物质颜色和吸收光颜色的对应关系+电磁波谱对应范围

合集下载

可见光颜色对应的波长

可见光颜色对应的波长

可见光颜色对应的波长
可见光颜色对应的波长
可见光的光波波长范围在770~350纳米之间。

波长不同的电磁波,引起人眼的颜色感觉不同。

770~622nm,感觉为红色;622~597nm,橙色;597~577nm,黄色;577~492nm,绿色;492~455nm,蓝靛色;455~350nm,紫色。

相对应的,可见光的频率在3.9X10^14~8.6X10^14Hz之间。

[1]
在理论上设计了一系列染料敏化分子。

把唑和其类似物作为修饰基团引入N3 的辅助配体上,以期使N3 具有更符合DSSC 应用要求的光电性质。

根据密度泛函理论(DFT)计算,含有1, 2, 4-三唑基团的敏化分子在可见光区具有强吸收带,可见辅助配体对于分子轨道和吸收光谱是有决定性的影响。

另外,配体去质子化程度不仅能影响具体的前线轨道分布,而且能控制HOMO 和LUMO 之间的能隙以及LUMO 和LUMO+1 的能级差。

如果LUMO 和LUMO+1的的能级差足够小,那么就有望获得具有更宽阔的吸收谱带的染料分子。

第12章可见光分光光度法

第12章可见光分光光度法

厚度的乘积成正比.
即:
A = e bc
Lambert-Beer 定律不仅适用于有色溶液,也适用于其它均匀的、非散射用,则:
A 总 = A1 + A2 + …… = e1bc1 + e2bc2 + …… 吸光度具有加和性.
据: A=lg(1/T)= e bc,若 b 固定, A = K’c
显色剂 M(待测组分) → MR(有色化合物) 显色: 将待测组分转变为有色物质的过程. 显色剂: 使待测组分形成有色化合物的试剂. 1.显色反应分类: 氧化还原反应:
Ag+ 2Mn2+ + 5S2O82- + H2O → 2MnO4- + 10SO42- + 16H+ 配位反应: 多数显色反应以配位反应为主. 2.显色反应的选择: (1)灵敏度与选择性:含量低、干扰少时一般选择高灵敏度(e max > 6×104) 的显色反应; 含量较高、选择性较差,且难以消除时选择中、低灵敏度(e max < 5×104 )的显色反应. 显色反应的选择性: 一定条件下显色反应的专一性. (2)显色剂的吸收以及有色物质的稳定性: 在测定波长处尽量无吸收,或对比度尽可能大 对比度 Δl = ½lmaxMR- lmaxR½≥ 60nm MR 应足够稳定. 3.显色反应条件的选择: 酸度;
e = A/bc = 1.20/(2.0 ´ 5.37 ´ 10-5) = 1.1 ´ 10-4 L·mol-1·cm-1.
3.摩尔吸光系数的意义:
定性与结构分析的参数;
同一吸光组分,不同 l 或不同溶剂中, e 不同;
不同吸光组分,一定 l 和确定的溶剂中,e 也 不相同.
估量定量方法的灵敏度.

无机及分析化学 (黄蔷蕾 呼世斌 著) 中国农业出版社 课后答案 第十一章 吸光光度分析法

无机及分析化学 (黄蔷蕾 呼世斌 著) 中国农业出版社 课后答案 第十一章 吸光光度分析法

第十一章吸光光度分析法本章要求1、掌握吸光光度法的基本原理及朗伯比尔定律;2、了解分光光度计的基本构造及功能;3、了解显色反应及条件选择、仪器测量误差及条件选择;了解分光光度法的应用。

基本内容如果将各种波长的单色光依次通过一定浓度的某一溶液,测定该溶液对各种单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图,可以得到一条曲线,该曲线称为光吸收曲线或吸收光谱曲线。

