2015离散数学命题公式
离散知识点公式总结

离散知识点公式总结1. 集合论集合是离散数学中的基本概念,它是由一些确定的对象所组成的一个整体。
集合之间的运算包括并集、交集、差集、补集等。
其相关公式如下:- 并集:对于集合A和B,它们的并集定义为包含A和B中所有元素的集合,记作A∪B。
公式:A∪B={x|x∈A或x∈B}- 交集:对于集合A和B,它们的交集定义为同时属于A和B的所有元素的集合,记作A∩B。
公式:A∩B={x|x∈A且x∈B}- 差集:对于集合A和B,A与B的差集定义为属于A但不属于B的元素所组成的集合,记作A-B。
公式:A-B={x|x∈A且x∉B}- 补集:对于集合A,相对于全集合U而言,A的补集定义为全集合中不属于A的元素所组成的集合,记作A'。
公式:A'={x|x∈U且x∉A}2. 关系和函数关系是一种描述元素之间的对应关系的数学工具,而函数则是一种特殊的关系。
在离散数学中,关系和函数的定义和性质是非常重要的内容。
其相关公式如下:- 关系R:对于集合A和B,关系R定义为A和B的笛卡尔积中的元素对所组成的集合。
公式:R={(a,b)|a∈A且b∈B}- 函数f:对于集合A和B,如果f是从A到B的一个映射,那么对于任意元素a∈A,都有唯一的元素b∈B与之对应。
公式:f:A→B3. 图论图论是离散数学中的一个重要分支,它研究的是由顶点和边组成的数学结构。
图论的基本概念包括图的类型、路径和回路、连通性、树等。
其相关公式如下:- 有向图:对于图G=(V,E),如果E中的边是有方向的,则称G为有向图。
公式:G=(V,E),E={(u,v)|u,v∈V,u→v}- 无向图:对于图G=(V,E),如果E中的边是无方向的,则称G为无向图。
公式:G=(V,E),E={{u,v}|u,v∈V,u≠v}- 路径:在图G中,顶点v1,v2,...,vn的一个路径是图G中的一个顶点序列,其中相邻的顶点用一条边连接。
公式:v1,v2, (v)- 回路:在图G中,如果一条路径的起点和终点是同一个顶点,则称其为回路。
离散数学部分概念和公式总结

离散数学部分概念和公式总结命题:称能判断真假的陈述句为命题。
命题公式:若在复合命题中,p、q、r等不仅可以代表命题常项,还可以代表命题变项,这样的复合命题形式称为命题公式。
命题的赋值:设A为一命题公式,p ,p ,…,p 为出现在A中的所有命题变项。
给p ,p ,…,p 指定一组真值,称为对A的一个赋值或解释。
若指定的一组值使A的值为真,则称成真赋值。
真值表:含n(n≥1)个命题变项的命题公式,共有2^n组赋值。
将命题公式A在所有赋值下的取值情况列成表,称为A的真值表。
命题公式的类型:(1)若A在它的各种赋值下均取值为真,则称A为重言式或永真式。
(2)若A在它的赋值下取值均为假,则称A为矛盾式或永假式。
(3)若A至少存在一组赋值是成真赋值,则A是可满足式。
主析取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合取式全是极小项,则称该析取范式为A的主析取范式。
主合取范式:设命题公式A中含n个命题变项,如果A得析取范式中的简单合析式全是极大项,则称该析取范式为A的主析取范式。
命题的等值式:设A、B为两命题公式,若等价式A?B是重言式,则称A与B 是等值的,记作A<=>B。
约束变元和自由变元:在合式公式xA和 xA中,称x为指导变项,称A为相应量词的辖域,x称为约束变元,x的出现称为约束出现,A中其他出现称为自由出现(自由变元)。
一阶逻辑等值式:设A,B是一阶逻辑中任意的两公式,若A?B为逻辑有效式,则称A与B是等值的,记作A<=>B,称A<=>B为等值式。
前束范式:设A为一谓词公式,若A具有如下形式Q1x1Q2x2Qk…xkB,称A为前束范式。
集合的基本运算:并、交、差、相对补和对称差运算。
笛卡尔积:设A和B为集合,用A中元素为第一元素,用B中元素为第二元素构成有序对组成的集合称为A和B的笛卡尔积,记为A×B。
二元关系:如果一个集合R为空集或者它的元素都是有序对,则称集合R是一个二元关系。
离散数学2.3命题公式的等值式、蕴含等值式

