黏度测量结果的影响因素分析
粘度,色差影响因素及其控制方法

粘度、色差影响因素及控制方法番茄酱质量有霉菌、浓度、粘度、色差(色值)、番茄红素、PH值、黑斑、总酸、析水度(仅对热破),感观事项指标。
其中感观、霉菌及浓度直接决定产品是否合格。
而粘度、色差(色差值)、析水度则反映产品的优劣,这对热破产品尤为明显。
众多客户往往对粘度及色差更重视,愿意购买高粘度并且深红色而不是泛黄的热破酱。
这有以下两点原因:1、使用高粘度原酱做番茄沙司可节省原酱,因此可降低成本,其他许多产品也类似。
即相同量高粘度原酱较低粘酱可做更多的直接食用的产品,因此客户希望原酱越粘越好2、消费者对直接食用的番茄制品的鲜红程度有较高要求。
而原酱的色差(色值)直接决定了成品外观的好坏。
因此客户希望原酱色差(色值)越高越好。
新疆气候干燥少雨,日照长阳光充足,并且昼夜温差大。
这一独特的气候和环境使新疆番茄原料的固形物含量高,番茄红素含量高,亩产高,并且不易腐烂,适宜运输,加工期长,同时霉菌指标低。
这一大优势就使新疆番茄酱在国际市场上有很强的竞争力。
(当然价格优势也同等重要)。
要使质量优势充分发挥,还需加强生产过程控制才能达到高粘度色差。
下面我们就对这一问题详述。
首先我们必须对粘度、色差有关知识有个大体了解。
粘度指数样品酱稀释至一定程度(常规12.5%皮籽酱12%浓度),20℃30秒钟酱体流过的长度。
其单位是cm/12.5%、30秒。
它定量的反映了酱的粘性。
测量仪器是确定的粘度仪。
所以应该这样理解:粘度越大,值越小:值越大,酱就不粘。
粘度与粘度值相反。
色差即a/b值,红比黄。
确切的说是酱体中番茄红素与番茄素含量的比值,它反映的是酱体红的程度,同时反映原料的成熟度。
它没有单位。
色差越大酱体越红,外观也越好。
其次,我们还要对番茄粘度产生机理、番茄物料在加工过程中发生的生化反应及色差降低原因有个大体的了解。
酱体之所以有粘性是因为存在果胶物质包括原果胶、果胶及果胶酸三种状态。
原果胶不溶于水,它与纤维素结合存在于细胞壁中,有粘性。
粘度法测定高聚物摩尔质量的误差分析

粘度法测定高聚物摩尔质量的误差分析
粘度法是通过测量聚合物在溶液中的粘度来间接计算聚合物的分子量(或摩尔质量)的方法。
其基本原理是根据运动粘度与聚合物摩尔质量之间的关系,测定聚合物溶液的粘度参数,再通过适当的理论计算,求得聚合物的摩尔质量。
在实际操作过程中,粘度法测定高聚物摩尔质量的误差主要来自以下方面:
1. 实验条件的变化:例如温度、溶液浓度、离子强度等条件的变化会引起聚合物分子在溶液中的相互作用发生改变,从而影响测定结果。
2. 测量精度:例如在测量过程中,粘度计精度不高或者旋转稳定性不好,均会导致测量结果出现误差。
3. 溶剂的选择:由于溶剂对聚合物的溶解能力不同,选择不当会导致测定结果偏差。
4. 数据处理:在数据处理的过程中,误差的累加和舍入误差均会导致测定结果偏差。
因此,为了提高测定结果的准确性,需要在实验前进行充分的控制条件,选择适当的实验方法和实验条件,选用精度高的仪器和试剂,加强实验技巧和数据分析能力,从而获得更准确的测定结果。
聚合物溶液粘度的主要影响因素分析

聚合物溶液粘度的主要影响因素分析第l2卷第1期断块油气田FAUI.T—B【DCKOIL&GASnELD2005年1月聚合物溶液粘度的主要影响因素分析张金国(胜利油田有限公司胜利采油厂)摘要影响聚合物溶液粘度的外来因素是多方面的,包括pH值,温度,各种金属阳离子,搅拌速度和时间等.对以上诸因素进行了全面的实验分析,并确定了现场配制时应控制的主要指标范围:pH值应控制在6-9,温度以15~3O℃为宜,并且应"-3尽量用矿化度较低的清水配制,配制时搅拌速度应控制在150r/min以下,搅拌时间不应超过50min.关键词聚合物溶液粘度酸敏性热敏性盐敏性搅拌剪切聚合物驱是一种重要的三次采油技术,该技术用聚合物水溶液为驱油剂,以增加注入水的粘度…,提高其波及效率,从而达到提高原油采收率的目的.配制的聚合物溶液的粘度越高,其波及面积越大,驱油效果也就越理想.影响聚合物溶液粘度的因素是多方面的,包括pH值,温度,各种金属离子,搅拌速度和时间等.只有搞清这些因素对粘度的影响程度,才能指导聚合物的现场配制,从而提高聚合物溶液粘度的保留率-3J,确保聚合物驱的效果.1实验仪器和药品1.1主要实验仪器DV—I+VISCOMETER粘度计(美国进口),JJ一1电动搅拌器,电热恒温水浴锅,有机合成仪,酸度计,酸,碱滴定仪.1.2主要实验药品NaOH,HC1,NazSO3,NaHSO3,NaC1,KC1,CaC12,MgC12?6H20,CrC13,a3,Fea3,无水乙醇,柠檬酸,柠檬酸铝-4等(以上均为化学纯或分析纯).