极坐标与参数方程五种基本题型
极坐标参数方程题型归纳7种

极坐标参数方程题型归纳7种标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-极坐标与参数方程(高考真题)题型归纳一、极坐标方程与直角坐标方程的互化1.(2015·广东理,14)已知直线l的极坐标方程为2ρsin⎝⎛⎭⎫θ-π4=2,点A的极坐标为A⎝⎛⎭⎫22,7π4,则点A到直线l的距离为________.[立意与点拨]本题考查极坐标与平面直角坐标的互化、点到直线的距离,属于容易题.解答本题先进行极直互化,再求距离.二、参数方程与直角坐标方程的互化【解析】椭圆方程为:14622=+yx,因为1cossin22=+xx,令⎩⎨⎧==ααcos2sin6yx,则有X+2y=αsin6+αcos4=()ϕα++sin166,最大值22,最小值22-三、根据条件求直线和圆的极坐标方程四、求曲线的交点及交点距离4.(2015·湖北高考)在直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C的参数方程为⎩⎨⎧x=t-1t,y=t+1t(t为参数),l与C相交于A,B 两点,则|AB|=________.【解析】直线l的极坐标方程ρ(sin θ-3cos θ)=0化为直角坐标方程为3x-y=0,曲线C的参数方程⎩⎨⎧x=t-1t,y=t+1t两式经过平方相减,化为普通方程为y2-x2=4,联立⎩⎪⎨⎪⎧3x-y=0,y2-x2=4解得⎩⎪⎨⎪⎧x=-22,y=-322或⎩⎪⎨⎪⎧x=22,y=322.所以点A⎝⎛⎭⎪⎫-22,-322,B⎝⎛⎭⎪⎫22,322.所以|AB|=⎝⎛⎭⎪⎫-22-222+⎝⎛⎭⎪⎫-322-3222=2 5.5.在平面直角坐标xOy 中,已知直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t ,(t 为参数),直线l 与抛物线y 2=4x 相交于A 、B 两点,求线段AB 的长.[解析] 解法1:将l 的方程化为普通方程得l :x +y =3,∴y =-x +3,代入抛物线方程y 2=4x 并整理得x 2-10x +9=0,∴x 1=1,x 2=9. ∴交点A (1,2),B (9,-6),故|AB |=82+82=8 2.解法2:将l 的参数方程代入y 2=4x 中得,(2+22t )2=4(1-22t ), 解之得t 1=0,t 2=-82,∴|AB |=|t 1-t 2|=8 2.6.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析](1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).五、利用参数方程求最值( 转化与化归思想和函数思想 )[立意与点拨](用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)8.(2015·新课标Ⅱ高考)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值.【解】(1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0.联立⎩⎨⎧x 2+y 2-2y =0,x 2+y 2-23x =0,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =32,y =32.所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭⎪⎫32,32.(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π.(此题C 1代表的是一条过原点的直线) 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α).所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3.当α=5π6时,|AB |取得最大值,最大值为4.9.(2015·商丘市二模)已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为:ρsin ⎝⎛⎭⎫θ-π6=12,曲线C 的参数方程为:⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α.(1)写出直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的距离的最大值.[解析] (1)∵ρsin ⎝⎛⎭⎫θ-π6=12,∴ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=12,∴32y -12x =12,即l :x -3y +1=0.(2)解法一:由已知可得,曲线上的点的坐标为(2+2cos α,2sin α), 所以,曲线C 上的点到直线l 的距离d =|2+2cos α-23sin α+1|2=⎪⎪⎪⎪4cos ⎝⎛⎭⎫α+π3+32≤72. 所以最大距离为72.解法二:曲线C 为以(2,0)为圆心,2为半径的圆.圆心到直线的距离为32,所以,最大距离为32+2=72.10.(文)(2014·新课标Ⅰ理,23)已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[解析](1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ,(θ为参数)直线l 的普通方程为:2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.(将d=|AB|sin30利用三角关系进行转化,转化化归思想,高考考点考察学生思维能力)当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255. 当sin(θ+α)=1时,|PA |取得最小值,最小值为255.六、直线参数方程中的参数的几何意义方法一:方法二:根据直线参数方程中t 的几何意义,可知,弦长=|t 1-t 2|.得:053154153154122=⎪⎭⎫⎝⎛--+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+t t t t ,方程化简,然后用韦达定理求 弦长=|t 1-t 2|=()212214t t t t -+=.....13.(理)在直角坐标系xOy 中,过点P (32,32)作倾斜角为α的直线l 与曲线C :x 2+y 2=1相交于不同的两点M 、N .(1)写出直线l 的参数方程;(2)求1|PM |+1|PN |的取值范围.(根据直线参数方程中t 的几何意义,用参数t 表示所求量1|PM |+1|PN |,然后用t 的二次方程的韦达定理,转化成三角函数进而求范围,此题较难)[解析] (1)⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α,(t 为参数).(2)将⎩⎪⎨⎪⎧x =32+t cos α,y =32+t sin α.