等腰三角形地性质习题附问题详解

合集下载

等腰三角形的性质和判定的综合题目

等腰三角形的性质和判定的综合题目
-提醒学生关注联系在现实生活中的应用,培养学生的理论联系实际的意识。
-鼓励学生在课后继续思考、探索联系观点的内涵,为下一节课的学习打下基础。
五、作业布置
为了巩固本章节的学习内容,培养学生的理论联系实际能力,特布置以下作业:
1.请同学们结合本节课所学的联系观点,选取一个生活中的实例,分析其中包含的联系特征及其影养学生合作、探究的学习能力,提高学生在案例分析中运用联系观点分析问题的能力。
-引导学生运用比较法、分析法等学习方法,深入挖掘联系现象背后的本质规律。
3.情感态度与价值观方面的重难点:
-培养学生对联系观点的认同,使学生认识到联系是事物发展的内在规律,树立正确的价值观。
-增强学生的社会责任感,培养学生关注社会、关注生活的态度。
3.强化实践环节,引导学生关注现实生活中的联系现象,提高学生理论联系实际的能力。
三、教学重难点和教学设想
(一)教学重难点
1.知识与技能方面的重难点:
-理解联系的普遍性、多样性、条件性等特征,并能运用联系的观点分析实际问题。
-掌握联系的方法论,学会从联系的角度认识问题、分析问题,提高解决问题的能力。
2.过程与方法方面的重难点:
5.观察日记:要求学生观察身边的事物和现象,运用联系观点进行分析,记录在日记中。持续一周,每天至少记录一个实例,并写出自己的思考。
6.课后实践:鼓励学生参加社会实践活动,将所学联系观点运用到实际中,如参与环保活动、社区服务等。要求学生撰写实践报告,不少于1000字,内容需包括实践过程、联系观点的应用及收获。
四、教学内容与过程
(一)导入新课
1.教学内容:以现实生活中的实例导入新课,如“互联网的发展与人们生活的联系”、“环境保护与经济发展的联系”等,引发学生对联系概念的思考。

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)

等腰三角形练习题(含答案)等腰三角形第1课时:等腰三角形的性质1.已知等腰三角形的一个底角为50°,则其顶角为80°。

2.如图,△ABC中,AB=AC,BC=6cm,AD平分∠BAC,则BD=3cm。

3.如图,△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为45°。

4.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为80°。

5.如图,在△ABC中,D是BC边上一点,且AB=AD=DC,∠BAD=40°,求∠C的度数为100°。

6.如图,△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF。

证明:DE=DF。

第2课时:等腰三角形的判定1.在△ABC中,∠A=40°,∠B=70°,则△ABC为钝角三角形。

2.已知△ABC中,∠B=50°,∠A=80°,AB=5cm,则AC=5cm。

3.如图,在△ABC中,AD⊥BC于点D,且BD=DC,则△ABC为等腰三角形。

4.如图,已知△ABC中,∠A=36°,AB=AC,BD为∠ABC的平分线,则图中共有2个等腰三角形。

5.如图,D是△XXX的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E,F,且DE=DF。

证明:AB=AC。

6.如图,AB∥CD,直线l交AB于点E,交CD于点F,FG平分∠EFD交直线AB于点G。

证明:△EFG是等腰三角形。

等边三角形第1课时:等边三角形的性质与判定1.如图,a∥b,等边△ABC的顶点B,C在直线b上,则∠1的度数为60°。

2.在△ABC中,∠A=60°,现有下面三个条件:①AB=AC;②∠B=∠C;③∠A=∠B。

能判定△ABC为等边三角形的有条件①、②、③。

3.如图,在等边△ABC中,BD⊥AC于D,若AB=4,则AD=2.4.如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,求∠BAD的度数为75°。

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)

等腰三角形的性质练习(含答案)等腰三角形的性质1.选择题:1) 等腰三角形的底角与相邻外角的关系是()A。

底角大于相邻外角 B。

底角小于相邻外角C。

底角大于或等于相邻外角 D。

底角小于或等于相邻外角2) 等腰三角形的一个内角等于100°,则另两个内角的度数分别为()A。

40°,40° B。

100°,20°C。

50°,50° D。

40°,40°或100°,20°3) 等腰三角形中的一个外角等于100°,则这个三角形的三个内角分别为()A。

50°,50°,80° B。

80°,80°,20°C。

100°,100°,20° D。

50°,50°,80°或80°,80°,20°4) 如果一个等腰三角形的一个底角比顶角大15°,那么顶角为()A。

45° B。

40° C。

55° D。

50°5) 等腰三角形一腰上的高与底边所成的角等于()A。

顶角 B。

顶角的一半C。

顶角的2倍 D。

底角的一半6) 已知:如图1所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A的度数为()A。

30° B。

45° C。

36° D。

72°2.填空题:1) 如图2所示,在△ABC中,①因为AB=AC,所以∠A=∠C;②因为AB=AC,∠1=∠2,所以BD=BC,BD⊥AC.2) 若等腰三角形的顶角与一个底角之和为110°,则顶角的度数为70°.3) 已知等腰三角形的一个角是80°,则顶角为20°.4) 在等腰三角形ABC中,一腰上的高是1cm,这条高与底边的夹角是45°,则△ABC的面积为1/2 cm².5) 如图3所示,O为△ABC内一点,且OA=OB=OC,∠ABO=20°,∠BCO=30°,则∠CAO=30°.3.等腰三角形两个内角的度数比为4:1,求其各个角的度数.设两个内角的度数为4x和x,则三角形的第三个角的度数为180°-5x.因为三角形内角和为180°,所以4x+4x+180°-5x=180°,解得x=36°,因此两个内角的度数分别为144°和36°,第三个角的度数为100°.4.如图,已知线段a和c,用圆规和直尺作等腰三角形ABC,使等腰三角形△ABC以a和c为两边,这样的三角形能作无数个.5.如图,在△ABC中,D是BC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.连接AD和AC,因为AD=BD,AB=AC,所以△ABD≌△ACD,故∠ABD=∠ACD.又因为AB=CD,所以△ABC为等腰三角形,所以∠BAC=180°-∠ABC=180°-2∠ABD=80°.6.如图所示,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.1) AF与CD不垂直.因为∠ABC=∠AED,所以△ABC≌△AED,故AB=AE,又因为BC=ED,所以AC=AD,所以AF垂直于BC的中点,而CD的中点是F,所以AF与CD不垂直.二、拓展延伸训练右下图是人字型层架的设计图,由AB、AC、BC、AD四根钢条焊接而成,其中A、B、C、D均为焊接点,且AB=AC,D为BC的中点,现在焊接所需的四根钢条已截好,且已标出BC的中点D。

