通过配煤掺烧解决低氮燃烧器改造后飞灰含碳量升高的问题

合集下载

锅炉飞灰含碳量升高的分析和调整

锅炉飞灰含碳量升高的分析和调整

中图分类号:tk22 文献标识码:a 文章编号:1003-9082(2015)12-0323-02 引言火力发电是我国主要的发电方式,电站锅炉作为火力电站的三大主机设备之一,伴随着我国火电行业的发展而发展。

近年来,环保节能成为中国电力工业结构调整的重要方向,火电行业在“上大压小”的政策导向下积极推进产业结构优化升级,关闭大批能效低、污染重的小火电机组,在很大程度上加快了国内火电设备的更新换代。

中国的电站锅炉产业,它既不是“朝阳产业”,也不是“夕阳产业”,而是与人类共存的永恒产业。

伴随我国国民经济的蓬勃发展,近年来工业锅炉制造业取得了长足的进步。

其突出成效是:行业标准日益规范,技术水平逐步提高,产品品种不断增加,经济规模显著扩大。

下面就造成锅炉飞灰含碳量升高的原因以及解决措施两个问题分别进行论述。

一、造成锅炉飞灰含碳量高的原因1.入炉煤种原因1.1 上层制粉系统若是燃煤品质较差,会造成燃烧不充分的问题,这种情况下,很容易出现未完全燃烧的煤渣落入捞渣机内部,从而导致锅炉灰渣的含碳量升高。

1.2 下层制粉系统若是燃煤的品质较差,则会出现收到基低位发热量低、干燥无灰基挥发分低的情况,从而造成燃煤燃烧不完全的现象。

1.3 挥发分如果出现干燥无灰基挥发分小于设计煤种挥发分或者是挥发分小于等于百分之二十六的情况时,就会直接影响其燃烧的稳定性。

导致风粉气流着火的温度增高,挥发分着火所需的热量也增高,挥发分溢出所需的温度也增高。

1.4 收到基低位发热量收到基低位发热量小于设计煤种,或者是发热量小于等于3600kcal/kg,也表明燃煤燃烧稳定性差,燃烧灰分大,燃煤燃烧不完全,造成很高的热能损失。

1.5 其他原因对燃煤的种类不进行区分,将多种煤种进行混合,会导致燃煤各项性质不统一,就会出现燃烧不完全的情况,造成出灰含碳量高的问题,通常这种情况下,对磨煤机的风量和出口温度也没有做出准确及时的调整,这点也是导致锅炉出灰含碳量高的原因之一。

通过配煤掺烧解决低氮燃烧器改造后飞灰含碳量升高的问题

通过配煤掺烧解决低氮燃烧器改造后飞灰含碳量升高的问题

通过配煤掺烧解决低氮燃烧器改造后飞灰含碳量升高的问题作者:墨庆锋来源:《名城绘》2018年第04期摘要:燃煤锅炉低氮改造后,出现飞灰含碳量升高问题,通过对飞灰含碳量升高查找造成飞灰含碳量升高的原因,并相对应采取措施,通过燃烧优化、配煤掺烧等措施降低飞灰含碳量,提高机组经济运行水平。

关键词:低氮燃烧器飞灰含碳量掺烧一、锅炉系统及设备良村电厂锅炉型号DG1110/17.4-Ⅱ12,为亚临界、中间一次再热、自然循环、燃煤汽包锅炉,四角切圆燃烧,固态排渣。

燃烧器四角布置,切圆直径790 mm。

百叶窗式水平浓淡直流摆动式燃烧器,每角燃烧器共布置16层喷口,其中六层一次风喷口、八层二次风喷口(其中3层布置有燃油装置分别是AB、BC、DE层)。

一次风喷口均布置有周界风,在炉膛垂直高度空间上,燃烧器两组布置格局,即A、B、C三层为下组, D、E、F三层为上组,A层布置有微油油枪。

磨煤机为沈重MGS4062型双进双出钢球磨煤机,每台机组配置3台。

每台磨煤机配2台分离器、两个煤仓,每台分离器引出4根煤粉管至炉膛,每台分离器4根煤粉管布置于锅炉四角同一高度,设计煤粉细度R90取11%。

2015年进行了低氮燃烧改造,主要进行了以下改造:1)更换五层一次风喷嘴体以及一次风喷口,A层一次风为小油枪煤粉点火装置,未改动,更换B、C、D、E、F五层一次风喷嘴体、仍沿用目前低阻力、高浓缩比的新一代水平浓淡燃烧器,在燃烧器出口增加了小钝体。