自来水(矿化度为679mg/L);孤东一号联污水(矿化度为5749mg/L);聚合物(胜利油田东胜化工厂生产,分子量为1800×10一2000 ×10).2主要影响因素分析2.1酸敏性在现场应用聚合物时,有时需加入交联剂,而大多数的交联剂是在酸性环境下交联的.因此, 很有必要研究pH值对粘度的影响情况.用20% HC1和2o%NaOH调节1500mg/L聚合物溶液的pH值,然后测量其粘度,实验结果如表1所示.表1聚合物溶液的酸敏性pH值粘度/mPa?8pH值粘度/mPa?8l882lO23892o536olOl9048llll8l5llO121736l8Ol3l67720214165由表1可知,在酸性条件下,随着pH值的增加,聚合物溶液的粘度也增加;pH值在7~8时, 粘度随pH值的增大而达到最大值;大于8以后,粘度呈现逐渐下降的趋势.可以看出,pH值在6~9具有较高的粘度值.因此,现场配置时,聚合物溶液的pH值应当控制在6~9为宜.2.2热敏性不同温度下1500mg/L聚合物溶液的粘度如表2所示.从表2可以看出,随着温度的升高,粘度逐渐降低,温度每升高1O℃,粘度下降20%左右.因收稿日期2004—09—19作者简介张金国,1971年生,工程师,1993年毕业于西北大学地质系石油及天然气地质专业,现从事石油工程技术工作,地址(257506):山东省东营市垦利县胜坨镇,电话:(0546)8585922.572005年1月断块油气田第l2卷第1期此,在配制时应尽量选择较低的温度,以获得较高的粘度.但如果温度太低,会使得聚合物的水化和溶解变慢.因此,配制温度最好是常温,以15~30℃为宜.表2聚合物溶液的热敏性温度/~C粘度/mPa?B温度/~C粘度/mPa?B2022855l86252226ol8o3O2l765178352ll70175402057517345l998Ol7l501922.3.1对NaC1和KC1的敏感性25℃条件下,将40%的NaC1+KC1溶液(按1:1的质量比)加入到1500mg/L的聚合物溶液中,测定不同Na+K含量下的聚合物溶液的粘度(见表3).表3聚合物溶液的盐敏性钾钠离子含量/粘度/钾钠离子含量/粘度/(rag/L)mPa?B(mg/L)mPa?BO23l8o4.8425O.3l66l20r7.23Ol0o.6l36l6o9.6262O1.2982012.0234o2.46l由表3可以看出,随着NaC1+KC1含量的增加,溶液的粘度快速降低.浓度大于500mg/L以后,粘度下降趋势变缓.这是由于随着Na和K浓度的增加,使得聚合物中羧基离子的电斥力受到抑制,分子线团卷曲,从而导致溶液的粘度下降.因此,使用污水配制时,应控制Na+K含量低于200mg/L.2.3.2对CaC12和MgCl2的敏感性用同样的方法测定了不同CaC1:+MgCl:(按1:1的质量比)含量下对聚合物溶液的影响,试验结果见表4.表4聚合物溶液的盐敏性钙镁离子含量/粘度/钙镁离子含量/粘度/(rag/L)mPa-S(rag/L)mPa.S022920o2l5Ol2680ol2l0o66l20olll5O3Ol60olO如表4所示,Can,Mg2比Na和K的影响还要大.随着Ca和Mg浓度的增加,粘度急剧下降,当浓度大于200mg/L以后,粘度下降趋势变缓.实验中发现,当Ca2和Mg2浓度大于500mg/L以后,甚至出现聚合物从溶液中逐渐沉降的现象.通常认为,ca和Mg会引起聚合物分子间发生缩聚,从而使分子链变短,直接导致溶液的粘度下降.一般情况下,Ca+Mg浓度最好控制在100mg/L以下.2.3.3对FeC1的敏感性将浓度为20g/L的FeC1,溶液逐渐滴加到浓度为1500mg/L的聚丙烯酰胺溶液中,并测量粘度的变化.结果表明,当聚丙烯酰胺溶液中FeC1, 的浓度超过20mg/L时,溶液的粘度就急剧降低, 甚至发生絮凝.国内外一般要求控制三价离子在10mg/L以下.2.4污水配制的影响用不同比例的自来水和胜坨一号联污水将5000mg/L的母液稀释成1500mg/L的溶液,测定其粘度,试验结果见表5.表5不同污水含量下聚合物粘度的变化污水比例.粘度/污水比例,粘度/%mPa?8%mPa?s045l6o98lO3l97094202408O9o301799O8540l4ll0o8l5OllO从表5可以看出,污水的用量越少,溶液的粘度越高.随着污水比例的逐渐增加,粘度呈现出大幅下降的趋势,应当尽量少用污水,多用清水来配制溶液.2.5速敏性搅拌是配制和注入过程中不可避免的,而搅拌速度的影响,实际上反映了剪切速率的影响.搅拌时,以及通过泵,管,阀,孔时的剪切作用都很强,会导致粘度的变化,因此有必要考虑搅拌对粘度的影响.在25℃条件下,用不同的搅拌速度,配制1500mg/L的聚合物溶液,以研究其速敏性,试验结果见表6.