(t 为参数)代入x 2+y 2=1中,消去x ,y 得,t 2+(3cos α+3sin α)t +2=0,由Δ=(3cos α+3sin α)2-8=12sin 2(α+π6)-8>0⇒sin(α+π6)>63, 1|PM |+1|PN |=1-t 1+1-t 2=-t 1+t 2t 1t 2=3cos α+3sin α2=3sin(α+π6)∈(2,3].七、求动点坐标、求变量的值14.(2015·陕西理,23)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.[立意与点拨] 考查极坐标与参数方程、转化与化归思想和函数思想;解答本题(1)需熟记极直互化公式;(2)用参数坐标将距离表达为t 的函数,转化为函数最值求解.[解析] (1)由ρ=23sin θ,得ρ2=23ρsin θ,从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P (3+12t ,32t ),又C (0,3),则|PC |=3+12t 2+32t -32=t 2+12,故当t =0时,|PC |取得最小值,此时,P 点的直角坐标为(3,0).(此处用参数t 来表示所求距离,然后当作变量为t 的二次函数,求最值)15.(2016全国卷I)在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==,sin 1,cos t a y t a x t (为参数,)0>a .在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线θρcos 4:2=C . (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程; (Ⅱ)直线3C 的极坐标方程为0αθ=,其中0α满足2tan 0=α,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】:⑴ cos 1sin x a t y a t =⎧⎨=+⎩(t 均为参数),∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-= ∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-= 即为1C 的极坐标方程⑵ 24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+=, 224x y x ∴+=,即()2224x y -+= ②,3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C∴210a -=,∴1a =(圆与圆交点所在直线的求法,联立圆方程,两方程相减,可得变量的方程)16.(文)(2015·唐山市二模)在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ; (2)O 为极点,A ,B 为C 上的两点,且∠AOB =π3,求|OA |+|OB |的最大值.[解析] (1)曲线C 是以(a,0)为圆心,以a 为半径的圆; l 的直角坐标方程为x +3y -3=0.由直线l 与圆C 相切可得|a -3|2=a ,解得a =1. (求符合条件的变量值,建立等量关系,解方程)(2)不妨设A 的极角为θ,B 的极角为θ+π3,则|OA |+|OB |=2cos θ+2cos ⎝⎛⎭⎫θ+π3=3cos θ-3sin θ=23cos ⎝⎛⎭⎫θ+π6, 当θ=-π6时,|OA |+|OB |取得最大值2 3.(用三角函数作为参数,转化成求三角函数最值问题,着重理解转化思维,用参数法实现转化的技巧)。
极坐标与参数方程题型总结

极坐标与参数方程题型总结极坐标是数学中被广泛应用的一种坐标系,它包含一个参数方程和一个极坐标方程。
参数方程是定义函数和曲线的常用方法,将参数t作为曲线点的标示,然后通过这个参数t求出其他坐标。
而极坐标则是一种基于圆环坐标系统的坐标系,它是将圆环上的点投影到一个平面上,从而获得极坐标系统。
参数方程主要有以下几种:一、直线的参数方程直线的参数方程一般式为:(x-x0)/a=(y-y0)/b=t其中,x0,y0是直线上的一点,a,b是直线的斜率,α是曲线的半径,t是参数。
由于直线的特殊性,直线的参数方程的结果会比较简单,计算量小。
二、圆的参数方程圆的参数方程一般式为:x=x0+αcos(t) y=y0+αsin(t)其中,x0,y0是圆心坐标,α是曲线的半径,t是参数。
三、椭圆的参数方程椭圆的参数方程一般式为:x=x0+a*cos(t) y=y0+b*sin(t)其中,x0,y0是椭圆的中心坐标,a,b是椭圆的长短轴的长度,t 是参数。
四、抛物线的参数方程抛物线的参数方程一般式为:x=x0+at^2 y=y0+bt其中,x0,y0是抛物线的准线上的一点,a,b是抛物线的准线斜率,t是参数。
五、双曲线的参数方程双曲线的参数方程一般式为:x=x0+acosh(t) y=y0+bsinh(t)其中,x0,y0是双曲线的一点,a,b是双曲线的离心率,t是参数。
极坐标主要有以下几种:一、圆的极坐标方程圆的极坐标方程是:r=α其中,α是圆的半径,t是参数。
二、椭圆的极坐标方程椭圆的极坐标方程是:r=α*cos(θ)其中,α是椭圆的离心率,θ是极角,t是参数。
三、双曲线的极坐标方程双曲线的极坐标方程是:r=α*sec(θ)其中,α是双曲线的离心率,θ是极角,t是参数。
总结:参数方程主要有直线、圆、椭圆、抛物线和双曲线五种,极坐标也分为圆、椭圆和双曲线三种。
参数方程和极坐标方程都是数学中常见的类型,都是用来描述曲线的方程。
极坐标与参数方程常见题型

2.解题思路 第一步:曲线化成普通方程,直线化成参数方程 第二步: 将直线的参数方程代入曲线的普通方程, 整理成关于 t 的一元二次方程:
at2 bt c 0
b c 第三步:韦达定理: t1 t 2 , t1t 2 a a 第四步:选择公式代入计算。
x=5+
例:已知直线 l:
极坐标与参数方程高考高频题型
(一)有关圆的题型
题型一:圆与直线的位置关系(圆与直线的交点个数问题) ----利用圆心到直线的距离与半径比较
d r : 相离,无交点; d r : 相切, 1个交点; d r : 相交, 2个交点;
用圆心(x0,y0)到直线 Ax+By+C=0 的距离 d
解
(1)ρ=2cosθ等价于ρ =2ρcosθ.①
2 2 2 2 2
2
将ρ =x +y ,ρcosθ=x 代入①即得曲线 C 的直角坐标方程为 x +y -2x =0.②
x=5+
(2)将
3 2 1 2
t,
代入②式,得 t +5 3t+18=0.
2
y= 3+ t
设这个方程的两个实根分别为 t1, t2, 则由参数 t 的几何意义即知, |MA|· |MB| =|t1t2|=18.
3 t, 2 (t 为参数) ,以坐标原点为极点,x 轴的正
1 y= 3+ t 2
半轴为极轴建立极坐标系,曲线 C 的极坐标方程为ρ=2cosθ. (1)将曲线 C 的极坐标方程化为 直角坐标方程; (2)设点 M 的直角坐标为(5, 3), 直线 l 与曲线 C 的交点为 A, B, 求|MA|· |MB| 的值 .