2)提高燃尽风标高并新增一层高位燃尽风喷口,取消现有OFA燃尽风,增加三层高位燃尽风,调整高位燃尽风标高,使得燃烧器形成深度空气分级。

3)二次风大风箱改造,高位燃尽风标高确定后,将大风箱整体向上延伸与现有大风箱连接,高位燃尽风的风箱与大风箱连成一个整体。

二、低氮改造后存在的问题低氮燃烧器改造后因采用低温、低氧燃烧,在一定程度上能使NOx的排放水平降低,但煤粉在低温缺氧情况下着火推迟,同时燃烬能力下降,炉内燃烧工况较改造前变差,改造前原采用的配煤、配风方式很大程度上不适用,对锅炉的蒸汽参数、飞灰炉渣、排烟温度、热工品质等指标产生新的影响,同时锅炉低负荷稳燃能力下降。

飞灰含碳量过高的原因分析及降低方法

飞灰含碳量过高的原因分析及降低方法
滤白 陵。 是 别 啦 - 用基 隋 况下台 [ 值, V r 是 舒 涤件下出 飞灰的含碳量是目前锅炉燃烧中比饺重要, 比饺有实际意义的指标之 现的挥发粉, 公式中应用基隋况下灰粉数值的 1 0 0 倍 得 出的就是煤粉 的 它能够直观的反映出电站锅炉的燃烧效率以及煤粉质量, 和发电的经 低位发 十 热量。 根据 E 述公式, 计算出的隳移 } 坌 8 j J 蔓, 经过验算和修正之后得 济陛直接挂钩。经过几年的发展, 成熟的检测手段使得飞灰含碳量已经成 出的数值, 就是最经济的 粉细度。 根据不同制粉系统设备状况, 运行 ^ 员 为关系煤粉灰价格的重要指标。除此之外, 飞灰中残留的碳还会对锅炉尾 可适当加偏置, 以改变不同制粉系统的出力。磨煤机的出力保证要与一次 部受热面造成—定的磨损, 使得设备受到损伤, 降低了使用年限。 飞灰含碳 风压适当配合, 当冈压高时, 能适 当提高磨 机 的出力, —煅删 ] 的磨 机 量的增加还会降低电除尘器的效率 , 成为环境污染的源头, 由此可见降低 出力在 5 5 T / h以上时, 石子煤排量明显增大 , 煤粉细度变粗且容易引起堵 飞灰含碳量的重要性。比§ 口 江苏大唐国际 吕四港发电有限责任公司 , 购进 磨等情况, 故磨煤机运行不要长时间保持在该煤量以上。 ( 磨煤机 + —次风 了 一 — 期4 × 6 6 0 M W超超临 界燃煤发电机组, 主要配置产自 黑龙江哈尔滨 机) 最小, 合理调度制粉系统的停止和运行。 磨煤机的运行应 的三大动力锅炉厂有限责任公司, 超超临界参数变压运行直流锅炉等相关 化 裕 度的选择。 如煤质变化较大, 可以保留较大的裕度。 与此同 技术则是有来自三菱重工的株式会社主要负责提供。从型号上看, 锅炉采 时通过调整瞧 分离器的转速可以有效地调整煤粉的细度。 用G 一 2 0 0 0 / 2 6 . 1 5 一 Y M 3 。型式为 兀 型布置, 锅炉为四墙切圆燃烧方式 , 设 2 3二 级 配风对于飞尘含碳 量的影响 。锅炉二 次风的配风原 则主要考 计煤种神府东胜煤。自 投产使用至今, 飞灰含量—直得不到改善, 偏高的数 虑煤粉的燃尽和氮氧化合物的排放, 试验证明倒塔式配风, 不仅能够满足 值廊 影响我们进步的一大阻力, 并给经济抛瓷椰 的重创。因此飞 在 聪 婕甜 莲 效子 的 效果, 同时各 糟剿挝 白 勺 辅助冈供 ^ 灰含碳量问题已经成为了发展工业锅炉事业必须重视和解决自 媚- 节。 及时满足 煤粉燃尽的要求。 在多有的二级配风中, O F A 风在锅炉正常燃烧 2飞灰含碳量过高的原因分析 时宜尽量开扣 亟 行 ,主要原因是采用 MA C T 燃烧系统的主燃烧区内包含 影响飞灰可燃物含量的因素越来越多,—方面受到原材料质量的影 了数量可观的 烬O F A风, 当其处于开启状态时, 相关区域的燃烧强度 匕 响, 包括飞灰可燃物含量的高低 , 煤粉的细度, 可燃物燃烧的充分程度等。 升, 使得飞灰的含碳量下降 , 另外一方面 , 虽然这种风主要作用在主燃麂器 另一方面。 