可以看出,搅拌速度越大,溶液的粘度下降越大.因为聚合物是一种对剪切十分敏感的假塑性第l2卷第1期张金国.聚合物溶液粘度的主要影响因素分析2005年1月流体,在较低的剪切速率下,聚合物分子线团相互靠近,呈现出较高的粘度.随着搅拌速度的加快,剪切随之增强,卷曲的分子被拉直,并产生相对滑动,使粘度降低,而剧烈的剪切还可能使大分子链发生断裂.一般情况下,搅拌速率应控制在150r/min以下.表6搅拌速率对聚合物溶液粘度的影响搅拌速度/粘度/搅拌速度/粘度/(r/rain)mPa?S(r/rain)roPa?S2523425OlBl502303o0l64lo022*******1502214OOlll2o02O92.6搅拌时间的影响在100r/min的搅拌速度下,不同搅拌时间对1500mg/L聚合物溶液粘度的影响见表7.表7搅拌时间对聚合物溶液粘度的影响搅拌时间/粘度/搅拌时间/粘度/minmPa?sminmPa?S524|650223lO2436021"120239801913O234lo017240229120l45从表7可以看出,随着搅拌时间的延长,溶液的粘度逐渐下降,60min内变化缓慢,60min以后粘度下降较快.因此,搅拌时间应不长于50 raino3结论(1)影响聚合物溶液粘度的因素很多,主要有pH值,温度,矿化度,搅拌速度和搅拌时间等.(2)聚合物溶液具有很强的酸敏性,酸性条件下粘度很低,聚合物溶液的pH值应控制在6—9.(3)聚合物溶液具有较强的热敏性,在配制时应尽量选择较低的温度,以15—30℃为宜. (4)聚合物溶液具有很强的盐敏性.一价阳离子Na,K的降粘程度很相似;二价阳离子Ca,Mg2的影响大于一价阳离子№,K;三价离子Fe¨,Al¨等对粘度的影响大于二价离子.因此,配制时应严格控制盐的含量,Na+K含量应控制在200mg/L以下,Ca+Mg2的含量应控制在100mg/L以下,三价盐离子的含量应小于10mg/L.应当尽量用矿化度较低的清水配制,少用污水,以减少矿化度对粘度的影响.(5)聚合物溶液具有很强的速敏性,溶液的粘度随剪切速率的上升而下降.因此,配制时要选择尽量小的搅拌速度和尽量短的搅拌时间,搅拌速度应控制在150r/min以下,搅拌时间不应超过50min.参考文献1汪庐山,张月.交联聚合物调驱液中聚合物最低浓度的确定方法.油田化学,2000,17(4):340—3422万仁溥.采油工程手册.北京:石油工业出版社,2000.83赵福麟.采油化学.北京:石油工业出版社,19894王中华.油田化学品.北京:中国石化出版社,2001(编辑邵晓伟)JAN.2005FAUI—BIJ0CK0IL&GASFIELDV01.12No.1 fluxundertheconditionsoftheconstantwell-borepressureor constantwell-boreproductionanddifferentsupplyradius.The numericalcomputationoftwolayerswhichismadebyStehfest numericMinversioncomputedseparatelythevarietyofthe wallofthewellfluxandanalyzedanddiscusseddifferent supplyradiuswhichinfluencesoilwellproductivity.The methodscaninstructtheallocationofproductionandinjection rates,dynamicforecastanddevelopmentadjustmentofthe separatezonewholeproductionincircularsealedreservoirof stratifiedlayers.KeyWords:Circularsealedreservoir,Separatezone wholeproduction,Productivity,Mathematicalmodel,Dynamic forecast. ApplicationofHorizontalWeUTechnologyinthe DevelopmentandtoTapthePotentialofMine—structural oilReservoir HuangWeirGeologicalResearchInstituteof JiangsuOilfieldBranchCompany,Y angzhou,225009,Chial1).Fault-BlockoiIGasField,2o05,12(1):50—51 