Ax0 By0 C A B
2 2
【高中数学】参数方程和极坐标方程常考题型及解题方法归纳

参数方程和极坐标方程常考题型及解题方法归纳一、根据直线参数方程中t的几何意义求与距离有关的问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为x=x0+tcosαy=y0+tsin烅烄烆α(t为参数),参数t的几何意义是:直线上定点P到动点M的有向线段,t表示参数t对应的点M到定点P的距离,即|t|=|PM|.若A,B为直线l上两点,其对应的参数分别为t1与t2,则有:①AB=|t1-t2|;②当A,B在点P的同侧时,t1与t2同号;当A,B分别在点P的两侧时,t1与t2异号.需要注意的是:有时候直线的参数方程也可写为x=x0+aty=y0+烅烄烆bt(t为参数),如果a2+b2≠1,则参数t没有上述几何意义.例1 在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C:ρll与l的普通方程;(2)若PM,MN,PN成等比数列,求a的值.分析 (1)利用x=ρcosθ,y=ρsinθ即可将曲线C的极坐标方程转化为直角坐标方程,在直线l的参数方程中消去参数t即可得直线l的普通方程;(2)将直线l的参数方程代入曲线C的直角坐标方程,利用参数的几何意义结合韦达定理即可建立关于a的方程求解.解 (1)由ρsin2θ=acosθ得ρ2 sin2θ=aρcosθ,可得曲线C的平面直角坐标方程y2=ax(a>0).由直线l的参数方程消去参数t,可得直线l的普通方程为x-y-1=0.(2)设点M,N对应的参数分别为t1,t2,则PM=t1,PN=t2,MN=t1-t2.将x=-1+槡22t,y=-2 +槡22t代入y2=ax,得t2-(槡4 2 +槡2a)t+8+2a=0.所以Δ=(槡4 2 +槡2a)2-4(8+2a)=2a2+8a>0,t1+t2=槡4 2 +槡2a,t1t2=8+2a.由PM,MN,PN成等比数列,可以得到t1-t22=t1t2,所以(t1+t2)2-4t1t2=t1t2,即(槡4 2 +槡2a)2-5(8+2a)=0,解得a=1(a=-4舍去).例2 (2015年高考湖南卷)已知直线l:x=5 +槡32ty =槡3+12烅烄烆t(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ.(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;(Ⅱ)设点M的直角坐标为(5,槡3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ即可将已知条件中的极坐标方程转化为直角坐标方程;(Ⅱ)注意到点M在直线l上,将直线l的参数方程代入圆的直角坐标方程,利用参数的几何意义结合韦达定理即可求解.解 (Ⅰ)ρ=2cosθ等价于ρ2=2ρcosθ,将ρ2=x2+y2,ρcosθ=x代入即得曲线C的直角坐标方程为x2+y2-2x=0.(Ⅱ)结合直线l的参数方程,注意到点M在直线l上,且(槡32)2+(12)2=1,可设点M,N对应的参数分别为t1,t2,则MA=|t1|,MB=|t2|,所以MA·MB=t1t2. 将直线l的参数方程代入曲线C的直角坐标方程,整理得t2 +槡5 3t+18=0,则MA·MB=t1t2=18.例3 已知圆锥曲线C:x=2cosαy=sin{α(α为参数)和定点A(0,,槡3),F1,F2是此圆锥曲线的左、右焦点,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.(1)求直线AF2的极坐标方程;(2)经过点F1且与直线AF2垂直的直线l交此圆锥曲线于M,N两点,求MF1-NF1的值.解 (1)消去参数α即可将曲线C的方程化为普通方程x24+y2=1,从而可求得F1(-槡3,0),F2(槡3,0),于是可得直线AF2的普通方程为x+y-槡3=0,利用互化公式化为极坐标方程为ρcosθ+ρsinθ=槡3.(2)由(1)可得kAF2=-1,所以直线l的倾斜角为45°,从而可得直线l的参数方程为x=-槡3 +槡22ty =槡22烅烄烆t(t为参数),代入椭圆C的直角坐标方程:x24+y2=1,得5t2-槡2 6t-2=0,设点M,N对应的参数分别为t1,t2,注意到点M,N,F1都在直线l上且点M,N在点F1两侧,所以|MF1|-|NF1|=|t1+t2|=槡2 65.评注 对于直线上与定点距离有关的问题,利用直线参数方程中参数t的几何意义,能避免通过解方程组求交点坐标的繁琐运算,使解题过程得到简化.二、利用参数方程求最值和取值范围利用曲线的参数方程求解两曲线间的最值问题,是解决这类问题的常用方法,优点是解题过程比较简洁.为此,需要熟悉常见曲线的参数方程、参数方程与普通方程的互化以及参数方程的简单应用.例4 已知曲线C1:x=8costy=2sin{t(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρ=7cosθ-sinθ.(1)将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.(2)设P为曲线C1上的点,点Q极坐标为(2槡2,π4),求PQ的中点与曲线C2上的点的距离的最小值.分析 (1)利用参数方程和普通方程之间的关系进行互化即可,(2)先把点Q的极坐标化为直角坐标,设出点P的参数形式的直角坐标(t为参数),进而得到PQ的中点M的直角坐标,可用公式得到点M到直线C2的距离d的表达式(用参数t表示),再求最值即可.解 (1)由曲线C1的参数方程消去参数t得曲线C1的普通方程x264+y24=1.由曲线C2的极坐标方程得ρcosθ-ρsinθ=7,于是可得它的直角坐标方程为x-y-7=0.(2)由点Q的极坐标(槡2 2,π4)可得它的直角坐标为(2,2),设P(8cost,2sint),则PQ的中点M的直角坐标为(4cost+1,sint+1),所以,点M到直线C2的距离d=4cost-sint-7槡2=槡17cos(t+φ)-7槡2,其中φ为锐角,且tanφ=14.当cos(t+φ)=1时,d取得最小值dmin=槡7 2 -槡342.所以,PQ的中点M与曲线C2上的点的距离的最小值为槡7 2 -槡342.