锅炉燃煤特陛和设备能力起着确定f 生 作用, 包括炉膛内温度水 的领域内, 但实质是作用在燃烧器的上部, 因此也就在其内部形成一种分 平, 燃烧动力场, 锅炉总用风量 , 风煤 比, 一次用风的量 , —次风速, 二次风 级燃烧的模式, 使得每当风门开启, 氮氧化物排放量得到控制 , 浓度下降, 速, 一二 次风量比在内的诸多因素 , 都需要 恪进行控制, 才能保证设备对 与此同时, O F A风位于主燃烧区域造成氮氧化物排放浓度下降不明显的局 于飞灰含碳量起到有效的控制作用。 在进 入 生产阶段之前, 要进行试验, 确 面。顶层 A A风开大虽然能够降低氮氧化物的排放, 但是 A A风的会导致 定符合实际情况的配合比, 计算出最佳的运行工作状况, 将获得的飞灰损 主燃烧区的缺氧状态,导致鹅 。A A风在经过垂直和水平分级 失降到最小。 后, 其距离主燃烧区域果园, 从而导致未燃尽的可燃物在后期没有得到充 2 l 运行氧量对飞灰可燃物含量的影响。氧量对于燃烧来讲具有非同 分的燃烧, 所以A A风不宜开太大。因此, 满负荷运行时, 宜用 塔式配风, 寻常的意义, 对于锅炉燃烧而言 『 口 此, 运行氧量的大小对锅炉 性能影 O F A风挡 板宜全开 , A A风适 中即可 。 响很大。能否找到使得热损失和氮氧化物排放量相均衡的氧量 , 是解决飞 3降低飞灰含碳量的方法 灰可燃物含量自 勺 = 途 径。 在实际 f f 程 中, 首先要考虑燃烧自 g 效率, 同 降低飞灰含碳量是—个复杂的过程, 需要从多方面人手。首先要适当 时, 还应该考虑炉膛内壁面的还原 性, 这样可以有效的控制高温带来的腐 的降低火焰的 , 增加下层或者中下层给粉机出力, 在此基础 E 保持转 蚀效果。另外, 辅助机械的电能消耗问题也是整个锅炉运行机组运行氧量 速的稳定 陛, 在提高主 虢 区焰 撺 娥 的基础上, 位 } 火焰中心伤 稳定。 所要注意的问题。 在 烧 的过程中, 要保持合适的风量可通过 蘩 氧量值 这样有利于j ^ 燃哓区域的檗盼彳 导 至 『 圾 时的点燃和充分的燃烧 , 延长煤粉 按照绩效中的氧量曲线进行调整, 对于不同煤种在飞灰含碳量不增加的睛 在炉内的停留时问。 其次要合理的控静 I 和协凋一、 二次风。配比合理的一、 况下可考虑低氧燃烧, 实现降f 氐 排烟损失的目的。但要根据锅炉所烧煤种 二次风有利于调整空气的动力场 , 提高火焰的充满度, 提高燃烧中心的温 的结渣特眭, 以减轻结渣的程度, 对于易结渣煤种, 可以适当保持氧量高一 度。 一次风风度、 过f 氐 , 会使, 导铸 : J ( 提前导致 去稳定性。 根据过 些, 避免出现还原陛气 氛。 当煤种为易结焦或高硫煤种时, 适当加大相应磨 量空气的系数来调整合理的各层二次风门, 保证燃烬阶段的供养量。 再次, 煤初二次风配风, 防止 烧器周围结渣或高温腐蚀。 就是要调整锅炉的出口氧量, 试探汪明, 出口氧量百分数在增加到 4 2 ~ 4 8 2 2: 潮细度对于飞 含量的影响。 煤凝 锅炉中燃烧 2. 1 "  ̄ - 3 时, 能够有 效的降低飞灰的含碳量。 另外, 及时根据煤的品种来调整煤 的过程中, 有两项数据食, 镦粒径大小 , 也就是煤粉 的细度直径大小威' 反 比 粉细度 , 减少三次风对燃烧的影响, 的, 一 硕 是热销换强度, 另—项就是氧气想粉尘颗粒表面的扩散强度。 这也 能够 珏 飞灰含碳量的有效手段。 _ 但分子扩散交换以及对流交 结束语 换强度却在 E 升的原因所在。 着火混合 、 燃烬等多项实践证明, 重量 . 定的 运行氧量的大小是影响飞灰含碳量高低的主要因素, 飞灰含碳量随氧 情况下 , 煤粉的单位表面积得至 艮 大程度的增加 , 能够使得 份 燃烬的时 量的升高而降低, 所以综合厂用电率考虑, 运行调整过程中要根据煤种j 间和颗粒的初始直径的关系发生巨大变化。 经过具体数据的分析。 煤粉燃 择合适的氧量。合理配风和提高 粉细度是影响飞灰含碳量的重要因素。 烬的时间与颗粒初始直径的平方成正比, 也就是 T 等于 K的 1 ~ 2 次方 , 这 锅炉飞灰的含碳量是反应锅炉燃烧的重要指标 ,只有有效的控制好这个 其中K通常是试验得出的常 含碳量过高 的原 因分析及降低 方法