光吸收程度最大处的波长,称为最大吸收波长,常用λ最大或λmax表示。

4、光吸收的基本定律⑴朗伯—比尔定律透过光的强度It 与入射光的强度I之比为透光率(也称透光度、透射比),用T表示:T=IIt吸光度A与透光率T的关系为:A =lgT 1= –lg T =lg tI I 0溶液的透光率越小,吸光度越大,表明溶液对光的吸收越强;相反溶液的透光率越大,吸光度越小,表明溶液对光的吸收越弱。

光的吸收定律:朗伯—比尔定律,其数学表达式为:A =Kbc式中K 值随浓度c ,液层厚度b 所取单位的不同而不同。

当浓度以g •L -1表示,液层厚度用cm 表示时,则常数K 用a 表示,a 称为吸光系数,其单位为L •g -1•cm -1。

此时朗伯—比尔定律表示为:A =abc当浓度以mol •L -1表示,液层厚度用cm 表示时,则常数K 用ε表示,ε称为摩尔吸光系数,其单位为L •mol -1•cm -1。

此时朗伯—比尔定律表示为:A =εbc (12–7)摩尔吸光系数ε在数值上等于浓度为1moL •L –1、光程(液层厚度)为1cm 溶液的吸光度。

ε是吸光物质在特定波长下的特征常数,它与入射光波长、溶液的性质以及温度等因素有关,而与溶液的浓度及液层厚度无关,ε值愈大,表明物质对此波长光的吸收程度愈强,显色反应的灵敏度愈高。

一般认为,ε<104属低灵敏度,104<ε<5×104属中等灵敏度,ε>5×104属高灵敏度。

在实际分析中,为了提高灵敏度常选择ε值较大的有色化合物为待测物质,通常选择有最大ε值的光波max λ作为入射光。

物体的颜色与光有什么关系

物体的颜色与光有什么关系

物体的颜色与光有什么关系物体的颜色与光有什么关系2010年10月26日可见光由不同频率的光组成,就是简单来说的七色光。

如果照射在某个物体上,物体主要对某种频率的光反射,而其他频率的光被吸收,这个时候你就能看见反射回来的色光了。

这就是颜色的产生。

白色是所有颜色的光都能反射,吸收较少。

黑色是所有颜色的光都大多被吸收,反射的少颜色与光的关系色彩学上有一个概念:有光才有色.本质上,人眼看到色是光剌激的结果.人们看到不同的颜色不同的颜色则是因为剌激人眼的光的波长不同.光的波长不同,给人的颜色感觉不同,如630-760nm的波长的光给人以红色的感觉,570-600nm的波长的光给人以黄色的感觉。

颜色介质有两大类,一类是色光介质,如电脑的颜色;一类是色料介质,如颜料,油墨染料.不管是什么介质,其呈色都是离不开光.色光介质的颜色感觉是色光直接刺激人眼的结果;而色料介质则是可见光(白光)照射在色料上,经色料吸收,然后反射剩余色光的结果,也离不开光物质的颜色与光的关系当一束白炽光作用于某一物质时,如果该物质对可见光各波段的光全部吸收,物质呈黑色;如果该物质对可见光区各波段的光都不吸收,即入射光全部透过,则物质呈透明无色;若物质吸收了某一波长的光,而让其余波段的光都透过,物质则呈吸收光的互补色光。

值得注意的是,如果物质分子吸收的是其他波段的光(非可见光)时,则不能用颜色来判断物质分子对光子的吸收与否。

表11-3 物质颜色与吸收光颜色的关系物质颜色吸收光颜色吸收波长范围(nm)黄绿色紫色 400-425黄色深蓝色 425-450橙黄色蓝色 450-480橙色绿蓝色 480-490红色蓝绿色 490-500紫红色绿色 500-530紫色黄绿色 530-560深蓝色橙黄色 560-600绿蓝色橙色 600-640蓝绿色红色 640-750关于颜色的基本理论常识1.颜色的属性。

任何一种颜色,均可用色相、饱和度(又称色彩度)、亮度(在色彩心理又称明度)来描述,即HSB,其中H=Hub为色相,S=Seturation为饱和度,B=Brightness为亮度。