例5 (2014年全国卷Ⅰ)已知曲线C:x24+y29=1,直线l:x=2+ty=2-2{t(t为参数).(Ⅰ)写出曲线C的参数方程和直线l的普通方程;(Ⅱ)过曲线C上任一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.分析 (Ⅰ)利用椭圆的普通方程及直线的参数的特征进行互化即可;(Ⅱ)由椭圆的参数方程建立|PA|的三角函数表达式,再求最值.图1解 (Ⅰ)曲线C的参数方程为x=2cosθy=3sin{θ(θ为参数),直线l的普通方程为2x+y-6=0.(Ⅱ)如图1,在曲线C上任意取一点P(2cosθ,3sinθ),它到直线l的距离为:d=槡554cosθ+3sinθ-6,则|PA|=dsin30°=槡2 55|5sin(θ+α)-6|,其中α为锐角,且tanα=43.当sin(θ+α)=-1时,|PA|取得最大值,最大值为槡22 55;当sin(θ+α)=1时,|PA|取得最小值,最小值为槡2 55.例6 (2015年高考陕西卷)在直角坐标系xΟy中,直线l的参数方程为x=3+12ty =槡32烅烄烆t(t为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=槡2 3sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)Ρ为直线l上一动点,当Ρ到圆心C的距离最小时,求Ρ的直角坐标.分析 (Ⅰ)利用x=ρcosθ,y=ρsinθ,由⊙C的极坐标方程可得它的直角坐标方程;(Ⅱ)先设点Ρ的参数坐标,可得ΡC的函数表达式,再利用函数的性质可得ΡC的最小值,进而可得Ρ的直角坐标;或将直线l的方程化为普通方程,再求过圆心且垂直于直线l的直线方程,联立两方程可解得点P的直角坐标.解 (Ⅰ)由ρ=槡2 3sinθ,得ρ2 =槡2 3ρsinθ,从而,⊙C的直角坐标方程为x2+y2 =槡2 3y,即x2+(y-槡3)2=3.(Ⅱ)设P(3+12t,槡32t),又C(0,槡3),则|PC|=(3+12t)2+(槡32t -槡3)槡2=t2+槡12,易知:当t=0时,ΡC取得最小值,此时Ρ点的直角坐标为(3,0).评注 将曲线的参数方程化为普通方程的关键是消去其中的参数,常用的技巧有:代入消参、加减消参、整体消参、平方后加减消参等.如果题目中涉及圆、椭圆上的动点求相关最值(范围)问题时,可考虑用其参数方程设出点的坐标,将问题转化为函数问题来解决,可以使解题的过程更简洁.例7 (2016年全国卷Ⅱ理科第20题)已知椭圆E:x2t+y23=1的焦点在x轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(Ⅰ)当t=4,AM=AN时,求△AMN的面积;(Ⅱ)当2 AM=AN时,求k的取值范围.分析 (Ⅰ)先结合已知条件设出直线AM的参数方程,代入椭圆方程,可求得AM,进而求得△AMN的面积;(Ⅱ)设出直线AM、AN的参数方程(以直线AM的倾斜角α为参数),代入椭圆方程,用t和α表示|AM|和|AN|,再利用2 AM=AN将t表示为k的函数,结合t>3,可求得k的取值范围.解 (Ⅰ)当t=4,AM=AN时,可得点A(-2,0),k=1.设直线AM的参数方程为x=-2+槡22my =槡22烅烄烆m(m为参数),代入椭圆方程,整理得72m2-槡6 2 m=0,故AM =槡12 27,所以S△AMN=12AM·AN=14449.(Ⅱ)设直线AM的倾斜角为α,又点A(-槡t,0),可设直线AM的参数方程为x=-槡t+mcosαy=msin烅烄烆α(m为参数),代入椭圆方程,整理得(3cos2α+t sin2α)m2-6tcosα·m=0,所以AM=6tcosα3cos2α+t sin2α.因为MA⊥NA,故直线AN的倾斜角为α+π2,同理可得:AN=6tcos(α+π2)3cos2(α+π2)+t sin2(α+π2)=6tsinα3sin2α+t cos2α.由2 AM=AN,k=tanα,代入化简得t=6k2-3kk3-2.又因为椭圆E:x2t+y23=1的焦点在x轴上,所以t>3,即6k2-3kk3-2>3,解得3槡2<k<2.所以,k的取值范围是(3槡2,2).评注 本题属于圆锥曲线试题,常规思路是利用直角坐标直接求解,过程比较复杂.利用直线的参数方程来求解本题,使问题的求解过程变得简洁.三、利用极坐标中ρ的几何意义求有关距离或相关问题我们知道,极坐标中的ρ为极径,表示曲线上一点与原点O之间的距离,因此,与原点O有关的距离、面积等问题都可考虑运用极坐标中ρ的几何意义来解决,这是一种有效的解题策略,很多时候比化为直角坐标运算更简便.例8 (2015年高考全国卷Ⅱ)在直角坐标系xOy中,曲线C1:x=tcosα,y=tsinα{,(t为参数,t≠0),其中0≤α<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,曲线C3:ρ=2 槡3cosθ.(Ⅰ)求C2与C1的交点的直角坐标;(Ⅱ)若C2与C1相交于点A,C3与C1相交于点B,求AB的最大值.分析 (Ⅰ)可将曲线C2与C1的极坐标方程化为直角坐标方程后联立求交点的直角坐标,也可以直接联立极坐标方程求得交点的极坐标,再化为直角坐标;(Ⅱ)分别联立C2与C1、C3与C1的极坐标方程,求得A,B的极坐标,由极径的概念用α表示出AB,转化为求关于α的三角函数的最大值.解 (Ⅰ)曲线C2的直角坐标方程为x2+y2-2y=0,曲线C3的直角坐标方程为x2+y2 -槡2 3x=0.联立两方程解得:x1=0,y1=0烅烄烆,x2=槡32,y2=32烅烄烆,所以,C2与C1的交点的直角坐标为(0,0)和(槡32,32).(Ⅱ)曲线C1的极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤α<π.于是可得:点A的极坐标为(2sinα,α),点B的极坐标为(槡2 3cosα,α).所以AB=2sinα-槡2 3cosα=4|sin(α-π3)|,又0≤α<π,所以,当α=5π6时,AB取得最大值,最大值为4.评注 如果用直角坐标来处理本题,计算量较大.例9 (2016年全国卷Ⅱ理科第23题)在直线坐标系xOy中,圆C的方程为(x+6)2+y2=25.(Ⅰ)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(Ⅱ)直线l的参数方程是x=tcosα,y=tsinα{,(t为参数),l与C交于A,B两点,|AB|=槡10,求l的斜率.