灰含碳量偏高的原因分析与解决措施-推荐下载

灰含碳量偏高的原因分析与解决措施-推荐下载




设计煤种
48.48
2.01
3.61
0.62
0.52
38.01
6.75
18.77
17880
>1500
>1500
>1500
校核
39.83
1.81
3.27
0.91
0.42
44.24
9.52
20.71
14680
>1500
>1500
>1500
收到基水分
空气干燥基水分
空气干燥基灰分
空气干燥基挥发份
空气干燥基固定碳
景德镇发电厂#5 炉飞灰含碳量偏高 的原因分析与解决措施
摘要:随着人们对能源需求量的日益扩大以及对环境质量要求的不断提高,循
环流化床锅炉具有高效、低污染、煤种适应性广等优点,在我国得到大力发展,
但目前国内流化床锅炉,尤其是大容量的流化床锅炉,普遍存在着飞灰可燃物高,
锅炉燃烧效率达不到设计值的问题。对于循环流化床锅炉,在投运初期,飞灰可
烟井对流受热面组成。锅炉采用两次配风,一次风从炉膛底部布风板、风帽进
入炉膛,二次风从燃烧室锥体部分进入炉膛。锅炉共设有四个给煤口,均匀地
布置在炉前。炉膛底部设有钢板式一次风室,悬挂在炉膛水冷壁下集箱上。本
锅炉采用床上启动点火方式,床上共布置 4 支大功率的点火油枪(左、右侧墙
各 2 支)。同时在炉膛燃烧室左右两侧各布置一台水冷滚筒式冷渣器。
1.锅炉主要设计参数
1.1 锅炉技术参数
参数名称
单位 数值 参数名称
过热蒸汽流量 t/h 475 再热蒸汽流量
过热蒸汽压力 MPa 13.9 再热蒸汽进/出口压力 MPa 2.662/2.527

火电厂飞灰含碳量高的原因及对策

火电厂飞灰含碳量高的原因及对策

火电厂飞灰含碳量高的原因及对策发表时间:2019-06-21T09:13:06.553Z 来源:《电力设备》2019年第1期作者:李拓[导读] 摘要:飞灰含碳量是影响锅炉效率的重要因素之一,本文分别从入炉煤的着火、燃烧以及燃烬实际过程的多方面进行分析,查找影响飞灰含碳量高的因素。