电磁波谱及物体的波谱特性

电磁波谱及物体的波谱特性
2
h: 普朗克常数, 6.6260755*10-34 W·2 s
k: 玻尔兹曼常数,k=1.380658*10-23 W· K-1 s·
c: 光速;
λ : 波长(μ m); T: 绝对温度(K)
26
普朗克公式图示:
变化特点:
(1) 辐射出射度随波长 连续变化,只有一个 最大值;
(2) 温度越高,辐射出 射度越大,不同温度 的曲线不相交; (3) 随温度升高,辐射 最大值向短波方向移 动。
3
1.2
电磁波的性质
1.在真空中以光速传播
c=f λ
2. 反射、吸收、透射现象 3. 散射 4. 偏振
4
电磁波与物体相互作用过程中,会出现三种情况: 反射、吸收、透射,遵守能量守恒定律。
Es( ) E ( ) E ( ) E ( )
( ) ( ) ( ) 1
中红外和远红外也称为热红外。
16
微波
波长范围1mm到1m,可进一步划分为若干不同 频率(波长)的波段:(1GHz=109Hz)
P波段: 0.3~1GHz (30~100 cm) L波段: 1~2GHz (15~30 cm) S波段: 2~4GHz (7.5~15 cm) C波段: 4~8GHz (3.8~7.5 cm) X波段: 8~12.5GHz (2.4~3.8 cm) Ku波段:12.5~18Ghz (1.7~2.4 cm) K波段: 18~26.5Ghz (1.1~1.7 cm) Ka波段:26.5~40Ghz (0.75~1.1 cm)
明显的波粒二象性
红外线 微 波 无线电波
0.76μm ~ 1 mm 1mm ~ 1m > 1m
μm mm m
红外遥感 微波遥感 无线电

第九章 吸光光度法解析

第九章 吸光光度法解析

9.1.1 物质对光的选择性吸收
吸收曲线——以波长为横坐标,吸光度为 纵坐标作图,可得到一条物质对不同波长光吸 收情况的曲线。 吸收曲线能描述物质对不同波长光的吸收能 力。如:c一定,改变入射光波长 λ,测相应 吸光度: λ1——A1 λ2——A2 λ3——A3 λ4——A4 λ5——A5
吸收曲线是吸光光度法定量分析时选择测定 波长的依据: 1. λmax称为最大吸收波长。 2. 浓度c不同,曲线形状相同,λmax不变。 3. c不同,A不同。
9.1.3 对朗比定律的偏离
——标准曲线不成直线,尤其是高浓度。 1. 物理原因(负偏离): 单色光不纯。 A实测<A平均 2. 化学原因(正偏离): 介质不均匀,有胶体, I散射↑,It↓,A↑。 或离解、缔合及化学变化使 c改变。 3. 标准曲线不通过原点: 参比液选择不当; 溶液性质(悬浊液不通过0); 比色皿有问题。 4. 标准曲线呈折线状: 标液配得不准; 测量不准。
(4) MR有色化合物组成恒定,性质稳定
例:
Fe
3
SCN Fe(SCN) 偏黄

2
Fe(SCN) 2
SCN
Fe(SCN) 3
SCN
偏红
显色剂浓度不同,会形成一系列不同 组成的络合物。
例:测某些染料,溶于丙酮,一 边测,丙酮一边挥发,则c↑,A↑, ∴比色皿需盖上盖子。
瓶号 加标液 1 1ml 2 2ml 3 3ml 4 4ml 5 5ml 6 未知液
(3) 相同操作条件
加等量试剂:盐酸羟胺、缓冲液pH=4.6 加等量显色剂:邻菲罗啉(橙红色) 摇匀
(4) 标准色列
浓度由小→大,颜色由浅→深。
未知液与标准色列比较,从管上