分析 (Ⅰ)利用ρ2=x2+y2,x=ρcosθ可得C的极坐标方程;(Ⅱ)先将直线l的参数方程化为极坐标方程,再利用弦长公式可求得l的斜率.解 (Ⅰ)由x=ρcosθ,y=ρsinθ可得C的极坐标方程ρ2+12ρcosθ+11=0.(Ⅱ)在(Ⅰ)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R),与C的极坐标方程联立得ρ2+12ρcosα+11=0.设点A,B所对应的极径分别为ρ1,ρ2,则ρ1+ρ2=-12cosα,ρ1ρ2=11,所以|AB|=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ槡2=144cos2α-槡44.又|AB|=槡10,所以144cos2α-槡44 =槡10,解得cos2α=38,故tanα=±槡153,所以,直线l的斜率为槡153或-槡153.例10 (2015年高考全国卷Ⅰ理科第23题)在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=π4(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.分析 (Ⅰ)根据公式x=ρcosθ,y=ρsinθ,x2+y2=ρ2即可求得C1,C2的极坐标方程;(Ⅱ)联立直线C3和圆C2的极坐标方程得到关于ρ的方程,可求得MN,进而可求出△C2MN的面积.解 (Ⅰ)因为x=ρcosθ,y=ρsinθ,所以,可求得:C1的极坐标方程为ρcosθ=-2,C2的极坐标方程为ρ2-2ρcosθ-4ρsinθ+4=0.(Ⅱ)将C3的极坐标方程θ=π4代入C2的极坐标方程ρ2-2ρcosθ-4ρsinθ+4=0,得ρ2 -槡3 2ρ+4=0,解得ρ1=槡2 2,ρ2=槡2,所以,MN=ρ1-ρ2=槡2.又因为C2的半径为1,∠C2MN=π4,所以△C2MN的面积为S=12×槡2×1×sinπ4=12.评注 过坐标原点、倾斜角为θ0的直线的极坐标方程为θ=θ0,其上两点P(ρ1,θ0),Q(ρ2,θ0)间的距离为PQ=ρ1-ρ2.【一点感悟】参数方程和极坐标虽然是选考内容,也应得到充分的重视,如果能够将它们和普通方程有机联系,相互补充,可以优化解题思路,简化计算过程,减少运算量,提高解题的效率.。
高考极坐标与参数方程常见题型

极坐标与参数方程一、基础知识点梳理(一)极坐标 极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3、极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4、常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和。
高考数学极坐标与参数方程题型归纳

高考数学极坐标与参数方程题型归纳在高考数学试题中,关于极坐标与参数方程的题型占据着重要的位置。
理解和掌握这部分知识点,不仅有助于应对考试,也对于深入理解数学的概念和应用有着重要意义。
下面我们来归纳总结一些常见的高考数学极坐标与参数方程题型。
极坐标题型1.求一点在极坐标系中的坐标给定一点在极坐标系中的表示形式,要求将其转换为直角坐标系中的坐标表示。
2.求极坐标下的函数表达式已知一函数在直角坐标系中的表达式,要求将其转换为极坐标下的函数表达式。
3.求曲线在极坐标系中的方程已知函数在极坐标系中的表达式,要求确定其对应的曲线在极坐标系下的方程式。
4.求曲线与极轴、极径的交点给定曲线在极坐标系下的方程,要求求解其与极轴或者极径的交点。
参数方程题型1.极坐标与参数方程的互相转化给定一个曲线的参数方程,要求将其转换为极坐标系的方程表示,或者反之。
2.参数方程求切线斜率已知曲线的参数方程,要求求解某点处的切线的斜率。
3.参数方程求曲线间的距离给定两条曲线的参数方程,要求确定其之间的距离。
4.参数方程求曲线的长度已知曲线的参数方程,要求确定其在一定区间内的弧长。
解题技巧1.理解极坐标与参数方程的基本概念在解题时,首先要对极坐标、参数方程的定义及基本性质有清晰的理解。
2.熟练运用坐标转换公式对于极坐标与直角坐标系之间的转换,可以根据公式进行相应的转化,这是解题的基本技巧。
3.掌握参数方程的运算方法参数方程的运算方法在解题时非常重要,要善于利用参数方程的特点进行计算。
4.多练习,熟悉题型通过多练习不同类型的题目,熟悉题型变形和解题技巧,提高解题效率。
高考数学中的极坐标与参数方程题型涵盖了数学的多个重要概念,需要认真理解和掌握。
通过不断的练习和积累,相信在高考数学中能够取得优异的成绩。
高考数学极坐标与参数方程题型归纳

(3)P为曲线C2上任意一点,求点P到直线l的距离的最值及此时P的直角坐标.
7.在坐标系xOy中,曲线C1的参数方程为 (α为参数),以坐标原点为极点,以x轴的正半轴为极轴,,建立极坐标系,曲线C2的极坐标方程为ρsin =2 .
极坐标系与参数方程
题型一与圆有关的问题
1.已知曲线C1的参数方程为 ( 为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为 .(Ⅰ)把C1的参数方程化为极坐标方程;(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
2.在直角坐标系xOy中,以坐标原点为极点,x轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈ .(1)求C的参数方程.(2)设点D在C上,C在D处的切线与直线l:y= x+2垂直,根据(1)中你得到的参数方程,确定D的坐标.
题型二 根据椭圆参数方程求最值
6.曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的 倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.
(1)求曲线C2和直线l的普通方程.
9.以平面直角坐标系的原点 为极点, 轴的正半轴为极轴建立极坐标系,已知点 的直角坐标为 ,若直线l的极坐标方程为 ,曲线 的参数方程是 ,( 为参数).
(1)求直线l的直角坐标方程和曲线 的普通方程;
(2)设直线l与曲线 交于 两点,求 .