等值的定义及说明
定义2.1 设A,B是两个命题公式,若A,B构 成的等价式AB为重言式,则称A与B是 等值的,记作 AB
定义中,A,B是元语言符号。不是联结词 。
A或B中可能有哑元出现。 P→Q (┐P∨Q)∨(┐R∧R) R为左边公式中的哑元。
用真值表可以验证两个公式是否等值。
例题
10.互补律 11.蕴含等值式
12.等价等值式
13.归谬论
A∨┐A 1,A∧┐A 0 A→B ┐A∨B A→B ┐B→┐A AB (A→B)∧(B→A) AB ┐A┐ B (A→B)∧(A→┐B) ┐A
对偶原理
一个命题公式A中,如果只含有┐、∨、∧、 0、1,那么同时 把∨和∧互换 把0和1互换
(A∧B)∧C A∧(B∧C) A∨(B∧C) (A∨B)∧(A∨C)
(∨对∧的分配律) A∧(B∨C) (A∧B)∨(A∧C)
(∧对∨的分配律) ┐(A∨B) ┐A∧┐B ┐(A∧B) ┐A∨┐B A∨(A∧B) A,A∧(A∨B) A
8.零律 9.同一律
基本等值式
A∨1 1,A∧0 0 A∨0 A,A∧1 A
(同一律)
1∨┐P
(排中律)
1
(零律)
例7 解答
(2) ┐(P→(P∨Q))∧R ┐(┐P∨P∨Q)∧R (P∧┐P∧┐Q)∧R 0∧R 0
7解答
(3) P∧(((P∨Q)∧┐P)→Q) P∧(┐((P∨Q)∧┐P)∨Q) P∧(┐((P∧┐P)∨(Q∧┐P))∨Q) P∧(┐(0∨(Q∧┐P))∨Q) P∧(┐Q∨P∨Q) P∧1 P
例5 用等值演算法验证等值式 (P∨Q)→R (P→R)∧(Q→R)
离散数学自学笔记命题公式及其真值表

我们把表示具体命题及表示常命题的p,q,r,s等与f,t统称为命题常元(proposition constant)。
深入的讨论还需要引入命题变元(proposition variable)的概念,它们是以“真、假”或“1,0”为取值范围的变元,为简单计,命题变元仍用p,q,r,s等表示。
相同符号的不同意义,容易从上下文来区别,在未指出符号所表示的具体命题时,它们常被看作变元。
命题常元、变元及联结词是形式描述命题及其推理的基本语言成分,用它们可以形式地描述更为复杂的命题。
下面我们引入高一级的语言成分——命题公式。
定义1.1 以下三条款规定了命题公式(proposition formula)的意义:(1)命题常元和命题变元是命题公式,也称为原子公式或原子。
(2)如果A,B是命题公式,那么(┐A),(A∧B),(A∨B),(A→B),(A?B)也是命题公式。
(3)只有有限步引用条款(1),(2)所组成的符号串是命题公式。
命题公式简称公式,常用大写拉丁字母A,B,C等表示。
公式的上述定义方式称为归纳定义,第四章将对此定义方式进行讨论。
例1.8 (┐(p→(q∧r)))是命题公式,但(qp),p→r,p1∨p2∨…均非公式。
为使公式的表示更为简练,我们作如下约定:(1)公式最外层括号一律可省略。
(2)联结词的结合能力强弱依次为┐,(∧,∨),→,?,(∧,∨)表示∧与∨平等。
(3)结合能力平等的联结词在没有括号表示其结合状况时,采用左结合约定。
例如,┐p→q∨(r∧q∨s)所表示的公式是((┐p)→(q∨((r∧q)∨s)))设A是命题公式,A1是A 的一部分,且A1也是公式,则A1称为公式A的子公式。
如对公式A:┐p→q∨(r∧q∨s),则p,┐p ,q ,(r∧q∨s)及q∨(r∧q∨s)都是公式A的子公式,而┐q,┐p→q,虽然是公式,但确不是A的一部分,因此不是A 的子公式;q∨(r∧虽然是公式A的一部分,但不是公式,因而也不是A的子公式。
离散数学基本公式

离散数学基本公式离散数学是数学的一个重要分支,它主要研究的是非连续的、分离的对象,如集合、图论、数论、逻辑等。
在这些领域中,一些基本的公式和定理是理解和应用离散数学的关键。
以下是一些离散数学的基本公式:1、德摩根定律德摩根定律是布尔代数中的基本公式之一,它表示对于任何逻辑运算,如果我们把所有的否命题和原命题结合在一起,我们就会得到一个恒等式。