利用等腰三角形性质求解问题

利用等腰三角形性质求解问题

利用等腰三角形性质求解问题等腰三角形是指两边长度相等的三角形。

利用等腰三角形的性质可以简化问题并求解,下面将通过几个实际问题来说明等腰三角形的应用。

问题一:求等腰三角形的面积解析:等腰三角形面积的计算公式为 S = 0.5 * 底边长 * 高。

根据题目条件,已知等腰三角形的两腰边长相等,假设腰边长为 a,底边长为b,高为 h。

利用勾股定理,可以得到h = √(a^2 - (0.5b)^2)。

代入面积计算公式,即可得到等腰三角形的面积。

问题二:求等腰直角三角形的斜边长解析:等腰直角三角形是指两边相等且其中一边为直角边的三角形。

已知等腰直角三角形的直角边长度为a,斜边长度为c,根据勾股定理,可以得到c = √(2a^2)。

利用等腰三角形的性质,可以简化问题并求解等腰直角三角形的斜边长。

问题三:求等腰三角形的顶角解析:已知等腰三角形的两腰边长相等,记为 a,底边长为 b。

等腰三角形的顶角可根据余弦定理求解。

根据余弦定理,可以得到cos(顶角) = (b^2 - 0.5a^2) / (b^2)。

利用反余弦函数,即可求解等腰三角形的顶角。

问题四:求等腰三角形的周长解析:已知等腰三角形的两腰边长相等,记为 a,底边长为 b。

等腰三角形的周长可直接计算得到,周长为 a + a + b = 2a + b。

利用等腰三角形的性质,可以简化问题并求解等腰三角形的周长。

通过以上实际问题的解析,我们可以看到等腰三角形的性质在解决数学问题中起到了重要的作用。

利用等腰三角形的性质可以简化问题并得到准确的解答。

掌握等腰三角形的性质和应用方法,有助于提高数学问题的解决能力。

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

等腰三角形的性质与判定(6类热点题型讲练)(解析版) 八年级数学下册

第01讲等腰三角形的性质与判定(6类热点题型讲练)1.经历“探索一发现一猜想一证明”的过程,逐步掌握综合法证明的方法,发展推理能力.2.进一步了解作为证明基础的几条基本事实的内容,能证明等腰三角形的性质.3.有意识地培养学生对文字语言、符号语言和图形语言的转换能力,关注证明过程及其表达的合理性.知识点01等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一)图形:如下所示;符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则知识点02等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2)等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)题型01根据等腰三角形腰相等求第三边或周长【例题】(2023上·河南商丘·八年级商丘市实验中学校考阶段练习)一个等腰三角形的两条边长分别为8cm 和4cm ,则第三边的长为cm .【答案】8【分析】本题考查等腰三角形的性质及三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,是解题的关键.【详解】解:①若一腰长为8cm ,则底边为4cm ,则第三边的长为8cm ,488+>,故能组成三角形;②若一腰长为4cm ,则底边为8cm ,则第三边的长为4cm ,448+=,故不能组成三角形.故答案为:8.【变式训练】1.(2023上·甘肃陇南·八年级校考阶段练习)一个等腰三角形有两边分别为3cm 和8cm ,则周长是cm .【答案】19【分析】本题考查了等腰三角形的性质和三角形的三边关系.等腰三角形两边的长为3cm 和8cm ,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【详解】解:①当腰是3cm ,底边是8cm 时:338+<,不满足三角形的三边关系,因此舍去.②当底边是3cm ,腰长是8cm 时,388+>,能构成三角形,则其周长()38819cm =++=.故答案为:19.2.(2023上·山东潍坊·八年级校考阶段练习)若()2450a b -+-=,则以a ,b 为边长的等腰三角形的周长为.【答案】13或14【分析】本题考查了等腰三角形的概念,非负数的性质,以及三角形的三边关系,注意利用分类讨论思想解题.根据非负数的和为零,可得每个非负数同时为零,可得a ,b 的值,根据等腰三角形的概念进行分类讨论,可得答案.【详解】解:∵()2450a b -+-=,且()240a -≥,50b -≥,∴40a -=,50b -=,解得:4a =,5b =,当4为等腰三角形的腰长,5为等腰三角形的底边时,则等腰三角形的周长为44513++=,当5为等腰三角形的腰长,4为等腰三角形的底边时,则等腰三角形的周长为55414++=,故答案为:13或14.题型02根据等腰三角形等边对等角求角的度数题型03根据等腰三角形三线合一进行求解【答案】25【详解】解:如图,作BE ∵AB BC =,∴AE CE =,∵AC CD ⊥,90BAD ∠=︒∴EBA BAE BAE ∠+∠=∠+EBA CAD BAE ∠=∠∠=,【答案】10【详解】解:AB 5BD CD ∴==,210BC BD ∴==,故答案为:10.2.两个同样大小的含(1)求AF 的长.(2)求CD 的长.【详解】(1)解:连接AF ,如下图,根据题意,90BAC ∠=︒,AB ∴222(2)BC AB AC =+=∴190452B ACB ∠=∠=⨯︒=︒,∵F 为BC 中点,题型04根据等腰三角形三线合一进行证明(1)若106BAC DAE ∠∠=︒,(2)求证:BD EC =.【详解】(1)解:∵AB AC =(1180ADE AED ∠=∠=︒∵,AB AC AD AE ==,∴,BF CF DF EF ==,∴BD CE =.【变式训练】1.(2023上·山东威海·七年级校联考期中)如图,已知AB AE ABC AED BC ED =∠=∠=,,,点F 是CD 的中点,连接AF ,请判断AF 与CD 的位置关系.【答案】垂直【分析】此题考查全等三角形的判定和性质,等腰三角形三线合一的性质:连接AC AD ,,证明ABC AED ≌△△,得到AC AD =,根据等腰三角形三线合一的性质得到AF CD ⊥,熟练掌握全等三角形的判定定理及等腰三角形的性质是解题的关键.【详解】答:AF CD⊥连接AC AD,∵AB AE ABC AED BC ED=∠=∠=,,∴ABC AED≌△△∴AC AD=又∵点F 是CD 的中点∴AF CD ⊥.2.如图,在ABC 中,AB AC =,40BAC ∠︒=,AD 是BC 边上的高.线段AC 的垂直平分线交AD 于点E ,交AC 于点F ,连接BE .(1)试问:线段AE 与BE 的长相等吗?请说明理由;(2)求EBD ∠的度数.【详解】(1)解:线段AE 与BE 的长相等,理由如下:连接CE ,如图所示:=,AD∵AB AC=,∴BD CD∴AD为BC的垂直平分线,∵点E在AD上,=,∴BE CE又∵线段AC的垂直平分线交题型05根据等角对等边证明等腰三角形∠,【例题】(2023上·广西玉林·八年级统考期中)如图,点E在BA的延长线上,已知AD平分CAE ∥.求证:ABCAD BC是等腰三角形.【答案】证明见解析【分析】本题主要考查了等角对等边,平行线的性质与角平分线的定义,先根据平行线的性质得到EAD B CAD C ∠=∠∠=∠,,再由角平分线的定义和等量代换得到B C ∠=∠,即可证明ABC 是等腰三角形.【详解】证明:∵AD BC ∥,∴EAD B CAD C ∠=∠∠=∠,,∵AD 平分CAE ∠,∴EAD CAD ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形.【变式训练】【答案】ABC 是等腰三角形,理由见解析【分析】本题主要考查了等腰三角形的判定,三角形外角的性质,角平分线的定义,设4ACD x ∠=,3ECD x =∠,由角平分线的定义得到13BEC x ABC =-∠∠,A =∠【答案】证明见解析【分析】本题考查了平行线的性质,等腰三角形的性质和判定,证明根据角平分线的定义可得,以及直线平行的性质证明题型06等腰三角形的性质和判定综合应用【例题】如图,在ABC 中,AB AC =,D 是BC 边的中点,连接AD ,BE 平分ABC ∠交AC 于点E .(1)若40C ∠=︒,求BAD ∠的度数;(2)过点E 作EF BC ∥交AB 于点F ,求证:BEF △是等腰三角形.(3)若BE 平分ABC 的周长,AEF △的周长为15,求ABC 的周长.【详解】(1)解:AB AC = ,C ABC ∴∠=∠,∵40C ∠=︒,∴40ABC ∠=︒,AB AC = ,D 为BC 的中点,AD BC ∴⊥,90BDA ∴∠=︒,∴90904050BAD ABC ︒︒︒︒∠=-∠=-=;(2)证明:BE 平分ABC ∠,ABE EBC ∴∠=∠,又∵EF BC ∥,∴EBC BEF ∠=∠,∴EBF FEB ∠=∠,BF EF ∴=,BEF ∴ 是等腰三角形;(3)解:AEF 的周长为15,15AE AF EF ∴++=,BF EF = ,15AE AF BF ∴++=,即15AE AB +=,BE 平分ABC 的周长,=15AE AB BC CE ∴++=,ABC ∴ 的周长+1515=30AE AB BC CE ++=+.【变式训练】1.如图,在ABC 中,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF △是等腰三角形(2)若6,3,4AD BE EF ===,求线段AB 的长.(1)试判断折叠后重叠部分△的面积.(2)求重叠部分AFC△【详解】(1)解:AFC∵四边形ABCD是长方形,∥,∴AD BC一、单选题1.(2023上·河南许昌·八年级统考期中)等腰三角形的一个底角为80︒,则这个等腰三角形的顶角为().A .20︒B .80︒C .100︒D .20︒或100︒【答案】A【分析】本题主要查了等腰三角形的性质.根据“等腰三角形两底角相等”,即可求解.【详解】解:∵等腰三角形的一个底角为80︒,∴等腰三角形的顶角为180808020︒-︒-︒=︒.故选:A2.(2024下·全国·七年级假期作业)如图,在ABC 中,,AB AC AD =为BC 边上的中线,30B ∠=︒,则CAD ∠的度数为()A .50︒B .60︒C .70︒D .80︒【答案】B【解析】略3.(2023上·广东珠海·八年级校考阶段练习)下列条件中,可以判定ABC 是等腰三角形的是()A .40B ∠=︒,80C ∠=︒B .123A BC ∠∠∠=::::C .2A B C∠=∠+∠D .三个角的度数之比是2:2:1【答案】D 【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=︒,80C ∠=︒,A .16【答案】A 【分析】此题考查的是全等三角形的判定与性质、等腰三角形的性质,解题关键是掌握并会运用全等三角形的判定与性质、等腰三角形性质定理.先得出ABD ACF ∠=∠,进而得到AF 长,求出AB 出即可.【详解】CE BD ⊥ ,90BEF ∴∠=︒,90BAC ∠=︒ ,90CAF ∴∠=︒,90FAC BAD ∴∠=∠=︒ABD ACF ∴∠=∠.在ABD △和ACF △中【答案】10︒,80︒,140︒或20︒【详解】本题考查了等腰三角形的性质,先利用三角形内角和定理可得:AP AB =时;当AP AB =时;当BA BP =解:∵130ABC ∠=︒,30ACB ∠=︒,+∵BAC ∠是ABP 的一个外角,∴20BAC APB ABP ∠=∠+∠=︒,∵AB AP =,∵AB AP=,20BAP∠=︒,∴180802BAPABP APB︒-∠∠=∠==︒;当BA BP=时,如图:∵BA BP=,∴20BAP BPA∠=∠=︒,∴180140ABP BAP BPA∠=︒-∠-∠=︒;当PA PB=时,如图:∵PA PB=,∴20BAP ABP∠=∠=︒;综上所述:当ABP是等腰三角形时,故答案为:10︒,80︒,140︒或20︒.11.(2023上·广东汕尾·八年级校联考阶段练习)用一条长为21cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的3倍,那么各边的长是多少?(2)能围成有一边的长为5cm的等腰三角形吗?如果能,请求出另两边长.【答案】(1)三角形的三边分别为3cm9cm9cm、、(2)能围成一个底边是5cm,腰长是8cm的等腰三角形【分析】本题考查了等腰三角形的性质,三角形的周长,难点在于要分情况讨论并利用三角形的三边关系进行判断.(1)设底边长为x cm,表示出腰长,然后根据周长列出方程求解即可;(1)求BD的长.(2)求BE的长.【答案】(1)4 (2)5,AE CD ⊥Q ,AD AC =,AE ∴平分CAD ∠,CAE DAE ∴∠=∠,在CAE V 和DAE 中,AC AD CAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩,()SAS CAE DAE ∴ ≌,CE DE ∴=,90ADE ACE ∠=∠=︒,设BE x =,则8CE DE x ==-,由勾股定理可得:222DE BD BE +=,()22284x x ∴-+=,解得:5x =,5BE ∴=.14.(2023上·浙江宁波·八年级统考期末)如图,在ABC 中,AB AC =,ED AB ∥,分别交BC 、AC 于点D 、E ,点F 在BC 的延长线上,且CF DE =,(1)求证:CEF △是等腰三角形;(2)连接AD ,当AD BC ⊥,8BC =,CEF △的周长为16时,求DEF 的周长.【答案】(1)证明见解析(2)20【分析】本题考查了等腰三角形的判定与性质,掌握等腰三角形的性质,等腰三角形的三线合一,是解答本题的关键.(1)利用等腰三角形的性质得到B ACB ∠=∠,然后推出EDC ECD ∠=∠,DE EC =,结合已知条件,得到结论.当AD BC ⊥时,AB AC =,∴142BD CD BC ===, DEF 的周长DE DF EF =++,∴DEF 的周长CE EF CD =+++15.(2023上·湖北武汉·八年级校联考阶段练习)的平分线,DF AB 交AE 的延长线于(1)若120BAC ∠=︒,求BAD ∠(2)求证:ADF △是等腰三角形.【答案】(1)60度(2)见解析(1)求证:BD CE =;(2)若BD AD =,B DAE ∠=∠,求【答案】(1)见解析(2)108BAC ∠=︒【答案】(1)等腰;(2)3;(3)12;(4)30;(5)5cm【分析】本题考查平行线的性质,角平分线的定义,对角对等边.(1)平行线的性质结合角平分线平分角,得到B C ∠=∠,即可得出结果;(2)平行线的性质结合角平分线平分角,得到A ABC CB =∠∠,进而得到AB AC =即可;(3)同法(2)可得:BD DE =,利用AB AD BD =+,求解即可;(5)同法(2)得到,PD BD PE CE ==,推出PDE △的周长等于BC 的长即可.掌握平行线加角平分线往往存在等腰三角形,是解题的关键.【详解】解:(1)∵AE BC ∥,∴,DAE B CAE C ∠=∠∠=∠,∵AE 平分DAC ∠,∴DAE CAE ∠=∠,∴B C ∠=∠,∴ABC 是等腰三角形;故答案为:等腰;(2)∵BC 平分ABD ∠,AC BD ∥,∴,ABC DBC ACB DBC ∠=∠∠=∠,∴A ABC CB =∠∠,∴3AB AC ==;故答案为:3;(3)同法(2)可得:7BD DE ==,∴5712AB AD BD =+=+=;故答案为:12;(4)同法(2)可得:,FD BD CE EF ==,∴ADE V 的周长30AD AE DE AD AE DF EF AD AE BD CE AB AC =++=+++=+++=+=;故答案为:30;(5)同法(2)可得:,PD BD PE CE ==,∴PDE △的周长5cm PD PE DE BD CE DE BC =++=++==;故答案为:5cm .18.(2023上·福建龙岩·八年级校考期中)概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(3)当ACD 是等腰三角形,DA DC =时,如图,则50ACD A ∠=∠=︒,50BCD A ∠=∠=︒∴100ACB ACD BCD ∠=∠+=︒∠;当ACD 是等腰三角形,DA AC =时,如图,则65ACD ADC ∠=∠=︒,50BCD A ∠=∠=︒,∴5065115ACB ∠=︒+︒=︒;当ACD 是等腰三角形,CD AC =的情况不存在;当BCD △是等腰三角形,DC BD =时,如图,则1803ACD BCD B ︒-∠=∠=∠=∴2603ACB ACD BCD ∠=+=∠∠当BCD △是等腰三角形,DB =则BDC BCD ∠=∠,设BDC BCD x ∠=∠=,则B ∠=则1802ACD B x ∠=∠=︒-,由题意得,180250x x ︒-+︒=,解得,2303x ︒=,∴8018023ACD x ︒∠=︒-=,∴3103ACB ︒∠=,综上所述:ACB ∠的度数为100。