Wtheprogressofdevelopmenttechniqueofoilfield. theproductiontechnologyofhorizontalwellisgettingmore andmorepeffecLItbringsintoobviouseconomicbenefit. especiallyforbottom.wateroilreservoir,vertica1.fissureoil reservoir,heavyoilreservoirandlesspermeableoil reservoir.Block1ofAn.Fengisatypicalbottom.wateroil reservoirinAn.Fengoilfield.Ithasenteredahighwater-cut periodofdevelopment,havingbeendevelopedover16years withverticalwells.Theeffectofdevelopmentandadjustment withverticalwellsisnotrelativelywel1.asaresultofwater. cutrisingfaster.Therefore.itwasdecidedthatAn.Feng1 blockwasdevelopedandadiustedwithhorizontalwells.Horizontalwellshavebeendesigned,onthebasisof researchonthecharacteristicofoilfielddevelopmentandthe distilbutionruleofremainingoilAfterputtinginto production,theeffectiscomparativelywell,showingahigh initialproductionandlowwatercut.Oilproductionrateofthe faultblockhasgreatlybeenincreased:recoveryfactorhas beenraisedfrom25%to38%.Increasesof3500tof recoverablereservesperwellhasbeenobtainedwhichis equaltoover3timesofverticalwel1.KeyWOrds:Horizontalwell,Bottom.wateroilreservoir. Bottomwatterconing,Remainingoil,Oilproduction intension,Recoveryfactor. ApplicationandRecognitionofDynsmicInspection inReserviorDevelopmentDaiY ongzhu(ShengliOilProductionPlant,Shengli OilfieldCo.Ltd.,SINOPEC,Dongying257041,China), XuJiajunandPangRulyuneta1.Fault-BlockOil&GasF-eId,2o05,12(1):52—54 Undertheeffectofcomplicategeologicalstructure,fault, complexreservoirheterogeneity,theRemainingoilscattered, casingfailurewellincreasingandsoon,thedifficultyofthe developadjustmentisincreasing.Underthecomplex developmentsituation,moreandmorereservoirdynamic monitoringworkisappliedtorecognizeremainingoil distributionandsituationoftheproducingreservesbyⅣenhancingtheenrollment,analysisandapplicationofPND, boro-injectionneutronlifetimelogging,tracer,productionand injectionsection,accordingtothismethod,weimprovethe recognitionlevel,managementlevel,increasetheproduction effectobviously,andputforwardthedevelopmentdirection. KeyWords:Shengtuooilfield,Development,Dynamic