用符号表示为:P ∧ Q) ∨(¬P ∧¬Q) ≡ P ∨ QP ∨ Q) ∧(¬P ∨¬Q) ≡ P ∧ Q2.集合论中的互补律在集合论中,互补律表示对于任何集合A和它的补集A',我们有:A ∪ A' = U,其中U是全集A ∩ A' = ∅,其中∅表示空集3.图论中的欧拉公式欧拉公式是图论中的一个基本公式,它表示对于一个连通无向图G,其顶点数v、边数e和欧拉数euler(G)之间有以下关系:euler(G) = v + e - 2其中euler(G)是图G的欧拉数,v是图G的顶点数,e是图G的边数。
这个公式在计算图的欧拉数或者判断一个图是否连通等方面都有重要应用。
4.数论中的费马小定理费马小定理是数论中的一个重要定理,它表示对于任何正整数n,如果它是质数p的幂次方,那么我们可以找到一个整数x,使得x的n 次方等于1(模p)。
用数学语言表示为:x^n ≡ x (mod p)其中n是正整数,p是质数,x是整数。
这个定理在密码学、计算机科学等领域都有广泛的应用。
5.逻辑中的排中律和反证法排中律是指对于任何命题P,P或非P必定有一个是真命题。
反证法则是通过假设相反的命题成立来证明原命题的一种方法。
在证明过程中,如果假设的相反命题成立会导致矛盾,那么原命题就一定是正确的。
这些公式和定理只是离散数学中的一小部分,但它们是理解和应用离散数学的基础。
在学习的过程中,我们还需要掌握更多的公式和定理,以及它们的应用方法。
离散数学公式范文

离散数学公式范文离散数学是一门关于离散结构及其运算规则的数学课程。
它研究的对象包括离散对象(如集合、图、函数等)和离散运算(如关系、代数运算等),以及这些对象和运算之间的关系和性质。
离散数学具有广泛的应用领域,如计算机科学、信息技术、电子通信等。
本文将介绍一些离散数学中常用的公式及其应用。
一、集合公式1.交集运算:对于集合A和B,它们的交集记作A∩B,定义为A和B 中都包含的元素所组成的集合。
A∩B={x,x∈A且x∈B}2.并集运算:对于集合A和B,它们的并集记作A∪B,定义为A和B 中所有元素所组成的集合。
A∪B={x,x∈A或x∈B}3.差集运算:对于集合A和B,它们的差集记作A-B,定义为属于A 但不属于B的元素所组成的集合。
A-B={x,x∈A且x∉B}4.对称差运算:对于集合A和B,它们的对称差记作A△B,定义为属于A或属于B但不同时属于A和B的元素所组成的集合。
A△B={x,(x∈A且x∉B)或(x∉A且x∈B)}二、数学归纳法数学归纳法是一种证明方法,用于证明一类命题对于所有正整数成立。
它的基本思想是通过证明基本情况成立,然后证明如果对于一些正整数n成立,则对于n+1也成立,从而得出结论对于所有正整数成立。
数学归纳法的三个步骤:1.基础步骤:证明当n取最小值时命题成立。
2.归纳假设:假设当n=k时命题成立,即P(k)成立。
3.归纳步骤:证明当n=k+1时命题也成立,即P(k+1)成立。
三、逻辑公式逻辑公式是描述命题之间关系的数学表达式。
常用的逻辑公式有如下几种:1.否定:对于命题p,它的否定记为¬p,表示p是假的。
2.合取:对于命题p和q,它们的合取记为p∧q,表示p和q同时为真时整个表达式才为真。
3.析取:对于命题p和q,它们的析取记为p∨q,表示p和q至少有一个为真时整个表达式才为真。
4.蕴含:对于命题p和q,它们的蕴含记为p→q,表示如果p为真,则q也为真;如果p为假,则整个表达式为真。
离散数学基本公式

一、基本等值式⑴双重否定律A A⑵幂等律A∧A A A∨A A⑶交换律A∧B B∧A A∨B B∨A⑷结合律A∨(B∨C)(A∨B)∨CA∧(B∧C)(A∧B)∧C⑸分配律A∨(B∧C)(A∨B)∧(A∨C)A∧(B∨C)(A∧B)∨(A∧C)(6)德摩根律(A∨B)A ∧B(A∧B)A ∨B(7)吸收律A∨(A∧B) AA∧(A∨B)A(8)零律A∨1 1 A∧00(9)同一律A∧1 AA∨0A(10)排中律A ∨A1(11)矛盾律A ∧A0(12)蕴含等值式A B A∨B(13)等价等值式A B (A B)∧(B A)A B (A∨B)∧(A ∨B)A B(A∧B)∨(A ∧ B )(14)假言易位A B B A(15)等价否定等值式A B A B(16)归谬论(A B)∧(A B) A二、推理定律——重言蕴涵式1.A (A B)附加律2.