等腰三角形的性质习题附答案

等腰三角形的性质习题附答案

等腰三角形的性质一.判断题 (本大题共 40 分)1. 等腰三角形内一点到底边两端点距离相等, 则这点和这个等腰三角形的顶点及底边 中点在同一直线上. ( )2. 已知如图AB =AC, OB =OC, 则∠ABO =∠ACO( )3. 如图已知△ABC 中AB =AC, AD 平分△ABC 的外角∠EAC, 则AD ∥BC. ( )4. ( )5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC( )7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ( )9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10cm 、10cm 、1cm( )13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长线交CA 的 延长线于F, 则AD =AF. ( )17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. ( )18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD( )19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ( )24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. ( )25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( ) 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( ) 27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =(∠ABC-∠C)( )28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ( )33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( )34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.( )36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延长线交AD 于F, 则BF ⊥AD( )37. 在△ABC 中, ∠A =2∠B, 则BC <2AC. ( )38. 已知, 如图 AD =DC, DE 平分∠ADB, F 是AC 中点, 则DE ⊥DF. ( )39. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )40. 如图, 已知: △ABC 中, ∠ABC =2∠C, AH ⊥BC, 垂足为H 延长AB 至D, 使 BD =BH,DH 的延长线交AC 于点M, 则MA =MC( )二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形内且∠OBC=∠OCA, 则∠BOC的度数是[ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC内的一点, 且∠PBC=∠PCA,则∠BPC的度数是[ ] A.115° B.110° C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.136.一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20°D.20°或35°7.等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是[ ]A.120°B.30°C.60°D.90°8.有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9.等腰三角形周长12厘米,其中一边长2厘米,其他两边分别长 [ ]A.2厘米,8厘米 B.5厘米,5厘米C.5厘米,5厘米或2厘米,8厘米 D.无法确定10.等腰三角形两边分别为35厘米和22厘米, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm或22cmD.15cm11.已知等腰三角形的两个角之比为1∶2, 则顶角的度数是[ ]A.90°B.36°C.36°或90°D.120°12.等腰三角形两边长是9cm和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm或39cm13.等边三角形ABC中, CD是∠ACB的平分线, 过D作BC的平行线交AC于E, 若△ABC的边长是a, 则△ADE的周长是 [ ]A.2aB. aC. aD. a14.如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ ]A.11B.5C.5或11D.815.已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [ ]A.25°B.40°C.25°或40°D.以上答案都不对16.在等腰△ABC中, AB的长是AC的二倍, 三角形的周长是40, 则AB的长等于. [ ]A.20B.16C.20或16D.1017.等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C. aD.2a18.已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ]A.16B.16或17C.17D.1119.等腰三角形底边长为5厘米,一腰上的中线把三角形分成两部分,其周长之差为3厘米,则它的腰长为[ ]A .8厘米B .5厘米C .2厘米或8厘米D .2厘米20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 B.直角三角形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80°23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52° 25. 一个等腰三角形的角平分线、高线和中线的总数最多有[ ]A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ] A .等腰三角形 B .等边三角形 C .等腰直角三角形D .锐角三角形27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定 28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数是[ ]A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.3 31. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ]A.25cmB.12cmC.25cm 或12cmD.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于[ ]A .B .C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形 B .是钝角三角形 C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 [ ] A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [ ]A.边,边,边B.边,角,边C.角,边,角D.角,角,边40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ] A.小于60° B.等于60° C.等于90° D.大于90° 41. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是[ ]A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20° 44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm,则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分, 其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ] A.6 B.7 C.8 D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是[ ]A.30°B.36°C.35°D.54°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.150°51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[ ]A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52. 若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为 [ ] A .7 B .5 C .8 D .7或553. 等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECB C .△ABE ≌△BCDD . △BOD ≌△COE54. 从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和 55. 等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56. 如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=[ ]A .B .C .D .57. 等腰三角形底边长为5厘米, 一腰上的中线把三角形分成两部分, 其周长之差为3厘米, 则它的腰长为 [ ]A.2厘米B.8厘米C.2厘米或8厘米D.9厘米58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 内的一点, 且∠PBC =∠PCA, 则∠BPC的度数为[ ]A.115°B.100°C.130°D.140°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于__________cm4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为________.6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度. 8. 等腰三角形底边中线与________和________重合.9. 已知: 如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =____度10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11. △ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,AM 上的点到_____ _两点的距离相等。