(国电库车发电有限公司新疆阿克苏 842000)摘要:飞灰含碳量是影响锅炉效率的重要因素之一,本文分别从入炉煤的着火、燃烧以及燃烬实际过程的多方面进行分析,查找影响飞灰含碳量高的因素。

并针对影响因素,提出合理应对方案,为大型电站锅炉飞灰含碳量的控制、锅炉的优化运行提供参考。

关键词:锅炉;飞灰含碳量;煤质;调整;导言随着电力行业改革的深入进行,受新能源发电高速发展影响,如何优化运行、节能降耗,已经成为火力发电企业生产经营的重要工作。

而配煤掺烧则是降低燃料成本的主要手段,由于掺烧煤种与设计煤种煤质有较大差距,因此如何调整燃烧,提高锅炉效率则成了锅炉运行调整的一个重要课题。

对现代大型电站锅炉而言,机械未完全燃烧热损失是影响锅炉效率的重要指标,本文从大型电站锅炉的飞灰含碳量影响因素出发,提出相应的控制方法,达到提高锅炉效率的目的。

1 影响飞灰含碳量的因素1.1 煤质影响(1) 灰分的影响煤中的灰分会降低发热量,妨碍可燃物与氧的接触,使煤着火和燃烧困难,增加燃烧损失。

燃料中灰分增加,会使火焰温度降低,着火推迟,煤粉燃烬度变差,故机械未完全燃烧热损失随之增加。

(2) 挥发分的影响挥发分越高的煤,越容易着火,燃烧也易于完成。

这是因为挥发分是气体可燃物,着火温度低,易于着火。

挥发分多,相对来说煤中难燃的焦炭便少,使煤易于燃烧完全。

大量的挥发分析出,着火燃烧时可以放出大量热量,提高炉内温度,易于煤的燃烬。

另外,挥发分是从煤的内部析出的,析出后使煤具有孔隙性,使煤和空气接触面变大,利于完全燃烧。

(3)水分的影响煤中水分多,燃烧时放出的有效热量便减少,降低炉内温度,甚至会使煤着火困难,从而使灰中残留碳增加。

锅炉飞灰含碳量偏高原因及解决方案浅析

锅炉飞灰含碳量偏高原因及解决方案浅析

锅炉飞灰含碳量偏高原因及解决方案浅析作者:赵占裕等来源:《山东工业技术》2015年第13期摘要:飞灰含碳量为影响锅炉效率的重要因素之一。

本文针对我厂锅炉飞灰含碳量偏高的实际情况,分别从入炉煤的着火、燃烧以及燃烬实际过程的多方面进行分析,查找影响飞灰含碳量高的因素主要有:煤粉细度、一次风速、配风方式、磨煤机运行方式、负荷及煤种变化等,并针对以上影响因素,提出合理应对方案。

关键词:锅炉;飞灰含碳量;原因分析;燃烧过程0 引言考虑锅炉效率,机械不完全燃烧损失以及排烟损失是当中两个主要的热损失,所以需要重点研究这两项损失。

但是排烟损失的降低是有限制的,所以降低机械不完全燃烧损失是节能降耗的突破口,而在此项损失中,飞灰含碳量占有主要位置。

因此,深入研究影响飞灰含碳量变化的因素,具有重要的实际应用价值。

1 锅炉飞灰含碳量高的原因分析1.1 煤粉燃烧过程煤粉的燃烧过程大致可以按照以下几个步骤进行:即加热干燥、挥发分析出着火、燃烧、燃烬,而着火和燃烬在该过程中起着重要的作用。

确保快速而平稳的着火,使得燃烧和燃尽得以快速实现,是保证完全燃烧的前提。

在煤粉的着火过程中,煤粉被包围在一次风中,可得到充足的氧气,因气流温度过低的煤粉,需快速升温,进而达到煤粉着火所需温度,并随燃烧过程的持续进行而不断升温 [1]。

1.2 影响飞灰含碳量的主要因素1.2.1 煤种影响一般而言,飞灰含碳量随煤种干燥基挥发分含量增加而减少,但挥发分高、含灰量低的烟煤也会导致飞灰含碳量高的情况,具体会因为剧烈的一次破碎和二次破碎导致了细的焦炭颗粒被大量的产生。