10.在直角坐标系中,以原点为极点, 轴的正半轴为极轴,以相同的长度单位建立极坐标系,已知直线 的极坐标方程为 ,曲线 的极坐标方程为 .
极坐标与参数方程经典题型(附含详细解答)

专题:极坐标与参数方程1、已知在直角坐标系xOy 中,曲线C 的参数方程为14cos 24sin x y θθ=+⎧⎨=+⎩(θ为参数),直线l 经过定点(3,5)P ,倾斜角为3π. (1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求||||PA PB 的值.2、在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos C ρθθ=,过点(2,1)P -的直线2cos 45:1sin 45x t l y t ⎧=+⎪⎨=-+⎪⎩(t 为参数)与曲线C 交于,M N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程;(2)求22||||PM PN +的值.3、在平面直角坐标系xOy 中,已知曲线:23cos 3sin x y αα⎧=+⎪⎨=⎪⎩(α为参数),以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :(cos sin )6ρθθ-=.(1)求曲线C 上点P 到直线l 距离的最大值;(2)与直线l 平行的直线1l 交C 于,A B 两点,若||2AB =,求1l 的方程.4、在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线1C 的参数方程为22cos 2sin x y θθ⎧=⎪⎨=⎪⎩(为参数),曲线 2C 的极坐标方程为cos 2sin 40ρθρθ--=.(1)求曲线1C 的普通方程和曲线 2C 的直角坐标方程;(2)设P 为曲线1C 上一点,Q 为曲线2C 上一点,求||PQ 的最小值.5.在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),在以原点为极点,轴的正半轴为极轴,建立的极坐标系中,曲线2C 是圆心为3,2π⎛⎫⎪⎝⎭,半径为1的圆.(1)求曲线1C 的普通方程,2C 的直角坐标方程;(2)设M 为曲线1C 上的点,N 为曲线2C 上的点,求||MN 的取值范围.6. 在平面直角坐标系xOy 中,曲线1C 的参数方程为2cos sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),曲线2C :2220x y y +-=,以原点为极点,轴的正半轴为极轴,建立极坐标系,射线():0l θαρ=≥与曲线1C ,2C 分别交于,A B (均异于原点O ).(1)求曲线1C ,2C 的极坐标方程; (2)当02πα<<时,求22||||OA OB +的取值范围.7. 在平面直角坐标系xOy 中,曲线1C 过点(,1)P a ,其参数方程为212x a ty t ⎧=+⎪⎨=+⎪⎩(t 为参数,a R ∈),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2cos 4cos 0ρθθρ+-=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线1C 与2C 交于,A B 两点,且||2||PA PB =,求实数a 的值.8. 在平面直角坐标系xOy 中,以原点为极点,轴的正半轴为极轴,建立极坐标系,直线l 的极坐标方程为(sin 3cos )43ρθθ+=,若射线6πθ=,3πθ=,分别与l 交于,A B两点.(1)求||AB ;(2)设点P 是曲线2219y x +=上的动点,求ABP ∆面积的最大值.极坐标与参数方程——练习1.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t ,(t 为参数),椭圆C 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A,B 两点,求线段AB 的长.2.在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =tcos α,y =tsin α(t 为参数,t≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A,C 1与C 3相交于点B ,求|AB |的最大值.3.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.4.在平面直角坐标系xOy 中,曲线C 的方程为x 2-2x +y 2=0,以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π4(ρ∈R ).(1)写出C 的极坐标方程,并求l 与C 的交点M,N 的极坐标; (2)设P 是椭圆x 23+y 2=1上的动点,求△PMN 面积的最大值.5.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),曲线C 的极坐标方程为(1+sin 2θ)ρ2=2. (1)写出直线l 的普通方程与曲线C 的直角坐标方程.(2)设直线l 与曲线C 相交于A ,B 两点,若点P 为(1,0),求1|PA |2+1|PB |2的值.6. 在直角坐标系xoy 中,直线l 的参数方程为325:45x t C y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为sin a ρθ=. (1)若2a =,求圆C 的直角坐标方程与直线 l 的普通方程; (2)设直线l 截圆C 的弦长等于圆Ca 的值.7. 在直角坐标系xOy 中,直线1C :y =,曲线2C 的参数方程是cos 2sin x y ϕϕ⎧=⎪⎨=-+⎪⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求1C 的极坐标方程和2C 的普通方程; (2)把1C 绕坐标原点沿顺时针方向旋转3π得到直线3C ,3C 与2C 交于A ,B 两点,求||AB .8.将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.极坐标与参数方程参考答案1.【解答】解:(1)∵曲线C的参数方程为(θ为参数),消去参数θ,得曲线C的普通方程:(x﹣1)2+(y﹣2)2=16;∵直线l经过定点P(3,5),倾斜角为,∴直线l的参数方程为:,t为参数.