inspecfion,Remainingoil,Correspondenceofproductionand injection,Heterogeneity. ProductionTestResearchofD15WeUinDaniudiGasField WangJianhuairResearchInstituteofExploration& Development,NorthalinaCompany,slNDl,Zhengzhon45OOO6,a血吼),Cao~nghmandD0ng Honglmn.Fault—BlockOil&Gasndd,加略,12(1):55—56 PIx'reservoirofDaniudiGasFieldhasthecharacters oflargearea,stronganisotropism,lowabundance,low permeabilityandlowproductivity.Peoplehavebeenpaying attentionstoitskeyproblemsincludingindividual-well sustainedproductivity,theproportionofdynamicreservesand ultimaterecoveryfactoretc.Tosolvetheproblemsmentioned above.thepaperstudiedthedatafromtheD15wellwhichis representationaltoP.xreservoirofDaniudiGasFieldand thewellhasplentifuldata.ItisconcludedthatthiswellwiII haveasustainedproductivityifitproducesaccordingtothe1/6ofQ^0Fthroughthestudyofmodifiedisochronaltesting, evaluationofproductiontestandindividua1.wellsimulation: itsproportionofdynamicreservesis69.83percentthrough thereservecalculationwithpressuredeclinemethodand volumetricmethod:itsultimatereserverecoveryfactoris48.62percentwiththedynamicmethod.Theseconclusions willprovidereferencesforreservoirevaluation.gasfield productiondesignandindividual-wellassignmentofother wells.KeyWords:D15well,Productiontest,Reservoir simulation,Dynamicreserves,Ultimaterecoveryfactor. AnalysisoftheMainFactorsAffectingtheViscidity oftheSolutionofP0IynlerZhangJinguo(ShengliOilProductionPlant,ShenglioⅡl-eIdC仉Lt..SINoPECKenli250O∞.China).Fault—Blockon&Gasneld.2o05.12(1):57—59 Therearemanyfactorswhichcanaffecttheviscidityof thesolutionofpolymer,includingthepH,temperature,thestirTingrateandstirringtime.Allfactorswereanalyzedinthe paper.Atlast.itrecommendthelimitofeachfactor:withthe temperature15—30oC,thepHwithin6—9,thestirringrate lessthan150r/min.stirringtimelessthan50min. KeyWords:Solutionofpolymer,Acidaffect, Temperatureaffect,Saltaffect.Slice. TheTechnologyofSubdivisionDevelopmentinthe StratifiedandFault.BlockReservoiroftheSouthBlock ofLinl3EsinthePeri0dofSuper—mWaterCut HanHongxiafLinpan伽ProductionPlant. ShenglioimeldCo.Ltd..SoPEC.Shandong,Linyi 251507,China),ShiMingjieandShnoYuntangeta1.Fault—Block伽&GasField.2005.12(1):6O一61。