等腰三角形的性质及判定含答案

等腰三角形的性质及判定一.选择题(共30小题)1.如图,已知AB=AC=BD,那么()A.∠1=∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°2.如图,△ABC中,CA=CB,∠A=20°,则三角形的外角∠BCD的度数是()A.20°B.40°C.50°D.140°3.若C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有()个.A.2个B.3个C.4个D.5个4.如果某等腰三角形的两条边长分别为4和8,那么它的周长为()A.16B.20C.20或16D.不确定5.△ABC中,AB=AC,顶角是120°,则一个底角等于()A.120°B.90°C.60°D.30°6.已知等腰三角形ABC的两边满足+|6﹣BC|=0,则此三角形的周长为()A.12B.15C.12或15D.不能确定7.如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上(不含端点B,C)的动点.若线段AD长为正整数,则点D的个数共有()A.5个B.3个C.2个D.1个8.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或139.若等腰三角形的周长为26cm,底边为11cm,则腰长为()A.11cm B.11cm或7.5cmC.7.5cm D.以上都不对10.若实数m、n满足|m﹣3|+(n﹣6)2=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.12B.15C.12或15D.911.已知△ABC中,∠ACB=90°,AC=8,BC=6.在射线BC上取一点D,使得△ABD 为等腰三角形,这样的等腰三角形有几个?()A.2个B.3个C.4个D.5个12.若等腰三角形的一边长等于6,另一边长等于4,则它的周长等于()A.15或17B.16C.14D.14或1613.若等腰三角形的顶角为70°,则它的一个底角度数为()A.70°或55°B.55°C.70°D.65°14.如图,在3×3的正方形网格中,点A、B在格点上,要找一个格点C,使△ABC是等腰三角形(AB是其中一腰),则图中符合条件的格点有()A.2个B.3个C.4个D.5个15.等腰三角形的一个角是30°,则这个等腰三角形的底角为()A.75°B.30°C.75°或30°D.不能确定16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于E,CD平分∠ACB 交BE于D,图中等腰三角形的个数是()A.3个B.4个C.5个D.6个17.如图,直线l1,l2相交于点A,点B是直线外一点,在直线l1,l2上找一点C,使△ABC 为一个等腰三角形,满足条件的点C有()A.2个B.4个C.6个D.8个18.如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B等于()A.54°B.60°C.72°D.76°19.如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形20.等腰三角形的边长为2和3,那么它的周长为()A.8B.7C.8或7D.以上都不对21.等腰三角形的顶角是40°,则它的底角是()A.55°B.70°C.40°或70°D.55°或70°22.如图所示,在三角形ABC中,AB=AC,∠BAC=108°,在BC上分别取点D,E使∠BAD=∠B,∠CAE=∠C,则图中的等腰三角形有()A.3个B.4个C.5个D.6个23.三角形三个内角的比是∠A:∠B:∠C=1:1:2,则△ABC是()A.等腰三角形B.等腰直角三角形C.等边三角形D.不能确定24.小方画了一个有两边长为3和5的等腰三角形,则这个等腰三角形的周长为()A.11B.13C.8D.11或1325.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5…来加固钢架.若P1A =P1P2,且恰好用了4根钢条,则α的取值范围是()A.15°≤a<18°B.15°<a≤18°C.18°≤a<22.5°D.18°<a≤22.5°26.已知等腰△ABC中,∠A=120°,则底角的大小为()A.60°B.30°或120°C.120°D.30°27.如图,在△ABC中,AB=AC=13,该三角形的面积为65,点D是边BC上任意一点,则点D分别到边AB,AC的距离之和等于()A.5B.6.5C.9D.1028.如图,直线L1∥L2,点A、B在L1上,点C在L2上,若AB=AC、∠ABC=70°,则∠1的大小为()A.20°B.40°C.35°D.70°29.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°30.等腰三角形的周长为18,其中一条边的长为8,则另两条边的长是()A.5、5B.2、8C.5、5或2、8D.以上结果都不对二.填空题(共15小题)31.等腰三角形的一个内角为30°,那么其它两个角的度数为______.32.已知AD是△ABC的高,若AB=AC,BC=4,则CD=______,33.如图,在平面直角坐标系中,点A,B分别在y轴和x轴上,∠ABO=60°,在y轴上找一点P,使△P AB是等腰三角形,则符合条件的P点共有______个.34.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有______.35.若等腰三角形的两边的长分别为3和10,则它的周长为______.36.如果等腰三角形的两边长分别是6、8,那么它的周长是______.37.如图,Rt△ABC中,AC⊥BC,AE=AO,BF=BO,则∠EOF的度数是______.38.等腰△ABC的边长分别为6和8,则△ABC的周长为______.39.已知等腰三角形中顶角的度数是底角的3倍,那么底角的度数是______.40.已知等腰三角形的周长为20,底长为x,则x的取值范围是______.41.用一条长为20cm的细绳围成一个等腰三角形,已知一边长是另一边长的2倍,则腰长为______cm.42.如图,△ABC中,AB=AC,D、E是BC边上两点,AD=AE,BE=6,DE=4,则EC =______.43.如图,△ABC中,AB=AC,∠C═30°,DA⊥BA于点A,BC=16cm,则AD=______.44.如图,AB=AC=CD,∠BAC=56°,则∠B=______,∠D=______.45.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有______个.三.解答题(共5小题)46.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.47.在△ABC中,AD平分∠BAC,E是BC上一点,BE=CD,EF∥AD交AB于F点,交CA的延长线于P,CH∥AB交AD的延长线于点H,①求证:△APF是等腰三角形;②猜想AB与PC的大小有什么关系?证明你的猜想.48.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.49.已知等腰三角形的周长为24cm,其中两边之差为6cm,求这个等腰三角形的腰长.50.如图,在△ABC中,AB=AC,CE平分∠ACB,EC=EA.(1)求∠A的度数;(2)若BD⊥AC,垂足为D,BD交EC于点F,求∠1的度数.等腰三角形的性质及判定参考答案与试题解析一.选择题(共30小题)1.解:∵AB=AC=BD,∴∠B=∠C,∠BAD=∠1,∵∠1=∠C+∠2,∴∠BAD=∠1=∠C+∠2,∵∠B+∠1+∠BAD=180°,∴∠C+2∠1=180°,∵∠C=∠1﹣∠2,∴∠1﹣∠2+2∠1=180°,即3∠1﹣∠2=180°.故选:D.2.解:∵CA=CB,∠A=20°,∴∠B=∠A=20°,∴∠BCD=∠A+∠B=40°,故选:B.3.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有2个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有2个.故选:C.4.解:若4为腰,8为底边,此时4+4=8,不能构成三角形,故4不能为腰;若4为底边,8为腰,此时三角形的三边分别为4,8,8,周长为4+8+8=20,综上三角形的周长为20.故选:B.5.解:∵△ABC中,AB=AC,顶角是120°,∴∠B=∠C,∠A=120°∵∠A+∠B+∠C=180°,∴∠B=∠C==30°,故选:D.6.解:∵+|6﹣BC|=0,∴AB﹣3=0,6﹣BC=0,解得AB=3,BC=6,(1)若AB是腰长,BC为底,则三角形的三边长为:3、3、6,不能能组成三角形,(2)若AB是底边长,BC为腰,则三角形的三边长为:3、6、6,能组成角形,周长为3+6+6=15.故此三角形的周长为15.故选:B.7.解:过A作AE⊥BC,∵AB=AC,∴EC=BE=BC=4,∴AE==3,∵D是线段BC上的动点(不含端点B、C).∴3≤AD<5,∴AD=3或4,∵线段AD长为正整数,∴AD的可以有三条,长为4,3,4,∴点D的个数共有3个,故选:B.8.解:当等腰三角形的腰为1时,三边为1,1,6,1+1=2<6,三边关系不成立,当等腰三角形的腰为6时,三边为1,6,6,三边关系成立,周长为1+6+6=13.故选:A.9.解:∵11cm是底边,∴腰长=(26﹣11)=7.5cm,故选:C.10.解:|m﹣3|+(n﹣6)2=0,∴m﹣3=0,n﹣6=0,解得m=3,n=6,当m=3作腰时,三边为3,3,6,不符合三边关系定理;当n=6作腰时,三边为3,6,6,符合三边关系定理,周长为:3+6+6=15.故选:B.11.解:在Rt△ABC中,AB==10,①如图1,当AB=AD=10时,CD=CB=6时,CD=CB=6,得△ABD的等腰三角形.②如图2,当AB=BD=10时,△ABD是等腰三角形;③如图3,当AB为底时,AD=BD时,△ABD是等腰三角形.故选:B.12.