在实际工况中,燃烧形成的很多的飞灰颗粒的含碳量与劣质的煤有很大的关系。

我们把干燥无灰基挥发分同发热量飞灰含碳量升高量进行比例处理[2],就可以获得一个数值。

本数值可以作为衡量煤质的标准。

通过这个数值的分析就能够考究出飞灰含碳量和煤质之间的关系[2]。

1.2.2 煤粉细度煤粉细度在飞灰含碳量的影响因素中占据重要位置。

300MW锅炉掺烧高硫煤后飞灰含碳量大的原因分析及对策

300MW锅炉掺烧高硫煤后飞灰含碳量大的原因分析及对策

300MW锅炉掺烧高硫煤后飞灰含碳量大的原因分析及对策作者:欧路来源:《科学与财富》2016年第19期摘要:对300MW热电厂锅炉而言,煤炭燃烧后飞灰的含碳量代表着锅炉的燃烧效率,飞灰含碳量的提高一方面会增加锅炉的磨损,减少锅炉的使用寿命,另一方面含碳量过高会增加煤炭的消耗量,增加电厂的发电成本。

基于此,本文对导致掺烧高硫煤后飞灰含碳量高的因素进行了详细分析,同时针对这些原因本文提出了相应的解决措施。

关键词:300MW锅炉;高硫煤;飞灰;含碳量一、锅炉飞灰含碳量高的因素1、煤种因素当煤粉的挥发性不高时,喷入锅炉内的煤粉会随着火焰不断升高,同时随之煤粉的燃点增高不容易被点燃,由此会造成煤粉被点燃后煤粉的有效燃烧路程大大缩短,有的煤粉到达锅炉尾部还未燃烧充分,导致锅炉尾部的温度升高,锅炉尾部的烟携带大量的热量排除,从而降低了煤粉的有效燃烧效率。

另外,煤粉燃烧后的飞灰在煤炭燃烧过程中需要吸收大量的热量,也会导致热量的散失。

随着飞灰含量的提高,飞灰会将越来越多的煤粉包裹在里面,从而提高了煤粉的着火难度和延迟,这将造成锅炉内部温度降低。

如果大量飞灰将煤粉包裹在一起,也会降低火焰的燃烧速度,使得很多煤粉并未燃烧就被从锅炉的烟囱中排除,导致飞灰中含碳量很高。

2、煤粉细度因素煤粉的粗细程度会直接影响到煤粉燃烧后飞灰中含碳量的高低,一般而言煤粉的直径越小则其燃烧越充分,相对应的煤粉燃烧后飞灰的含碳量越低。

煤粉的直径越小则一定质量的煤粉的表面积也会越大,煤粉受热更加均匀同时煤粉更容易挥发,更加容易被火焰点燃,火焰的传递速度会更快,则一定质量的煤粉燃烧时间越短。

如果在煤粉中掺加高硫煤由于高硫煤的煤质差,研磨机研磨出的高硫煤的煤粉直径很大,不容易更好的与空气混合,这将导致煤粉更加不容易被点燃,从而造成煤粉不能够完全燃烧增加了飞灰中的含碳量。

另外,由于高硫煤的硬度很高,煤粉研磨机同等出力水平下,煤粉的直径会变大同时还会增加对研磨机的磨损,降低研磨机的使用寿命。

浅析锅炉飞灰含碳量偏高的成因及解决方案

浅析锅炉飞灰含碳量偏高的成因及解决方案

浅析锅炉飞灰含碳量偏高的成因及解决方案作者:张贤忠王琰清来源:《中国新技术新产品》2011年第20期摘要:飞灰含碳量为影响锅炉效率的重要因素之一。

本文针对我厂锅炉飞灰含碳量偏高的实际情况,分别从入炉煤的着火、燃烧以及燃烬实际过程的多方面进行分析,查找影响飞灰含碳量高的因素主要有:煤粉细度、一次风速、磨煤机出口风粉混合物温度、配风方式、磨煤机运行方式、负荷及煤种变化等,并针对以上影响因素,提出合理应对方案。