(A B)A化简律3.(A B)A B假言推理4.(A B)B A拒取式5.(A B)B A析取三段论6.(A B)(B C)(A C)假言三段论7.(A B)(B C)(A C)等价三段论8.(A B)(C D)(A C)(B D)构造性二难(A B)(A B)B构造性二难(特殊形式)9.(A B)(C D)(B D)(A C)破坏性二难三、量词辖域收缩与扩张x(A(x)∨B)xA(x)∨B x(A(x)∧B)xA(x)∧B x(A(x)→B)xA(x)→B x(B1/ 2→A(x))B→xA(x)x(A(x)∨B)xA(x)∨B x(A(x)∧B)xA(x)∧B x(A(x)→B )xA(x)→B x(B→A(x))B→xA(x)四、量词分配x(A(x)∧B(x))xA(x)∧xB(x)x(A(x)∨B(x))xA(x)∨xB(x)x(A(x)∨B(x) )xA(x)∨xB(x)x(A(x)∨B(x))xA(x)∨xB(x)个体域为全体自然数; A(x):x是偶数, B(x):x是奇数;左1,右0x(A(x)∧B(x))xA(x)∧xB(x)x(A(x)∧B(x))xA(x)∧xB(x)个体域为全体自然数; A(x):x是偶数B(x):x是奇数;左0,右 12/ 2。
离散数学6.命题公式及符号化

若写成(PQ) (P R)时,当P为F,Q为F时,即天没下雨而我没 上街,此时我说的是假话,但是表达式 (PQ) (P R) 的真值却是
“T” ,因为此时(P R)的真值是“T”.
4
二、复合命题的符号化(翻译) 有了命题演算的合式公式的概念,我们可以把自然语言
中的有些语句(复合命题),翻译成数理逻辑中的符号形式. 基本步骤如下:
1)首先要明确给定命题的含义. 2)对于复合命题,找联结词,用联结词断句,分解出各
个原子命题. 3)设原子命题符号,并用逻辑联结词联结原子命题符号,
构成给定命题的符号表达式.
5
例2 说离散数学无用且枯燥无味是不对的. P:离散数学是有用的. Q:离散数学是枯燥无味的. 该命题可写成: (P∧Q). 例3 如果小张与小王都不去,则小李去. P:小张去. Q:小王去. R:小李去. 该命题可写成: (P∧Q)R. 如果小张与小王不都去,则小李去. 该命题可写成: (P∧Q)R, 也可以写成: (P∨QP∧Q, PR, P∨Q∧R,PQ ∨S , (P W) Q); 下面的式子才是合式公式:
(P∧Q),(PR),((P∨Q)∧R). 按照合式公式定义最外层括号必须写. 约定:为方便,最外层括号可以不写,上面的合式
公式可以写成: P∧Q,PR,(P∨Q)∧R.
命题公式及符号化
一、 命题公式
1.定义1-3.1 命题演算的合式公式
合式公式是由命题变元、命题常量、联结词和圆括号按 一定的逻辑关系联结起来的符号串.我们以如下递归的形 式来定义合式公式:
(1)单个命题变元是一个合式公式. (2)若A是合式公式,则┐A也是合式公式. (3)若A,B是合式公式,则(A∧B),(A∨B),(AB),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最小联结词组(续)
② {} , {}或{,}不能表示 因为如果有P(…(PQ) … …) 若对右边所出现的变元都指派真值为T, 由,定义可知其真值必为T,而左边 的真值为F,矛盾。
一般来说,命题公式用{ ,,}表示。
• (8)证明{ },{ }和{ }不是最小联结词 组。 • (9)证明{ ,},和{ ,C }是最小联 结词组。
Propositional Equivalences
• Definition :The compound propositions p and q are called logically equivalent if p q is a tautology. The notation p⇔q denotes that p and q are logically equivalent.