解:当4为底边时,腰长为6,则这个等腰三角形的周长=4+6+6=16;当6为底边时,腰长为4,则这个等腰三角形的周长=4+4+6=14;故选:D.13.解:∵等腰三角形的顶角为70°,∴它的一个底角度数为(180°﹣70°)=55°,故选:B.14.解:如图所示:由勾股定理得:AB==,①若AB=BC,则符合要求的有:C1,C2,C3共4个点;②若AB=AC,则符合要求的有:C4,C5共2个点;若AC=BC,则不存在这样格点.∴这样的C点有5个.故选:D.15.解:①当这个角为顶角时,底角=(180°﹣30°)÷2=75°;②当这个角是底角时,底角=30°;故选:C.16.解:∵AB=AC,∠A=36°,∴△ABC是等腰三角形.∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于E,∴∠ABE=∠EBC=36°,∵∠A=∠ABE=36°,∴△ABE是等腰三角形.∵∠BEC=∠A+∠ABE=72°=∠C,∴△BEC是等腰三角形.∵∠DBC=∠DCB=36°,∴△BCD是等腰三角形,∵∠EDC=∠DBC+∠DCB=72°=∠DEC,∴△CDE是等腰三角形,∴共有5个等腰三角形.故选:C.17.解:以A为圆心,AB长为半径画弧,交l1、l2于4个点;以B为圆心,AB长为半径画弧交l1、l2于2个点,再作AB的垂直平分线交l1、l2于2个点,共有8个点,故选:D.18.解:∵OA=OC,∴∠ACO=∠A=36°,∵BC∥AO,∴∠BCA=∠A=36°,∴∠BCO=72°,∵OB=OC,∴∠B=72°.故选:C.19.解:∵∠B=∠C,∴AB=AC,∴选项A不符合题意;∵∠B=∠C,∴AB=AC,BD=CD,∴AD⊥BC,∠BAD=∠CAD,∴选项B、选项C不符合题意;当△ABC中有一个角为60°时,△ABC是等边三角形,∴选项D符合题意;故选:D.20.解:分两种情况讨论:当这个三角形的底边是2时,三角形的三边分别是2、3、3,能够组成三角形,则三角形的周长是8;当这个三角形的底边是3时,三角形的三边分别是2、2、3,能够组成三角形,则三角形的周长是7.故等腰三角形的周长为8或7.故选:C.21.解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:B.22.解:∵AB=AC,∠BAC=108°,∴∠B=∠C=36°,△ABC是等腰三角形,∵∠BAD=∠B=36°,∴△ABD是等腰三角形,∵∠CAE=∠C=36°,∴△AEC是等腰三角形,∴∠ADC=∠DAC=72°,∴△ADC是等腰三角形,同理,△ABE是等腰三角形,∴∠ADE=∠AED=72°,∴△ADE是等腰三角形,故选:D.23.解:∵∠A+∠B+∠C=180°,∠A:∠B:∠C=1:1:2,∴∠A=∠B=45°,∠C=90°.则该三角形的等腰直角三角形.故选:B.24.解:由题意知,应分两种情况:(1)当腰长为3时,能构成三角形,周长=2×3+5=11;(2)当腰长为5时,能构成三角形,周长=2×5+3=13.故选:D.25.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A=4α°,∵要使得这样的钢条只能焊上4根,∴∠P5P4B=5α°,由题意,∴18°≤α<22.5°.故选:C.26.解:∵在等腰△ABC中,∵∠A=120°,∴∠A为等腰三角形的顶角,∴∠B=∠C,∵∠A=120°,∴∠B=∠C=30°;故选:D.27.解:连接AD,∵在△ABC中,AB=AC=13,该三角形的面积为65,∴三角形ABC的面积=△ABD的面积+△ACD的面积=AB•DN+AC•DM=AB•(DN+DM)=×13×(DN+DM)=65,解得:DN+DM=10.故选:D.28.解:∵AB=AC,∴∠ACB=∠ABC=70°,∵直线l1∥l2,∴∠1+∠ACB+∠ABC=180°,∴∠1=180°﹣∠ABC﹣∠ACB=180°﹣70°﹣70°=40°.故选:B.29.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.30.解:当腰长为8时,底长为:18﹣8×2=2;2+8>8,能构成三角形;当底长为8时,腰长为:(18﹣8)÷2=5;5+5>8,能构成三角形.故另两条边的长是5、5或2、8.故选:C.二.填空题(共15小题)31.解:①30°是顶角,则底角=(180°﹣30°)=75°;②30°是底角,则顶角=180°﹣30°×2=120°.∴另两个角的度数分别是75°、75°或30°、120°.故答案为75°、75°或30°、120°.32.解:∵AD是△ABC的高,AB=AC,∴CD=BD=BC=4=2,故答案为:2.33.解:①当AB=AP时,在y轴上有2点满足条件的点P.②当AB=BP时,在y轴上有1点满足条件的点P.③当AP=BP时,在y轴上有一点满足条件的点P.综上所述:符合条件的点P共有4个.故答案为:434.解:要使△OAB为等腰三角形分三种情况讨论:①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,1+1+2=4,故答案为:435.解:(1)若3为腰长,10为底边长,由于3+3<10,则三角形不存在;(2)若10为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为10+10+3=23.故答案为:23.36.解:当6是腰长时,周长=6+6+8=20;当8是腰长时,周长=6+8+8=22.故周长是20或22.故答案为:20或22.37.解:∵Rt△ABC中,AC⊥BC,∴∠A+∠B=90°,∵AE=AO,BF=BO,∴∠AOE=∠AEO=,∠BOF=∠BFO=,∴∠EOF=180°﹣∠AOE﹣∠BOF=180°﹣(+)=(∠A+∠B)=45°,故答案为45°.38.解:当6为底时,三角形的三边为6,8、8可以构成三角形,周长为6+8+8=22;当8为底时,三角形的三边为8,6、6可以构成三角形,周长为8+6+6=20.则△ABC的周长为22或20.故答案为:22或20.39.解:设底角为x°,则顶角为3x°,根据题意得:x+x+3x=180解得:x=36;故答案为:36°.40.解:根据三角形的三边关系,x<(20﹣x),解得x<10,∴x的取值范围是0<x<10.故答案为:0<x<10.41.解:设较短的边长为xcm,则较长的边长为2xcm,①若较短的边为底边,较长的边为腰,则x+2x+2x=20,解得x=4,此时三角形三边长分别为4cm,8cm,8cm,能组成三角形;②若较短的边为腰,较长的边为底边,则x+x+2x=20,解得x=5,此时三角形三边长分别为5cm,5cm,10cm,∵5+5=10,∴不满足三角形任意两边之和大于第三边,故不能围成三角形;综上所述,等腰三角形的腰长8cm,故答案为8.42.证明:∵BE=6,DE=4,∴BD=BE﹣DE=2,过A作AP⊥BC于P,∵AB=AC,AP⊥BC,∴BP=CP,同理有DP=EP,∴CE=BD=2,故答案为:2.43.解:∵AB=AC,∴∠B=∠C=30°,∴∠BAC=180°﹣2×30°=120°,∵DA⊥BA,∴∠BAD=90°,∴∠CAD=120°﹣90°=30°,∴∠CAD=∠C,∴AD=CD,在Rt△ABD中,∵∠B=30°,∠BAD=90°,∴BD=2AD,∴BC=BD+CD=2AD+AD=3AD,∵BC=16cm,∴AD=cm,故答案为:cm.44.解:∵AB=AC,∠BAC=56°∴∠B=∠ACB==62°,∵AC=CD,∴∠CAD=∠D,∵∠ACB=∠CAD+∠D,∴∠D=∠ACB=31°,故答案为:62°,31°.45.解:当AB为底时,作AB的垂直平分线,可找出格点C的个数有5个,当AB为腰时,分别以A、B点为顶点,以AB为半径作弧,可找出格点C的个数有3个;∴这样的顶点C有8个.故答案为:8.三.解答题(共5小题)46.解:∵∠C=∠ABC=2∠A,∴∠C+∠ABC+∠A=5∠A=180°,∴∠A=36°.则∠C=∠ABC=2∠A=72°.又BD是AC边上的高,则∠DBC=90°﹣∠C=18°.47.①证明:∵EF∥AD,∴∠1=∠4,∠2=∠P,∵AD平分∠BAC,∴∠1=∠2,∴∠4=∠P,∴AF=AP,即△APF是等腰三角形;②AB=PC.理由如下:证明:∵CH∥AB,∴∠5=∠B,∠H=∠1,∵EF∥AD,∴∠1=∠3,∴∠H=∠3,在△BEF和△CDH中,∵,∴△BEF≌△CDH(AAS),∴BF=CH,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠H,∴AC=CH,∴AC=BF,∵AB=AF+BF,PC=AP+AC,∴AB=PC.48.解:(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵BD=BA,∴∠BAD=∠BDA=(180°﹣∠B)=67.5°,∵CE=CA∴∠CAE=∠E=∠ACB=22.5°,∴∠BAE=180°﹣∠B﹣∠E=112.5°,∴∠DAE=∠BAE﹣∠BAD=45°,(2)如图2,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=30°,∵BA=BD,∴∠BAD=∠BDA=75°,∴∠DAC=45°,∵CA=CE,∴∠E=∠CAE=15°,∴∠DAE=∠DAC+∠CAE=60°;(3)∠DAE=∠BAC,理由:设∠CAE=x,∠BAD=y,则∠B=180°﹣2y,∠E=∠CAE=x,∴∠BAE=180°﹣∠B﹣∠E=2y﹣x,∴∠DAE=∠BAE﹣∠BAD=2y﹣x﹣y=y﹣x,∠BAC=∠BAE﹣∠CAE=2y﹣x﹣x=2y﹣2x ∴∠DAE=∠BAC.49.解:设三角形的腰为x,底为y,根据题意得或,解得或,又知6+6<12,不能构成三角形,即等腰三角形的腰长为:10cm.50.解:(1)∵EA=EC,∴设∠A=∠2=x,∵EC平分∠ACB,∴∠ACB=2x,∵AB=AC,∴∠ABC=∠ACB=2x,在△ABC中,∴x+2x+2x=180°,∴x=36°,∴∠A=36°;(2)∵∠A=∠2,∴∠2=36°,∵BD⊥AC,∴∠DFC=90°﹣36°=54°,∴∠1=∠DFC=54°.第1页(共1页)。