通过精心运行调整,降低飞灰含碳量,取得明显成效。

关键词:锅炉;飞灰含碳量;原因分析;燃烧过程中图分类号:X928.3 文献标识码:A1 引言飞灰含碳量的高低直接影响电厂的综合效益。

因此,应尽量使锅炉飞灰含碳量控制在合理的范围内,以减少污染,提高电厂效益。

2 设备概述我厂锅炉主要设备为哈尔滨锅炉厂有限公司生产的HG-1018/18.58-YM20型锅炉。

设计煤种为烟煤,采用平衡通风、中速磨直吹式制粉系统、摆动燃烧器、四角切圆燃烧方式。

锅炉采用四角布置,同心切圆燃烧方式,燃烧器喷嘴结构采用一次风口四周通以周界风,一二次风喷嘴间隔布置的型式。

3 锅炉飞灰含碳量高的原因分析3.1 煤粉燃烧过程煤粉在锅炉内燃烧基本分为4个阶段:加热干燥、挥发分析出着火、燃烧、燃烬,其中最重要的是着火和燃烬阶段。

要使燃烧完全,首先要保证迅速而稳定的着火,燃烧和燃烬才能迅速进行。

在煤粉的着火阶段,其周围被一次风包围,具有足够氧气,煤粉气流温度较低,迅速将煤粉加热到其着火温度,随着燃烧的进行,煤粉温度逐步升高,其周围氧气逐步耗尽,及时供给充足的氧气,使煤粉充分燃烧。

可以从两个方面入手,即:加快燃烧速度和增长燃烧时间。

3.2 影响飞灰含碳量的主要因素3.2.1 煤种影响。

近几年,由于煤炭市场紧张及电煤价格的迅速上涨。

我厂实际燃用煤种挥发分低、灰分大,且煤质变化频繁。

燃煤的挥发分含量降低,煤粉气流着火温度显著升高,着火热随之增大,着火困难,炉膛温度降低,煤的燃烬程度降低,造成的飞灰可燃物升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通过配煤掺烧解决低氮燃烧器改造后飞灰含碳量升高的问题
燃煤锅炉低氮改造后,出现飞灰含碳量升高问题,通过对飞灰含碳量升高查找造成飞灰含碳量升高的原因,并相对应采取措施,通过燃烧优化、配煤掺烧等措施降低飞灰含碳量,提高机组经济运行水平。

标签:低氮燃烧器飞灰含碳量掺烧
一、锅炉系统及设备
良村电厂锅炉型号DG1110/17.4-Ⅱ12,为亚临界、中间一次再热、自然循环、燃煤汽包锅炉,四角切圆燃烧,固态排渣。

燃烧器四角布置,切圆直径790 mm。

百叶窗式水平浓淡直流摆动式燃烧器,每角燃烧器共布置16层喷口,其中六层一次风喷口、八层二次风喷口(其中3层布置有燃油装置分别是AB、BC、DE 层)。

一次风喷口均布置有周界风,在炉膛垂直高度空间上,燃烧器两组布置格局,即A、B、C三层为下组,D、E、F三层为上组,A层布置有微油油枪。

磨煤机为沈重MGS4062型双进双出钢球磨煤机,每台机组配置3台。

每台磨煤机配2台分离器、两个煤仓,每台分离器引出4根煤粉管至炉膛,每台分离器4根煤粉管布置于锅炉四角同一高度,设计煤粉细度R90取11%。

2015年进行了低氮燃烧改造,主要进行了以下改造:1)更换五层一次风喷嘴体以及一次风喷口,A层一次风为小油枪煤粉点火装置,未改动,更换B、C、D、E、F五层一次风喷嘴体、仍沿用目前低阻力、高浓缩比的新一代水平浓淡燃烧器,在燃烧器出口增加了小钝体。

2)提高燃尽风标高并新增一层高位燃尽风喷口,取消现有OFA燃尽风,增加三层高位燃尽风,调整高位燃尽风标高,使得燃烧器形成深度空气分级。

3)二次风大风箱改造,高位燃尽风标高确定后,将大风箱整体向上延伸与现有大风箱连接,高位燃尽风的风箱与大风箱连成一个整体。

二、低氮改造后存在的问题
低氮燃烧器改造后因采用低温、低氧燃烧,在一定程度上能使NOx的排放水平降低,但煤粉在低温缺氧情况下着火推迟,同时燃烬能力下降,炉内燃烧工况较改造前变差,改造前原采用的配煤、配风方式很大程度上不适用,对锅炉的蒸汽参数、飞灰炉渣、排烟温度、热工品质等指标产生新的影响,同时锅炉低负荷稳燃能力下降。