(2)将直线l的参数方程代入曲线C的方程,得t2+(2+3)t﹣3=0,设t1、t2是方程的两个根,则t1t2=﹣3,∴|PA|•|PB|=|t1|•|t2|=|t1t2|=3.2.【解答】解:(1)曲线C:ρsin2θ=2cosθ,即ρ2sin2θ=2ρcosθ,∴曲线C的直角坐标方程为y2=2x;直线l:(t为参数),消去t,可得直线l的普通方程x﹣y﹣3=0;(2)将直线l:代入曲线C的标准方程:y2=2x得:t2﹣4t﹣6=0,∴|PM|2+|PN|2=|t1|2+|t2|2=(t1﹣t2)2+2t1t2=32.3、【解答】(1)直线l :(cos sin )6ρθθ-=化成普通方程为60x y --=.曲线化成普通方程为22(2)3x y -+=∴圆心(2,0)C 到直线l 的距离为d ==∴曲线C 上点P 到直线l 距离的最大值为(2)设直线1l 的方程为0x y λ-+=, (2,0)C 到直线1l 的距离为d === ∴或∴直线1l 的方程为或4.【解答】(1)由曲线C 1的参数方程为(θ为参数),消去参数θ得,曲线C 1的普通方程得+=1.由ρcos θ﹣ρsin θ﹣4=0得,曲线C 2的直角坐标方程为x ﹣y ﹣4=0…(2)设P (2cos θ,2sin θ),则点P 到曲线C 2的距离为d==,当cos (θ+45°)=1时,d 有最小值0,所以|PQ|的最小值为0.5.【解答】解:(1)消去参数φ可得C1的直角坐标方程为+y2=1,∵曲线C2是圆心为(3,),半径为1的圆曲线C2的圆心的直角坐标为(0,3),∴C2的直角坐标方程为x2+(y﹣3)2=1;(2)设M(2cosφ,sinφ),则|MC2|====,∴﹣1≤sinφ≤1,∴由二次函数可知2≤|MC2|≤4,由题意结合图象可得|MN|的最小值为2﹣1=1,最大值为4+1=5,∴|MN|的取值范围为[1,5]6.【解答】解:(1)∵,∴,由得曲线C1的极坐标方程为,∵x2+y2﹣2y=0,∴曲线C2的极坐标方程为ρ=2sinθ;(2)由(1)得,|OB|2=ρ2=4sin2α,∴∵,∴1<1+sin2α<2,∴,∴|OA|2+|OB|2的取值范围为(2,5).7.【解答】解:(1)曲线C1参数方程为,∴其普通方程x﹣y﹣a+1=0,由曲线C2的极坐标方程为ρcos2θ+4cosθ﹣ρ=0,∴ρ2cos2θ+4ρcosθ﹣ρ2=0∴x2+4x﹣x2﹣y2=0,即曲线C2的直角坐标方程y2=4x.(2)设A、B两点所对应参数分别为t1,t2,联解得要有两个不同的交点,则,即a>0,由韦达定理有根据参数方程的几何意义可知|PA|=2|t1|,|PB|=2|t2|,又由|PA|=2|PB|可得2|t1|=2×2|t2|,即t1=2t2或t1=﹣2t2∴当t1=2t2时,有t1+t2=3t2=,t1t2=2t22=,∴a=>0,符合题意.当t1=﹣2t2时,有t1+t2=﹣t2=,t1t2=﹣2t22=,∴a=>0,符合题意.综上所述,实数a的值为或.8.【解答】解:(1)直线,令,解得,∴,令,解得ρ=4,∴又∵,∴,∴|AB|=2.(2)∵直线,曲线,∴=当且仅当,即时,取“=”,∴,∴△ABP面积的最大值为3.极坐标与参数方程——练习参考答案1.【解答】解:由,由②得,代入①并整理得,.由,得,两式平方相加得.联立,解得或.∴|AB|=.2.【解答】解:(1)曲线C2:ρ=2sinθ得ρ2=2ρsinθ,即x2+y2=2y,①C 3:ρ=2cosθ,则ρ2=2ρcosθ,即x2+y2=2x,②由①②得或,即C2与C3交点的直角坐标为(0,0),(,);(2)曲线C1的直角坐标方程为y=tanαx,则极坐标方程为θ=α(ρ∈R,ρ≠0),其中0≤a<π.因此A得到极坐标为(2sinα,α),B的极坐标为(2cosα,α).所以|AB|=|2sinα﹣2cosα|=4|sin(α)|,当α=时,|AB|取得最大值,最大值为4.3.【解答】解:(1)由⊙C的极坐标方程为ρ=2sinθ.∴ρ2=2,化为x2+y2=,配方为=3.(2)设P,又C.∴|PC|==≥2,因此当t=0时,|PC|取得最小值2.此时P(3,0).4.【解答】解:(1)因为x=ρcosθ,y=ρsinθ,所以C的极坐标方程为ρ=2cosθ,直线l的直角坐标方程为y=x,联立方程组,解得或,所以点M,N的极坐标分别为(0,0),(,).(2)由(1)易得|MN|=因为P是椭圆+y2=1上的点,设P点坐标为(cosθ,sinθ),则P到直线y=x的距离d=,所以S△PMN==≤1,当θ=kπ﹣,k∈Z时,S△PMN取得最大值1.5.【解答】解:(1)直线l的参数方程为(t为参数),消去参数t得直线l的普通方程为x﹣y﹣=0,曲线C的极坐标方程ρ2+ρ2sin2θ=2,化成直角坐标方程为x2+2y2=2,即+y2=1.(2)将直线l的参数方程代入曲线C:x2+2y2=2,得7t2+4t﹣4=0.设A,B两点在直线l的参数方程中对应的参数分别为t1,t2,则t1+t2=﹣,t1t2=﹣,∴+=+==.6.【解答】解:(1)当a=2时,ρ=asinθ转化为ρ=2sinθ整理成直角坐标方程为:x2+(y﹣1)2=1直线的参数方程(t为参数).转化成直角坐标方程为:4x+3y﹣8=0 (2)圆C的极坐标方程转化成直角坐标方程为:直线l截圆C的弦长等于圆C的半径长的倍,所以:2|3a﹣16|=5|a|,利用平方法解得:a=32或.7.【解答】解:(1)∵直线,∴直线C1的极坐标方程为,∵曲线C2的参数方程是(θ为参数),∴消去参数θ,得曲线C2的普通方程为.(2)∵把C1绕坐标原点沿逆时针方向旋转得到直线C3,∴C3的极坐标方程为,化为直角坐标方程为.圆C2的圆心(,2)到直线C3:的距离:.∴.8.【解答】解:(1)在曲线C上任意取一点(x,y),由题意可得点(x,)在圆x2+y2=1上,∴x2+=1,即曲线C的方程为x2+=1,化为参数方程为(0≤θ<2π,θ为参数).(2)由,可得,,不妨设P1(1,0)、P2(0,2),则线段P1P2的中点坐标为(,1),再根据与l垂直的直线的斜率为,故所求的直线的方程为y﹣1=(x﹣),即x﹣2y+ =0.再根据x=ρcosα、y=ρsinα可得所求的直线的极坐标方程为ρcosα﹣2ρsinα+=0,即ρ=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极坐标与参数方程高频题型
除了简单的极坐标与直角坐标的转化、参数方程与普通方程的转化外,还涉及一下内容:
(一)有关圆的题型
题型一:圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较
相离,无交点;:r d > 个交点;相切,1:r d = 个交点;相交,2:r d <