初二数学-等腰三角形10道典型题剖析


思路分析:由BD平分∠ABC,
A
易知∠1=∠2, 则设∠1=∠2
=x,由AB=AC可得
1
∠C=∠1+∠2=2x,在△DBC中
2
由三角形内角和定理可列出x B
D C
的方程,求出x.
解:设1 x,
BD平分ABC,
A
1 2 x, AB AC,
1 2
B
D C
C ABC 1 2 2x.
在DBC中,
提示: 本题为文字命题,解题时应分为以下 三个步骤: (1)根据题意作图; (2)写出已知, (3)进行求证.
已知:在ABC中,AB AC, D为底边BC
的中点,DE AB于点E, DF AC于点F.
求证:DE DF.
A
思路分析:由等腰三角形的性质易得
E
F
B C,又BD DC,DE AB, DF AC,
∴∠FBC+∠C+∠FBC=3∠C,
∴∠FBC=∠C, ∴BF=FC, ∴AC-AB=2BE.
例8.如图,△ABD、 △AEC都是等边三角 形,求证: △AFG是等边三角形.
思路分析:利用等边三角 形的性质可推出,边、角 的等量关系,从而易证三 角形全等,进而说明
△AFG是等边三角形.
证明:∵△ABD 和△AED是正三角形, ∴AB=AD,AC=AE,∠BAD=∠CAE=60°, ∴ ∠CAD=∠BAD+∠CAB=60°+∠CAB, ∠BAE=∠CAE+∠CAB=60°+∠CAB, ∴ ∠CAD=∠BAE, △ADC≌△BAE, ∴ ∠ADF=∠GBA.
70°、40°或55°、55°
引申: 已知等腰三角形的一个角是110°, 求其余两角.