润滑油运动粘度测定方法以及影响因素分析

润滑油运动粘度测定方法以及影响因素分析摘要:运动粘度是评价原油及其产品流动性能的指标,也是检验许多石油产品的重要质量指标,准确测定油品的运动粘度是很多行业部门和实验科学研究工作中重要的内容,特别是在石油化工、医药、冶金等行业,准确测量运动粘度能够严格控制生产过程参数及产品的质量。
因而,如何准确测定油品运动粘度是广大科技工作者所关注课题。
关键词:润滑油运动粘度影响因素测定结果运动粘度是润滑油重要的质量指标,运动粘度是一种条件粘度,是在一恒定温度下,测定一定体积的液体在重力下流过一个标定好的玻璃毛细管粘度计的时间。
因此在试验过程中应严格遵照方法标准中所规定的仪器、试剂和试验条件来进行试验,避免由于仪器选择不当或操作错误造成结果不准确或超差。
一、实验原料及仪器二、实验原理毛细管粘度计法测定运动粘度的方法原理是根据牛顿内摩擦定律,Poiseuille 定律导出下式:对指定的毛细管粘度计来说,仪器尺寸(V,L,r)和h、g、均为常数,所以c为常数。
因此只要测得油品在某一温度下由刻度a到刻度b所需时间(S),就可得出运动粘度。
三、实验步骤与操作1.步骤1.1选择内径符合要求的清洁、干燥的毛细管粘度计。
1.2在内径符合要求且清洁、干燥的毛细管粘度计内装入试样。
1.3将粘度计放入加热浴中,调整毛细管粘度计呈垂直状态,恒温。
1.4记录试样在管身中的流动时间。
1.5取流动时间的算术平均值作为计算的流动时间。
2.实验操作2.1层流:由于牛顿内摩擦定律要求液体流动时必须处于层流状态,通常当液体由刻度a流动到刻度b所需时间为(300±180)s时,则认为液体处于层流状态,否则为滞流(>480 S)或湍流(<120 S),不符合Poiseuille方程的要求,测量误差大。
所以要根据试油以及流动时间(300±180)s来选择合适内径的毛细管粘度计。
2.2恒温:测量时恒温水浴中温度必须恒定在(t±0.1)℃,如超出范围,测量误差将会变大。
粘度的测定实验报告

粘度的测定实验报告一、标题本实验报告旨在探究不同条件下液体的粘度特性,通过对多种液体的粘度进行测定,分析温度、压力、浓度等因素对液体粘度的影响。
通过对实验数据的整理与分析,以期深入了解液体粘度的变化规律及其在实际应用中的意义。
此外本实验报告还将讨论粘度测定实验的方法和步骤,以及实验结果的不确定性分析,为相关领域的研究提供参考依据。
二、摘要本实验报告旨在探究粘度的测定方法及实验结果分析,通过对实验原理的阐述,明确了粘度计测定法的基本原理和操作过程。
在实验过程中,采用了适当的实验步骤和操作方法,对样品的粘度进行了准确测定。
实验结果显示,所测样品在一定条件下的粘度值,为后续的数据分析和讨论提供了基础。
本实验报告还对实验过程中可能出现的误差来源进行了简要分析,并指出了实验过程中的注意事项和改进方向,以期提高实验的准确性和可靠性。
本实验对于理解流体性质、优化工艺流程以及产品质量控制等方面具有一定的参考价值。
三、内容概括本次实验报告的主题为《粘度的测定实验》。
本实验旨在通过一系列操作步骤,测定液体的粘度,了解其流动性及内部摩擦性质。
实验过程中采用了旋转粘度计这一核心设备,通过测量旋转液体所产生的剪切力及转速,从而计算出液体的粘度。
实验内容主要包括实验前的准备工作、实验操作过程以及实验结果分析。
在实验前我们进行了相关理论的学习,了解了粘度的概念、测定意义以及影响因素。
随后我们对实验设备进行了校准,准备了所需样品。
在操作过程中,我们严格按照操作规程进行,确保了实验数据的准确性。
通过对不同条件下液体粘度的测定,我们获得了丰富的实验数据。
实验结果方面,我们得到了液体的粘度值,并分析了粘度与温度、浓度等因素的关系。
通过对实验数据的处理与分析,我们发现液体的粘度随温度的升高而降低,随浓度的增大而增大。
此外我们还探讨了实验结果与理论预期的一致性,验证了实验方法的可靠性。
本实验的意义在于通过实际操作,使我们更加深入地理解了粘度的概念及测定方法,掌握了旋转粘度计的使用方法。
润滑油粘度测定影响因素分析

润滑油粘度测定影响因素分析摘要:润滑油的粘度及粘度的变化规律,会受到润滑油分子结构的决定性影响,同时环境温度、压力等也会对润滑油粘度产生较大影响。
当前,在润滑油粘度影响参数研究领域,已经有许多学者进行了大量研究,然而新型润滑油产品与应用理论的问世与应用,对于其粘度测定也提出了更高要求。