用圆心(x 0,y 0)到直线Ax+By+C=0的距离2
2
00B
A C By Ax d +++=
,算出d ,在与半径比较。
题型二:圆上的点到直线的最值问题(不求该点坐标,如果求该点坐标请参照距离最值求法) 思路:第一步:利用圆心(x 0,y 0)到直线Ax+By+C=0的距离2
2
00B
A C By Ax d +++=
第二步:判断直线与圆的位置关系
第三步:相离:代入公式:r d d +=max ,r d d -=min 相切、相交:r d d +=max min 0d =
题型三:直线与圆的弦长问题
弦长公式222d r l -=,d 是圆心到直线的距离
延伸:直线与圆锥曲线(包括圆、椭圆、双曲线、抛物线)的弦长问题 (弦长:直线与曲线相交两点,这两点之间的距离就是弦长) 弦长公式21t t l -=,解法参考“直线参数方程的几何意义”
(二)距离的最值: ---用“参数法”
1.曲线上的点到直线距离的最值问题
2.点与点的最值问题
“参数法”:设点---套公式--三角辅助角
①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式
③辅助角:利用三角函数辅助角公式进行化一
例如:【2016高考新课标3理数】在直角坐标系中,曲线的参数方程为,
以坐标原点为极点,以轴的正半轴为极轴,,建立极坐标系,曲线的极坐标方程为
(I )写出的普通方程和的直角坐标方程;
(II )设点在上,点在上,求的最小值及此时的直角坐标
的直角坐标方程为.
这里没有加减移项省去,直接化同,那系数除到左边
(Ⅱ)由题意,可设点的直角坐标为 因为是直线,所以的最小值即为到的距离的最小值,
.
(欧萌说:利用点到直接的距离列式子,然后就是三角函数的辅助公式进行化一)
当时)(
13sin =+πα即当时,,此时的直角坐标
为.
(三)直线参数方程的几何意义
1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα
若A ,B 为直线l 上
两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: xOy 1C ()sin x y ααα⎧=⎪
⎨
=⎪⎩
为参数x 2C sin()4
ρθπ
+=1C 2C P 1C Q 2C PQ P 2C 40x y +-=P ,sin )αα2C ||PQ P 2C ()d α()sin()2|3d π
αα=
=+-2()6
k k Z π
απ=+∈()d αP 31
(,)22
(2)|PM |=|t 0|=
t 1+t 2
2
;
(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|
(5)⎪⎩⎪⎨
⎧>+<-+=-=+=+0,0
,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当
(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上)
【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路
第一步:曲线化成普通方程,直线化成参数方程
第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at
第三步:韦达定理:a c
t t a b t t =
-=+2121,
第四步:选择公式代入计算。
例如:已知直线l :⎩⎪⎨
⎪⎧
x =5+32
t ,y =3+1
2t
(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立
极坐标系,曲线C 的极坐标方程为ρ=2cos θ.
(1)将曲线C 的极坐标方程化为直角坐标方程;
(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解 (1)ρ=2cos θ等价于ρ2
=2ρcos θ.①
将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.② (2)将⎩
⎪⎨
⎪⎧
x =5+32
t ,y =3+1
2t 代入②式,得t 2+53t +18=0.
设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.
(四)一直线与两曲线分别相交,求交点间的距离
思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可。
例如:(2016•福建模拟)在直角坐标系xOy中,曲线C
1
的参数方程为(其中α为参
数),曲线C
2
:(x﹣1)2+y2=1,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C
1的普通方程和曲线C
2
的极坐标方程;
(Ⅱ)若射线θ=(ρ>0)与曲线C
1,C
2
分别交于A,B两点,求|AB|.
解:(Ⅰ)∵曲线C
1
的参数方程为(其中α为参数),
∴曲线C
1
的普通方程为x2+(y﹣2)2=7.
∵曲线C
2
:(x﹣1)2+y2=1,
∴把x=ρcosθ,y=ρsinθ代入(x﹣1)2+y2=1,
得到曲线C
2
的极坐标方程(ρcosθ﹣1)2+(ρsinθ)2=1,
化简,得ρ=2cosθ.
(Ⅱ)依题意设A(),B(),
∵曲线C
1
的极坐标方程为ρ2﹣4ρsinθ﹣3=0,
将(ρ>0)代入曲线C
1
的极坐标方程,得ρ2﹣2ρ﹣3=0,
解得ρ
1
=3,
同理,将(ρ>0)代入曲线C
2
的极坐标方程,得,
∴|AB|=|ρ
1﹣ρ
2
|=3﹣.
(五)面积的最值问题
面积最值问题一般转化成弦长问题+点到线的最值问题
例题2016•包头校级二模)在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为
,A,B两点的极坐标分别为.
(1)求圆C的普通方程和直线l的直角坐标方程;
(2)点P是圆C上任一点,求△PAB面积的最小值.
解:(1)由,化简得:,
消去参数t,得(x+5)2+(y﹣3)2=2,
∴圆C的普通方程为(x+5)2+(y﹣3)2=2.
由ρcos(θ+)=﹣,化简得ρcosθ﹣ρsinθ=﹣,
即ρcosθ﹣ρsinθ=﹣2,即x﹣y+2=0,
则直线l的直角坐标方程为x﹣y+2=0;
(Ⅱ)将A(2,),B(2,π)化为直角坐标为A(0,2),B(﹣2,0),
∴|AB|==2,
设P点的坐标为(﹣5+cost,3+sint),
∴P点到直线l的距离为d==,==2,
∴d
min
则△PAB面积的最小值是S=×2×2=4.。