等腰三角形知识点+经典例题

等腰三角形知识点+经典例题等腰三角形知识点+经典例题等腰三角形是一种特殊的三角形,它具有两条边相等的性质。

在几何学中,等腰三角形有着独特的特点和应用。

本文将介绍等腰三角形的基本性质和解题技巧,并通过经典例题加深对该知识点的理解。

一、等腰三角形基本性质1. 两边相等:等腰三角形的两条边长相等,通常表示为AB = AC。

2. 两底角相等:等腰三角形的两个底角(即底边两侧的角)相等,通常表示为∠B = ∠C。

3. 对顶角平分底边:等腰三角形的对顶角(即顶点处的角)平分底边,即顶角的平分线与底边相等和垂直。

4. 底角是钝角:当等腰三角形的顶角大于90度时,底角为钝角。

二、等腰三角形的特殊性质1. 高线重合:等腰三角形的高线与底边重合,且高线上的高度等于底边的中线和中线的一半。

2. 内切圆:等腰三角形的内切圆与底边相切,且圆心在高线上。

3. 外接圆:等腰三角形的外接圆的圆心位于底边的中点,且外接圆的半径等于底边长度的一半。

三、等腰三角形的解题技巧1. 利用等腰三角形的两边相等性质,可在题目中找到相等的边长,进而推导其他角度和边长的关系。

2. 利用等腰三角形的两底角相等性质,可在题目中找到已知角度与未知角度的关系,从而推导解题过程。

3. 利用等腰三角形的对顶角平分底边性质,和底角是钝角的特点,可应用角平分线定理解题。

四、经典例题例题1:在等腰三角形ABC中,AB = AC = 6cm,∠B = 60°,求角A的度数和三角形的面积。

解析:由于AB = AC,可知三角形ABC是等腰三角形。

又∠B =∠C = 60°,由等腰三角形的两底角相等性质可得∠A = 180° - 2∠B = 60°。

三角形ABC的三个角度均为60°,是等边三角形。

根据等边三角形的性质,三角形ABC的面积为√3/4 * AB^2 = √3/4 * 6^2 = 9√3 cm^2。

例题2:在等腰三角形ABC中,AB = AC = 8cm,∠A = 100°,求顶角B的度数和三角形的周长。

等腰三角形的性质习题附答案

等腰三角形的性质5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC()7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ()9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10c13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为 a. ( ) 15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长于F, 则AD =AF.17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. (18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD()19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2.( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( ) 23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ()24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. (25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( )27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =()28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( )30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( )32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ()33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( ) 34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延BF ⊥AD37. 在△ABC 中, ∠A =2∠B, 则BC <2AC.38.已知, 如图AD=DC, DE平分∠ADB, F是AC中点, 则DE⊥DF. () 39.已知如图: △ABC和△ADE都是等腰三角形且顶角∠BAC=∠DAE, 则BD=CE ()40.如图, 已知: △ABC中, ∠ABC=2∠C, AH⊥BC, 垂足为H延长AB至D, 使BD=BH,DH的延长线交AC于点M, 则MA=MC()二.单选题 (本大题共 60 分)1.在△ABC中, AB=AC, ∠A=40°, 点O在三角形内且∠OBC=∠OCA, 则∠BOC的度数是[ ]A.110°B.35°C.140°D.55°2.如图在△ABC中, AB=AC, ∠A=40°, P为△ABC内的一点, 且∠PBC=∠PCA, 则∠BPC的度数是A.115°B.110°C.120°D.130°3.等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm或13cmD.以上都不对4.等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80°5.已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为[ ]A.17B.17或22C.22D.13 6. 一个等腰三角形的一个内角为70°, 则它一腰上的高与底边所夹的角的度数为[ ] A.55° B.55°或70° C.20° D.20°或35°7. 等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是 [ ]A.120°B.30°C.60°D.90° 8. 有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9. 等腰三角形周长12厘M ,其中一边长2厘M ,其他两边分别长 [ ] A .2厘M ,8厘M B .5厘M ,5厘M C .5厘M ,5厘M 或2厘M ,8厘M D .无法确定10. 等腰三角形两边分别为35厘M 和22厘M, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm 或22cmD.15cm 11. 已知等腰三角形的两个角之比为1∶2, 则顶角的度数是 [ ]A.90°B.36°C.36°或90°D.120° 12. 等腰三角形两边长是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm13. 等边三角形ABC 中, CD 是∠ACB 的平分线, 过D 作BC 的平行线交AC 于E, 若△ABC 的边长 是a, 则△ADE 的周长是 [ ]A.2aB. aC. aD. a14. 如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ A.11 B.5 C.5或11 D.815. 已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [A.25°B.40°C.25°或40°D.以上答案都不对16. 在等腰△ABC 中, AB 的长是AC 的二倍, 三角形的周长是40, 则AB 的长等于. [A.20B.16C.20或16D.1017. 等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C. aD.2a 18. 已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ] A.16 B.16或17 C.17 D.1119. 等腰三角形底边长为5厘M ,一腰上的中线把三角形分成两部分,其周长之差为3厘它的腰长为 A .8厘M B .5厘MC .2厘M 或8厘MD .2厘M20. 等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 形 C.钝角三角形 D.不唯一确定21. 如图△ABC 中, AB =AC, 且EB =BD =DC =CF, ∠A =40°, 则∠EDF 的度数为[ ]A.70°B.110°C.55°D.60°22. 已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ]A.20°,140°B.80°,80°C.20°,140°或80°,80°D.20°,80° 23. 如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个内角等于[ ]A.45°B.60°C.90°D.120°24. 如图, 在Rt △ABC 中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52°25. 一个等腰三角形的角平分线、高线和中线的总数最多有A .3条B .5条C .7条D .9条26. 至少有两边相等的三角形是 [ ]A .等腰三角形B .等边三角形C .等腰直角三角形D .锐角三角形 27. 已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无28. 如图, AB =AC, FD ⊥BC 于D, DE ⊥AB 于E, 若∠AFD =155°, 那么∠EDF 的度数A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.331. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B .C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ] A.25cm B.12cm C.25cm 或12cm D.37cm 33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于 [ ] A . B . C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形B .是钝角三角形C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ] A.24cm B.33cm C.39cm D.33cm 或39cm 37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [A.20B.16C.20或16D.无法确定 39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [A.边,边,边B.边,角,边C.角,边,角D.角,角,边 40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [A.小于60°B.等于60°C.等于90°D.大于941. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20°44. 等腰三角形一腰上的高与底所夹的角等于 [ ] A.顶角 B.顶角的 C.顶角的2倍 D.底角的45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或1546. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm, 则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分,其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm 或10cmD.以上都不对48. 一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ]A.6B.7C.8D.949. 已知:如图在△ABC 中, AB=AC, CD 为∠ACB 平分线,DE ∥BC,∠A=40°, 则∠EDC 的度数是A.30°B.36°C.35°50. 等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.51. 如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52.若等腰三角形的两边a 、b 满足,则此等腰三角形的周长为[ ]A .7B .5C .8D .7或553.等腰△ABC 中,两腰上的中线BE 、CD 交于O ,则下列判断中错误的是[ ]A .△ADC ≌△AEB B .△DBC ≌△ECBC .△ABE ≌△BCDD . △BOD ≌△COE54.从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A .周长B .周长一半C .一腰长D .两腰长的和55.等腰三角形一腰上的高与底边所成的角等于 [ ]A .顶角B .顶角的一半C .顶角的2倍D .底角的一半56.如下图,△ABC 中,AB=AC ,点D 、E 、F 分别在BC 、AB 、AC 上,且DE=BE ,DF=DC ,若∠A=,则∠EDF=A .B .C .D .57. 等腰三角形底边长为5厘M, 一腰上的中线把三角形分成两部分, 其周长之差为3厘它的腰长为 [ ]A.2厘MB.8厘MC.2厘M 或8厘MD.9厘M58. 如图△ABC 中, AB =AC, ∠A =50°, P 是△ABC 内的一点, 且∠PBC =∠PCA, 则的度数为A.115°B.100°C.130°59. 如图, △ABC 中, AB =AC, CD ⊥AB, 则关于∠A 正确的等式是[ ]A.∠A =∠BB.∠A =∠ACBC.∠A =2∠ACBD.∠A =2∠DCB60. 如图在△ABC 中, AB =AC, BC =BD, AD =DE =EB, 则∠A 的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于_______4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为___6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度8. 等腰三角形底边中线与________和________重合.9. 已知:如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________.11.△ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,A _两点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形的性质一.判断题 (本大题共 40 分)1. 