联结词是否够用
每种联结词对应一种四个T或F的组 合,总共可以有24=16种组合,似乎需 要16种联结词才够用。 事实上,我们定义的这九种就够用 了。
最小联结词组
最小联结词组应为{,}或{,},亦可 以为{}或{}。 证明:1)用这些联结词组可以表示其它的 联结词。 2)用{},{},{}以及{,}不能表示其 它的联结词。 ① {}不能表示 , ,… 因为含有二元联结词的命题公式不能用仅 含一元联结词的命题公式等价代换。
Three tasks
• 1. what is tautology and contradiction ? --classification of wff • 2. what is logical equivalences? --relation between two wff. --change proposition’s form but truth value remain unchanged • 3. How many logical operators in the wff and what is 最小联结词组?
some important equivalences.
Propositional Equivalences
some important equivalences.
Propositional Equivalences
• 证明:(p q) ( p q) ⇔ p
• 证明:p (q r) ⇔ q ( pr ) ⇔ r (q p) 证明:((p q) (p ( q r))) ( p q) ( p r) ⇔ T
Introduction to Logic 25
My name is tautology
p T T F F
p T T F
q T F T F
p q T F T T
p F F T T
p(p q) T T T T
q p q p q q (p q)(qp) p T T F F T T F F F T F T T T T F T T
2015-3-16
What your name?
• A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology . A compound proposition that is always false is called a contradiction. A compound proposition that is neither a tautology nor a contradiction is called a contingency.用一个命题表达出来。
不可兼析取(Exclusive OR)
定义:设P和Q是两个命题公式,复合命题PQ 称作P和Q的不可兼析取。 PQ的真值为T, 当且仅当P与Q的真值不相同时为T,否则, PQ的真值为F。真值表如下:
P
T T F F
Q
T F T F
PQ
F T T F
不可兼析取的性质
设P、Q、R为命题公式,则有 (1)P Q Q P 交换性 (2)(PQ)R P(QR) 结合性 (3)P(QR)(PQ)(PR) 分配性 (4) PQ (PQ )(PQ) (5) PQ (P Q)由定义得到 (6) PP F,FP P,TP P
C
与非
定义:设P和Q是两个命题公式,复合命题P Q
称作P和Q的“与非”。当且仅当P和Q的真 值都为T时, P Q的真值为 F ,否则P Q的 真值都为T 。真值表如下:
P T T F F Q T F T F PQ F T T T
与非的性质
(1)P Q (PQ) (2)P P (P P)P (3)(P Q)(P Q)(P Q) P Q (4)(P P)( Q Q)P Q (PQ)PQ
或非
定义:设P和Q是两个命题公式,复合命题P
Q称作P和Q的“或非”。当且仅当P和 真值都为F 时,PQ的真值为T ,, 否则, PQ的真值都为F。真值表如下:
P T T F Q T F T PQ F F F
F
F
T
或非的性质
(1)P Q (PQ) (2)P P (PP)P (3)(PQ)(PQ)(PQ) PQ (4)(PP)( Q Q)P Q (P Q) P Q
Propositional Equivalences
One way to determine whether two compound propositions are equivalent is to use a truth table.
Propositional Equivalences
Propositional Equivalences
My name is contradiction
p T T F F p T T F F q T F T F q T F T F pq T T T F p q T F F F p F F T T (p q) p F F F F
p(p q) (p(p q)) T F T F T F T F
2015-3-16
• Show that (p ∧ q) → (p ∨ q) and (p →q) ∧ p→ q is a tautology. • Show that ¬ (p → (p ∨ q) )∧r is a contradiction. • Show that ¬(p ∨ (¬p ∧ q)) and (¬p ∧ ¬q ) are logically equivalent by developing a series of logical equivalences
Remark: The symbol is not a logical connective, and p ⇔ q is not a compound proposition but rather is the statement that p q is a tautology. The symbol is sometimes used instead of ≡ to denote logical equivalence.
Which is the minimal number of truthfunctional connectives?
• According to the Statement on normal forms (see slide 7) the following connectives suffice: , , (funkcionally complete system) The following systems of truth-functional connectives are functionally complete: 1. {, , }, 2. {, } or {, }, 3. {, }, 4. {} or {}. Hence in order to express any truth-value function (and thus any PL formula) just one connective suffices! Either Scheffer’s NAND or Pierce’s NOR
条件否定
定义:设P和Q是两个命题公式,复合命题 C PQ称作P和Q的条件否定。 PQ的真值 C Q的真值为F, 为T,当且仅当P的真值为T, C 否则, PQ的真值为 F。真值表如下:
P
T T F F
Q
T F T F
PQ
F T F F
C
条件否定的性质
由定义可知: P Q (P Q)