =-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图52016中考数学压轴题函数相似三角形问题(二)例3、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t∠==-,所以345t t =-.解得207t =.图3 图4例4、 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4. 因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM //CN ,可得''''B N B C B M B A =,即28=.解得'B C =AC =ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ==,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''AB B D AC B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三)例5 、 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6 、 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图思路点拨1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题. 满分解答(1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展:第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.思路点拨1.数形结合思想,把OC OB OA⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况. 满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb ==.即22b t t t -=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1、如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12 PC MBCM BA==.因此12PC=,32m=.②如图4,当PA=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.第(2)题的思路是这样的:如图6,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.图6 图7例2 如图1,已知一次函数y =-x +7与正比例函数43y x = 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7. 在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cos=⋅∠来求解.AP AQ A2016中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MPQN MN=,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4、如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2016中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF=2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

2016年中考压轴题专题:与圆有关的最值问题(附答案)

2016年中考压轴题专题:与圆有关的最值问题(附答案)

B yC x A OD B O C A 与圆有关的最值(取值范围)问题引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________.引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作⊙O ,C 为半圆弧AB 上的一个动点(不与A 、B 两点重合),射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ).A .3B .6C .332D .33一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.B AC MD DOPC B A 三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ; (2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=22D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .O A E B AC OD OD CE A B例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O 半径的最小值为( ).23322 D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.l Q P N M O A D BC E F C AD B Q P O A B D CP 【题型训练】1.如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA=5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C ,若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,则⊙O 的半径r 的取值范围为 .2.已知:如图,Rt ΔABC 中,∠B=90º,∠A=30º,BC=6cm ,点O 从A 点出发,沿AB 以每秒3cm 的速度向B 点方向运动,当点O 运动了t 秒(t >0)时,以O 点为圆心的圆与边AC 相切于点D ,与边AB 相交于E 、F 两点,过E 作EG ⊥DE 交射线BC 于G.(1)若点G 在线段BC 上,则t 的取值范围是 ;(2)若点G 在线段BC 的延长线上,则t 的取值范围是 .3.如图,⊙M ,⊙N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为⊙M 上的任意一点,Q 为⊙N 上的任意一点,直线PQ 与连心线l 所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α∠的最大值为( ).(A)612; (B)43; (C)33; (D)344.如图,在矩形ABCD 中,AB=3,BC=4,O 为矩形ABCD 的中心,以D 为圆心1为半径作⊙D ,P 为⊙D 上的一个动点,连接AP 、OP ,则△AOP 面积的最大值为( ).(A)4 (B)215 (C)358 (D)1745.如图,在Rt △ABC 中,∠C=90°,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P 、Q ,则线段PQ 长度的最小值是( ).A .194B .245C .5D .426.如图,在等腰Rt △ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 在AB 边上运动(点E 不与点A 重合),过A 、D 、E 三点作⊙O ,⊙O 交AC 于另一点F ,在此运动变化的过程中,线段EF 长度的最小值为 .7.如图,A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心的坐标为(-1,0),半径为1,若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ).A .2B .1 C.22- D.22AQC PBO ABxyPO A xyP8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).7 B.2210.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1. 解:C 在以A 为圆心,以2为半径作圆周上,只有当OC 与圆A 相切(即到C 点)时,∠BOC 最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°, ∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC ,tan ∠BOC=tan ∠OAC==,随着C 的移动,∠BOC 越来越大,∵C 在第一象限,∴C 不到x 轴点,即∠BOC <90°, ∴tan ∠BOC ≥,故答案为:m ≥.引例1图引例2图 引例2.2a b +≤;原题:(2013•武汉模拟)如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径作圆O ,C 为半圆AB 上不与A 、B 重合的一动点,射线AC 交⊙O 于点E ,BC=a ,AC=b .(1)求证:AE=b+a ;(2)求a+b 的最大值;(3)若m 是关于x 的方程:x 2+ax=b 2+ab 的一个根,求m 的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE ,由△OAB 为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E 的度数,又由AB 为⊙D 的直径,可求得CE 的长,继而求得AE=b+a ;(2)首先过点C 作CH ⊥AB 于H ,在Rt △ABC 中,BC=a ,AC=b ,AB=1,可得(a+b ) 2= a 2+b 2+2ab=1+2ab=1+2CH •AB=1+2CH ≤1+2AD=1+AB=2,即可求得答案;(3)由x 2+ax=b 2+ab ,可得(x ﹣b )(x+b+a )=0,则可求得x 的值,继而可求得m 的取值范围.【解答】解:(1)连接BE ,∵△OAB 为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB 为直径,∴∠ACB=∠BCE=90°,∵BC=a ,∴BE=2a ,CE=a ,∵AC=b ,∴AE=b+a ;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年中考数学压轴题动点问题
一、选择题
1. (2016·湖北鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s. 设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是()
【考点】动点函数的图像问题.
【分析】分别判断点P在AB、在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)的变化情况进行求解即可.
2.(2016年浙江省台州市)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A.6 B.2+1 C.9 D.
【考点】切线的性质.
【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值
故选C.
3.(2016年浙江省温州市)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB。

相关文档
最新文档