等腰三角形一点到底边两端点距离相等, 则这点和这个等腰三角形的顶点及底边 中点在同一直线上. ( )2. 已知如图AB =AC, OB =OC, 则∠ABO =∠ACO( )3. 如图已知△ABC 中AB =AC, AD 平分△ABC 的外角∠EAC, 则AD ∥BC. ( )4.( )5. 等腰三角形的底角一定是锐角.( )6. 已知如图, △ABC 是等边三角形, D 是BC 中点 DE ⊥AC 于E, 则 EC =AC( )7. 等腰三角形的底角不一定是锐角. ( )8. 如图△ABC 中AB =AC, D 、E 分别为AC 、BC 上的点, 则DB >DE ( )9. 等腰三角形底边上的高上任意一点到两腰的距离相等 ( ) 10. 等腰三角形两腰上中线的交点到底边的两端点距离相等.( ) 11. 如图, D 是等腰三角形底边BC 上一点. 则 ∠ADC >∠C. ( )12. 等腰三角形一腰上中线把它周长分为15cm 和6cm 两部分,则这个三角形三边长为10cm 、10cm 、1cm( ) 13. 等腰三角形中, 两个角的比为1:4, 则顶角的度数为20°. ( )14. 等边三角形的边长为a, 则高为a. ( )15. 等腰三角形的顶角可以是直角、锐角或钝角. ( )16. 如图, 已知: △ABC 的AB =AC, D 是AB 上一点, DE ⊥BC, E 是垂足, ED 的延长线交CA 的 延长线于F, 则AD =AF.( )17. 如图B 、D 、E 、C 在同一直线上, 若AB =AC, ∠1=∠2, 则 ∠3=∠4. ( )18. 等边三角形ABC 中, D 是AC 中点, E 为BC 延长线上一点, 且 DB =DE. 则 CE =CD( )19. 已知, △ABC 中, AB =AC, ∠B =75°, CD ⊥AB 于D, 则CD =AB( )20. 等腰三角形底边上的中点到两腰的距离相等.( )21. 如图, B 、D 、E 、C 在同一直线上, 若AB =AC, ∠3=∠4, 则∠1=∠2. ( )22. 因为等腰三角形的底角一定是锐角, 所以等腰三角形是锐角三角形. ( )23. 如图, △ABC 和△CDE 都是等边三角形, 则 AD =BE. ( )24. 如图, 已知: 四边形ABCD 中, ∠ABC =∠ADC, AB =AD, 则 CB =CD. ( )25. 如果三角形一边上的中线等于这边的一半, 这个三角形不一定是直角三角形. ( ) 26. 等腰三角形角平分线、高线、中线在同一条直线上 ( )27. 已知如图, △ABC 中, ∠B >∠C, 点D 是AC 上的一点, 且AD =AB, 则∠DBC =(∠ABC-∠C)( )28. 如果等腰三角形的顶角为50°, 那么一腰上的高与底边的夹角是40°.( )29. 已知△ABC 中, AB =AC, D 在AB 上且∠DCB =∠A, 则 CD ⊥AB ( ) 30. 等腰三角形两腰上的中线相等. ( )31. 已知△ABC 中, AB =AC, CD ⊥AB 于D, 则 ∠DCB =∠A( ) 32. 如图, AB =AE, ∠B =∠E, CB =ED. F 是CD 的中点, 则AF ⊥CD. ( )33. 等腰三角形顶角的顶点到两腰中线的距离相等. ( )34. 已知: 如图在△ABC 中, AB =AC, D 是BC 延长线上一点, E 是AB 上一点, DE 交AC 于点F , 则 AE <AF ( )35. 在△ABC 中, AB ≤AC, 延长CB 到D, 使BD =BA, 连结AD, 则 AD <AC.( )36. 已知: 如图, D 为等腰直角△ABC 的直角边BC 延长线上一点, 且CD =CE, BE 延长线交AD 于F, 则BF ⊥AD( )37. 在△ABC 中, ∠A =2∠B, 则BC <2AC.( )38. 已知, 如图 AD =DC, DE 平分∠ADB, F 是AC 中点, 则DE ⊥DF. ( )39. 已知如图: △ABC 和△ADE 都是等腰三角形且顶角∠BAC =∠DAE, 则BD =CE ( )40. 如图, 已知: △ABC 中, ∠ABC =2∠C, AH ⊥BC, 垂足为H 延长AB 至D, 使 BD =BH,DH 的延长线交AC 于点M, 则MA =MC( )二.单选题 (本大题共 60 分)1. 在△ABC 中, AB=AC, ∠A=40°, 点O 在三角形且∠OBC=∠OCA, 则 ∠BOC 的度数是 [ ]A.110°B.35°C.140°D.55°2. 如图在△ABC 中, AB =AC, ∠A =40°, P 为△ABC 的一点, 且∠PBC =∠PCA, 则∠BPC 的度数是[ ]A.115°B.110°C.120°D.130°3. 等腰三角形一边长5cm, 另一边长是3cm, 它的周长是 [ ]A.11cmB.13cmC.11cm 或13cmD.以上都不对 4. 等腰三角形的一个角等于20°, 则它的另外两个角等于 [ ]A.20°、140°B.20°、140°或80°、80°C.80°、80°D.20°、80° 5. 已知等腰三角形的一边长为4, 另一边长为9, 则它的周长为 [ ]A.17B.17或22C.22D.136. 一个等腰三角形的一个角为70°, 则它一腰上的高与底边所夹的角的度数为[ ]A.55°B.55°或70°C.20°D.20°或35°7. 等腰三角形顶角的度数是底角度数的4倍, 那么,它的底角的度数是 [ ]A.120°B.30°C.60°D.90°8. 有一个角是50°的等腰三角形其顶角的度数为 [ ] A.80° B.50° C.80°或50° D.65.5°9.等腰三角形周长12厘米,其中一边长2厘米,其他两边分别长 [ ]A.2厘米,8厘米 B.5厘米,5厘米C.5厘米,5厘米或2厘米,8厘米 D.无法确定10.等腰三角形两边分别为35厘米和22厘米, 则它的第三边长为 [ ]A.35cmB.22cmC.35cm或22cmD.15cm11.已知等腰三角形的两个角之比为1∶2, 则顶角的度数是[ ]A.90°B.36°C.36°或90°D.120°12.等腰三角形两边长是9cm和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm或39cm13.等边三角形ABC中, CD是∠ACB的平分线, 过D作BC的平行线交AC于E, 若△ABC的边长是a, 则△ADE的周长是 [ ]A.2aB.aC.aD.a14.如果等腰三角形的周长为21, 其中一边长为5, 那么此等腰三角形底边长是 [ ]A.11B.5C.5或11D.815.已知等腰三角形中一个角为50°, 则这个三角形腰上的高和底边夹角的度数为 [ ]A.25°B.40°C.25°或40°D.以上答案都不对16.在等腰△ABC中, AB的长是AC的二倍, 三角形的周长是40, 则AB的长等于. [ ]A.20B.16C.20或16D.1017.等腰三角形的底边为a, 顶角是底角的4倍. 则腰上的高为 [ ]A.aB.C.aD.2a18.已知等腰三角形的一边长为5, 另一边长为6, 则它的周长为 [ ]A.16B.16或17C.17D.1119.等腰三角形底边长为5厘米,一腰上的中线把三角形分成两部分,其周长之差为3厘米,则它的腰长为[ ] A.8厘米 B.5厘米C.2厘米或8厘米 D.2厘米20.等腰三角形有一个角是45°, 那么这个三角形是 [ ] A.锐角三角形 B.直角三角形 C.钝角三角形 D.不唯一确定21.如图△ABC中, AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF的度数为[ ]A.70°B.110°C.55°D.60°22.已知等腰三角形的一个角为20°, 则它的另外两个角分别为[ ] A.20°,140° B.80°,80°C.20°,140°或80°,80°D.20°,80°23.如果一个等腰三角形的一腰是顶角平分线的2倍, 那么这个三角形必有一个角等于[ ]A.45°B.60°C.90°D.120°24.如图, 在Rt△ABC中, ∠C=90°, ∠DBC=26°,且AD=DB,则∠A=[ ]A.26°B.32 °C.64°D.52°25.一个等腰三角形的角平分线、高线和中线的总数最多有[ ]A.3条B.5条C.7条D.9条26.至少有两边相等的三角形是 [ ]A.等腰三角形B.等边三角形C.等腰直角三角形D.锐角三角形27.已知:等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ]A.20B.16C.20或16D.无法确定28.如图, AB=AC, FD⊥BC于D, DE⊥AB于E, 若∠AFD=155°, 那么∠EDF的度数是[ ]A.45°B.55°C.65°D.75°29. 一条等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ]A.小于60°B.等于60°C.等于90°D.大于90°30. 等边三角形的高、中线、角平分线共有________条.[ ]A.9B.7C.6D.3 31. 等腰三角形有一个角是,则它顶角的大小为 [ ] A . B . C .D .32. 等腰三角形的两边长为25cm 和12cm, 那么它的第三条边长为[ ]A.25cmB.12cmC.25cm 或12cmD.37cm33. 在等腰△ABC 中,AB =AC ,BD 平分∠ABC ,并交AC 于D .如果∠CDB =,那么∠A 等于[ ]A .B .C .D .34. 若一个等腰三角形的两边分别是3cm 和6cm, 则它的周长为 [ ]A.15cmB.12cmC.12cm 或15cmD.18cm35. 如果一个三角形的三条高线的交点恰是这个三角形的一个顶点,那么此三角形 [ ] A .是锐角三角形 B .是钝角三角形 C .是直角三角形D .形状不确定36. 等腰三角形两边是9cm 和15cm, 则它的周长是 [ ]A.24cmB.33cmC.39cmD.33cm 或39cm37. 等腰Rt △ABC 中, ∠C =90° D 是BC 上一点, 且AD =2CD 则 ∠ADB 的度数为 [ ] A.30° B.60° C.120° D.150°38. 已知等腰三角形的一边等于4, 一边等于8, 则这个等腰三角形的周长是 [ ] A.20 B.16 C.20或16 D.无法确定 39. 已知:如图, △ABD 和△ACE 均为等边三角形, 那么△ADC ≌△AEB 的根据是 [ ]A.边,边,边B.边,角,边C.角,边,角D.角,角,边40. 一个等腰三角形底边上的高等于底边的一半, 那么这个等腰三角形的顶角 [ ] A.小于60° B.等于60° C.等于90° D.大于90° 41. 在△ABC 中, AB =AC, ∠A+ ∠B =130°, 则∠A 、∠B 、∠C 的度数是[ ]A.∠A =50°、∠B =80°、∠C =80°B.∠A =50°、∠B =80°、∠C =50°C.∠A =50°、∠B =50°、∠C =80°D.∠A =80°、∠B =50°、∠C =50°42. 等腰三角形顶角是84°,则一腰上的高与底边所成角的度数是 [ ] A.42° B.6° C.36° D.46°43. 如图: AB =AC, ∠BAD =30°AD ⊥BC 且AD =AE, 则∠EDC =[ ]A.10°B.12.5°C.15°D.20° 44. 等腰三角形一腰上的高与底所夹的角等于 [ ]A.顶角B.顶角的C.顶角的2倍D.底角的 45. 等腰三角形边长分别是3和6,这个三角形的周长是[ ]A .9B .12C .15D .12或15 46. 用一条长为12cm 的铁丝做等腰三角形, 底和腰的长必须是正整数, 若底的长为xcm,则腰的长y 可为 [ ]A.5cmB.5cm 或4cmC.4cmD.-5cm47. 一个等腰三角形底边为8cm, 从底边上一个端点引腰的中线, 分三角形周长为两部 分,其中一部分比另一部分长2cm, 则腰长为 [ ]A.6cmB.10cmC.6cm或10cmD.以上都不对48.一个等腰但非等边三角形, 它的角平分线, 中线和高线的条数共为 [ ]A.6B.7C.8D.949.已知:如图在△ABC中, AB=AC, CD为∠ACB平分线,DE∥BC,∠A=40°,则∠EDC的度数是[ ]A.30°B.36°C.35°D.54°50.等腰三角形两个角的比为4∶1, 则顶角为 [ ]A.120°B.20°C.120°或20°D.150°51.如图已知: AB=AC=BD, 那么∠1与∠2之间的关系满足[ ] A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°52.若等腰三角形的两边a、b满足,则此等腰三角形的周长为[ ]A.7B.5C.8D.7或553.等腰△ABC中,两腰上的中线BE、CD交于O,则下列判断中错误的是[ ] A.△ADC≌△AEB B.△DBC≌△ECBC.△ABE≌△BCD D.△BOD≌△COE54.从等腰三角形底边上任一点,分别作两腰的平行线所成的四边形的周长等于此等腰三角形的[ ]A.周长B.周长一半C.一腰长D.两腰长的和55.等腰三角形一腰上的高与底边所成的角等于 [ ]A.顶角B.顶角的一半C.顶角的2倍D.底角的一半56.如下图,△ABC中,AB=AC,点D、E、F分别在BC、AB、AC上,且DE=BE,DF=DC,若∠A=,则∠EDF=[ ]A.B.C.D.57.等腰三角形底边长为5厘米, 一腰上的中线把三角形分成两部分, 其周长之差为3厘米, 则它的腰长为 [ ]A.2厘米B.8厘米C.2厘米或8厘米D.9厘米58.如图△ABC中, AB=AC, ∠A=50°, P是△ABC的一点, 且∠PBC=∠PCA, 则∠BPC的度数为[ ]A.115°B.100°C.130°D.140°59.如图, △ABC中, AB=AC, CD⊥AB, 则关于∠A正确的等式是[ ]A.∠A=∠BB.∠A=∠ACBC.∠A=2∠ACBD.∠A=2∠DCB60.如图在△ABC中, AB=AC, BC=BD, AD=DE=EB, 则∠A的度数是[ ]A.30°B.36°C.45°D.54°三.填空题 (本大题共 30 分)1. 周长为20cm 的等腰三角形中, 底边长为acm, 则一腰长为________cm .2. 如图△ABC 中, AB =AC, ∠A =40°, ∠AED =∠F, 则∠F =___________度.3. 已知等腰三角形有两条边的长分别是3cm 和7cm, 那么这个三角形的周长等于__________cm4. 已知如图, A 、D 、C 在一条直线上AB =BD =CD, ∠C =40°, 则∠ABD =______度.5. 等腰三角形的周长为36, 腰比底长3, 则此等腰三角形的腰长为________, 底边长为________.6. 等腰三角形的底边为12cm,且腰是底的, 则三角形的周长是_______cm7. 已知等腰三角形的一个底角等于顶角的4倍, 则这个等腰三角形的顶角为_______度.8. 等腰三角形底边中线与________和________重合.9. 已知: 如图: △ABC 中, AB =BC, ∠B =90°, AD ∥BC, ∠D =70°, 则∠EFA =____度10. 已知:等腰三角形的一个角为100°, 则另两个角的度数为________. 11. △ABC 中,如果AB=AC ,点M 是BC 边中点,那么M 到______两边的距离相等,AM 上的点到_____ _两点的距离相等。

相关文档
最新文档