唯有不断加强对润滑油粘度影响因素的分析、研究,才能为提高润滑油的利用效益提供更好保障。
基于此,文章对温度、压力对润滑油粘度的影响进行了深入分析。
关键词:润滑油;压力-粘度系数;温度-粘度系数;航天润滑;影响因素一、对润滑油粘度及粘温性的表示受到外力作用使液体产生流动现象,而液体与固体壁面之间会产生附着力影响,同时液体内部分子的相互应力,导致了液体内部各个液层之间的不同流速,进而不同流速的相邻液体层间会产生摩擦阻力,这就是液体粘滞性,通常用粘度来对这种粘滞性大小进行衡量。
(一)粘度表示方法1.条件粘度条件粘度。
指的是以一定的规定、标准进行评定所得到的粘度值,又被称为相对粘度,如恩氏粘度、赛氏粘度、巴比流度、恩氏粘度等。
其中排锚杆赛氏粘度与雷氏粘度,是按照仪器中一定体积与流出时间比率来进行粘度的表示,巴比流度则是按照固定时间内仪器液体流出数量来进行粘度的表示。
目前,恩氏黏度是我国应用较为普遍的条件粘度,是按照仪器中液体的流出时间和相同条件下水从仪器中流出时间两者所形成的时间比值来进行粘度的表示。
条件粘度并不具备绝对的物理意义,在测定得出的精度也不高,以及不同条件粘度间需要测定的条件相差较大,在测量单位上也不具备统一性,因此,条件粘度的使用范围逐渐变小。
2.运动粘度液体流动速度和内摩擦阻力、流体密度有着较为密切的关系。
液体动力粘度和相同温度条件下的液体密度之间的比则为运动粘度(v),是对液体流动快慢、难易程度的综合表现:υ=μ/ρ,ρ为温度条件下液体密度。
运动粘度常常用作对流体粘度的表示,油品粘度也常用运动粘度表示。
(二)粘温性能表示方法1.粘度比相同润滑油在低温条件与高温条件下的粘度的比值称为粘度比,例如-18 ℃/υ-48℃。
液体粘滞系数实验原理 -回复

液体粘滞系数实验原理 -回复液体粘滞系数是衡量流体黏性的指标。
当液体通过管道或通道时,粘滞力会对流体产生阻力。
粘滞系数越大,阻力越大,液体运动越缓慢。
粘滞系数是设计和优化流体力学系统的重要参数。
本文将介绍液体粘滞系数实验的原理和常用测量方法。
一、实验原理液体粘滞系数实验的原理基于史托克斯定律。
根据史托克斯定律,在液体中移动的小球所受到的粘滞力与小球速度成正比,且与小球大小和液体粘度成正比。
可以用下列公式表示:F = 6πrvF是粘滞力,r是小球半径,v是小球速度。
过程中,对于流过管道的流体,粘滞力可以描述为:F = ηA(dv/dx)F是管道内两平面之间粘滞力对流体运动的阻力,η是液体粘滞系数,A是管道横截面积,dv/dx是速度梯度,单位为m/s/m。
通过测量流体从细管中流出的速度并与细管直径和运动距离相关联的数据,可以计算出液体粘滞系数。
二、实验设备和仪器1. 细管或毛细管细管或毛细管通常是通过其内部流体的速度和通过管道的液体流量测量液体粘滞系数的主要工具。
2. 数字计时器数字计时器可以准确地测量流体通过细管或毛细管的运动时间,帮助我们计算液体的平均速度。
3. 数字天平数字天平用于测量细管或毛细管的质量,以及在实验中使用的液体的质量。
4. 液体容器用于装载实验需要的液体。
通常用玻璃瓶或塑料瓶来存储液体。
5. 温度计温度计用于测量液体的温度。
因为液体的粘度随温度而变化,所以必须在一定的温度区间内进行实验,并将数据进行校正。
三、实验步骤1. 准备实验设备和仪器,并确保它们已经校准。
2. 准备实验室环境,确保无风和震动的影响。
3. Weigh the liquid to be tested, and record its mass.4. Set up the glass tube or capillary pipette in the experimental setup, and take a measurement of the capillary diameter.5. 将液体轻轻地注入细管或毛细管,注入液体时要小心,确保不会引入气泡。
油品运动粘度测定的影响因素

2017年04月油品运动粘度测定的影响因素任婕(内蒙古第一机械集团有限公司,内蒙古包头014032)摘要:运动粘度是评价石油产品流动性能的指标,也是液体石油产品的一项重要指标。
在油品使用和输送过程中,粘度是石油化工设计中不可缺少的参数。
准确测量运动粘度,能够严格控制油品的质量。
影响运动粘度的测定因素很多,本文通过试验分析重点对恒温油浴温度、毛细管粘度计系数、粘度计安装位置不同选取等因素进行了分析讨论,并得出了结论。
关键词:性能指标;运动粘度润滑油等液体石油产品则采用GB/T265的方法进行测定,深色石油产品的运动粘度则采用逆流法。
运动粘度是流体内部阻碍其相对流动的一种特性,在层流状态下反应液体流动性能。
其单位为m 2/s 。