改造时,改变了燃烧器一、二次风喷口和燃尽风喷口的面积,造成二次风与一次风的混合延迟,不利于煤粉气流的着火和燃烧。

在燃用设计煤种时飞灰可燃物升幅仍可达1—2个百分点。

三、低氮改造后出现问题的处理
低氮改造前燃用阳泉无烟煤、晋中贫煤、晋北烟煤、神华煤飞灰含碳量均能控制在2.5%及以下。

低氮改造后,在燃用阳泉无烟煤、晋中贫煤时,飞灰含碳
量飞速飙升最高达8%,为降低飞灰含碳量和降低燃煤采购成本在继续采购上述煤种的同时、也购入了部分煤泥进行掺烧。

根据来煤情况我厂进行了不同情况的掺烧试验,配方方面分别进行了正宝塔形式、倒宝塔形式、倒宝塔缩腰配风方式、均等配风方式等,由于来煤煤种涉及较多在配煤上进行了:1)底层高挥发煤种、上层低挥煤种;2)底层低挥发煤种、上层高挥煤种;3)高低挥煤各层配煤方式,得到我厂最优配煤方式与其他配煤方式对比简单介绍如下;
3.1 公路低挥混煤:神华煤为1:1,采取分仓上煤的方式#1、#3、#5仓上低挥发混煤,#2、#4、#6仓神华煤,采取到宝塔配风方式,飞灰含碳量可有效控制在2%左右、氮氧化物明显降低。

当采取正宝塔配风方式时在同样的掺烧比例下飞灰含碳量大幅升高、氮氧化物升高。

下表是典型配风方式效果。

3.2 天成煤与神华煤或轩岗、串草礦煤掺烧,掺烧比例1:1时并采取倒宝塔配风方式,无论是采取分仓上煤(1、3、5仓天成,2、4、6仓高挥煤种)还是采取上下分层(1-3仓天成,4-6仓高挥煤)飞灰含碳量均升高非常明显,经逐仓减少至#1仓上天成煤,#2仓、#3仓上公路低挥混煤,#4、#6仓上高挥发煤种、#5仓上其它补充煤种,飞灰含碳量均可控制在4%左右。

四、结束语
1. 煤种进行掺烧是:1)尽可能多掺烧高挥发煤种,挥发分高于30%的煤种尽量分磨掺烧,防止爆磨;2)尽量减少低于改造前设计煤种的掺烧,如必须掺烧应放在下层燃烧器对应的磨煤机和煤仓;3)高挥发煤种和低挥发煤种采取同磨分仓上煤方式。

2. 考虑稳燃、低氧、分级,配风方式宜采用缩腰倒宝塔型,即:下层风门开度30-50%,中间风门开度不宜小于10%,上层风门开度50-70%,不建议SOFA 风门开度长期在100%。

当负荷降低时,在保证稳燃的基础上经济煤种掺配比例可增大,对控制NOx的产生有利。

3. 尽量少燃用低于原设计煤种,在兼顾经济性的同时适当多掺烧高挥发分煤种,在保证磨煤机出力及磨煤经济性的情况下,适当降低煤粉细度。

通过以上分析,低氮燃烧改造后,引发的飞灰含碳量升高问题可通过配煤掺烧、燃烧优化调整进行解决。

参考文献:
[1]彭硕. 火电厂配煤掺烧方法存在的问题及处理[J]. 电子制作,2016(10):97-97.
[2]邹光球,黄敏,向春波,等. 基于飞灰含碳量预测的火电厂配煤掺烧燃
料成本计算[J]. 化工装备技术,2015(3):29-31.
[3]李吉峰,孙恒洲,孟繁光. 火电厂配煤掺烧方法研究[C]// 发电厂锅炉优化改造与配煤掺烧技术经验交流研讨会. 2015.
作者简介:墨庆锋(1974.12.27),性别:男;籍贯:河北省石家庄市;民族:汉;学历:本科;职称:工程师;职务,锅炉主管;研究方向:工程技术。

相关文档
最新文档