吸收光谱法及荧光分析法

吸收光谱法及荧光分析法

普吸收光谱法及荧光分析法易有荣一吸收光谱法是根据物质对不同波长的光具有选择性吸收而建立起来的一种分析方法。

它既可对物质进行定性分析也可定量测定物质含量。

包括紫外、可见光及红外吸收光谱等。

如果在测定时利用单色器获得的单色光来测定物质对光的吸收能力,则称为分光光度法。

人眼能产生颜色的光区称可见光区,其波长范围为380-760nm。

近紫外光区的波长范围为200-380nm。

可见-紫外光分光光度法是根据物质分子对200-760nm 光区的吸收特性而进行分析的方法,其特点是:1)灵敏度高,能测定生物试样中的微量物质。

2)选择性强,由于组分的分子结构不同,它们的吸收光谱不同,因此只要选择适当的分离步骤和实验条件,就可以进行生物试样中的单组分和多组分的测定。

3)精密度和准确度较高。

4)仪器设备简单,操作易掌握。

5)定性能力较弱,通常还需与红外、色谱、质谱等技术结合才能作出可靠的定性鉴定。

一物质对光的选择性吸收:太阳或白炽灯(钨灯)发出的可见光,是一种由许多不同波长的光所组成的宽广光谱,若将它通过三棱镜分光,则可看到红、橙、黄、绿、青、蓝、紫等颜色。

可见,白光是混合光,它是由多种不同波长范围的单色光按一定比例混合而成的。

如果把两种适当颜色的光按一定比例混合也可得到白光,则这两种颜色互称为互补色。

物质对光具有选择性吸收的能力。

同一物质对不同波长光的吸收能力不同,不同物质对同一波长光的吸收能力也不同。

物质所呈现的颜色正是由于它对光的选择性吸收而产生的。

当一束光照射到某一物质的溶液时,若该溶液对可见光谱中各种颜色的光都不吸收则溶液呈透明无色状;若几乎全部吸收则溶液呈黑色;若对各种颜色的光都能均匀吸收一部分则溶液呈灰色。

若溶液对其中某些波长的光吸收较多,透过较少;,而对另一些波长的光吸收较少,透过较多,则溶液就呈现这种吸收较少透过较多的光的颜色,即溶液的颜色是它所吸收色光的互补色。

例如;KMNO4的水溶液选择性吸收可见光中的大部分黄绿色光,故呈紫色;硫酸铜溶液选择性吸收黄光而呈蓝色。

紫外可见光谱的特征1吸收峰的形状及所在位置——定性

紫外可见光谱的特征1吸收峰的形状及所在位置——定性
例: [ Fe3+ (SCN-) ]2+h [ Fe2+ (SCN) ]2+
电子接受体 电子给予体
——电荷迁移跃迁光谱>104以上,用 于进行定量分析,可提高检测灵敏度。
3.金属离子影响下的配位体*跃迁
吸收光谱法所使用的显色剂绝 大多数都含有生色团及助色团,其 本身为有色。当与Mn+配位时,作为 配位体的显色剂,其共轭结构发生 了变化。导致其吸收光谱发生蓝移 或者红移。
一般来说,随着溶剂极性增大, *跃迁吸收峰向长波方向移动, n*跃迁吸收峰向短波方向移动。
2.对光谱精细结构和吸收强度的影响
——当物质处于气态时,分子间的作用极 弱,其振动光谱和转动光谱也能表现出来, 因而具有非常清晰的精细结构。
——当它溶于非极性溶剂时,由于溶剂化 作用,限制了分子的自由转动,转动光谱 就不能表现出来。
(二)紫外可见光谱的特征
1. 吸收峰的形状及所在位置 A
——定性、定结构的依据
2. 吸收峰的强度
——定量的依据
A = lgI0 / I= cL
:摩尔吸收系数 单位:L.cm-1 . mol-1
单色光
I0
I
L
的物理意义及计算
在数值上等于1mol/L的吸光物质在1cm 光程中的吸光度, = A/(cL),与入射光波长、 溶液的性质及温度有关 (1) ——吸光物质在特定波长和溶剂中的 一个特征常数 ,定性的主要依据 (2) 值愈大,方法的灵敏度愈高
分光光度法(Spectrophotometry):使用分 光光度计进行吸收光谱分析的方法。
电磁波谱(1m=106m=109nm=1010Å)
波谱名称 波长范围
分析方法
射 线 0.005~0.17nm 中子活化分析,莫斯鲍尔谱法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档