许多润滑油类产品分类、分级都是按其40o C 和100oC 的运动粘度来划分的。
在实际应用中,粘度对石油产品的质量和用途有重要意义,运动粘度是衡量润滑油流动性能的一个重要指标。
粘度大,油膜厚度就大,润滑性能就好;粘度太小,会增加摩擦阻力,磨损机械。
掌握运动粘度的影响因素,对准确测定运动粘度值非常重要。
本文采取实验的方法分析了运动粘度的影响因素,为准确测定运动粘度值提供了依据。
运动粘度是一种条件粘度,是在某一恒定温度下,测定一定体积的液体在重力作用下流过一个标定好的玻璃毛细管粘度计的时间,粘度计的毛细管系数与流动时间的乘积,即为该温度下测定液体的运动粘度[1]。
1影响因素1.1毛细管粘度计系数由于不同的毛细管粘度计系数不同,流动时间也不相同。
同种试验液体流过不同系数的毛细管所用时间不同。
当液体流动速度超出一定范围会变成湍流,不符合层流状态;系数小的毛细管管径小会增大液体内部流动的摩擦阻力,流动时间较长,测量结果偏大。
系数大的毛细管管径大,液体流动时间较短,容易造成流出时间读数的误差增大;若液体流动时间太长,测定时间不易保持恒温而导致误差增大。
所以时间不是越长越好,要选择适宜系数的粘度计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力加速度的影响
在泊氏公式中, 重力加速度 g 视为一个常数, 但 实际上, 重力加速度 g 在不同地点实际值是不相同 的, 会带来微小误差, 测黏度时, v 修正为 v=ctg 用/gn- B/t。在实际工作中, 二等标准黏度计和工作黏度计 因精度要求不高, 可不进行修正。对于一等标准黏 度计, 可选择标定地和使用地在同一地点, 就可以避 免产生误差。
采用相对测量法测量物质黏度时, 有诸多因素 影响测量结果的准确性, 就几项重要因素进行探讨, 找出消除误差的办法, 使测量结果更准确。
温度的影响
物质的热胀冷缩人们都很熟悉, 是一种物理现 象, 是由于温度不同引起物质密度改变所致。温度 对流体物质黏度有直接影响, 所有的黏度值都是针 对某一温度下的黏度值, 如果未作温度标示, 这样的 黏度值是毫无意义的。由于温度对黏度影响很大, 温度对石油产品的黏度影响更为显著, 但温度对黏 度的影响误差却很好消除, 即黏度测量要在实验室 进行, 可根据季节在 20~35℃的环境下任选一点作 为检定温度( 但黏度计的检定温度必须与标准液的 定值温度相同) 。实验室温度与检定温度相差不应 大于±2℃, 维持实验室稳定的要求温度是黏度测量 的重要实验室条件。
残液的影响
在一定的测定时间 t 内, 测定球内的液体不可 能完全流尽, 标准液与被测液都会在测定球内留有 残液, 但残液体积却不一定完全抵消, 因为标准液与 被测液黏度有区别, 在同一时间内, 留有的残液量就 会有所不同, 对于同一黏度计, △V 与流动时间成反 比, 与液体的黏度成正比, 残液造成的残留误差要在 误差分析时作为系统误差进行计算。
实际工作中, 人为因素应通过规范的试验操作, 消除人为因素的影响, 避免误差的产生。提高实验室 的实验条件, 尽量减少测量误差, 对于不可避免的测 量误差, 要在处理测量数据时进行测量结果修正。
本文编辑: 黄永场
收稿日期: 2008- 02- 24
54
TECHNOLOGY S UP ERVIS ION IN P ETROLEUM INDUS TRY
人为因素的影响
使用 V 型黏度计进行测量时, 如果测量人员对 充液量掌握不准, 从而引起液压高度的改变, 造成误 差。以平氏黏度计为例, 当下端斜向侧管时 h 减小, 当下端斜向主管时 h 增高, 所以泊氏公式为 v=ct( 1± △h/h) 。在测量黏度时, 应使粘度计的毛细管与地面 垂直。
使用 V 型黏度计测量黏度时, 若充液不准确, 会引起液压高度的改变, 进而产生测量误差; 使用乌 氏黏度计测量黏度时, 因测定球和毛细管中的液体 与下储器中的液体隔开, 所以黏度测量值不受充液 量的影响。
表面张力的影响
对于与玻璃润湿的液体, 由于表面张力的作用, 会有毛细现象产生, 由于表面张力的作用, 使得上球 液面产生一个附加压强, 使流动减慢, 下球液面产生 一个附加压强使流动加快, 但黏度计上下球的平均
有效半径相等, 或者标准液与被检液的液体表面张 力系数 σ、液体密度 业技术监督·2008 年 46 月
黏度测量结果的影响因素分析
朱丽娟
辽河油田公司 质量安全环保处质量科 ( 辽宁 盘锦 124010)
黏度的测量按其方法可分为两大类: 绝对测量 和相对测量。绝对测量是直接测量黏度公式中各物 理量来求黏度值, 不易测量, 一般不采用。相对测量 是通过与已知黏度的标准物质在同一黏度计中比较 来测量被测物质黏度的方法, 便于操作, 一般黏度测 量均采用相对测量法。