2019-2020年人教统编_版高中数学第一章立体几何初步章末复习课课件北师大版必修精品课件
2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

4.2 空间图形的公理(第2课时)1.空间图形的公理公理4 平行于同一条直线的两条直线平行.定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 2.异面直线 (1)异面直线的定义不共面(不同在任何一个平面内)的两条直线叫作异面直线. (2)空间两条直线的位置关系有且只有三种共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点.平行直线:在同一平面内,没有公共点.异面直线:不共面的两条直线,没有公共点.(3)异面直线所成的角过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作:a ⊥b .判断正误(正确的打“√”,错误的打“×”) (1)分别在两个平面内的直线一定为异面直线.( ) (2)两条直线垂直,则一定相交.( )(3)两条直线和第三条直线成等角,则这两条直线平行.( )(4)两条直线若不是异面直线,则必相交或平行.( )(5)两条直线无公共点,则这两条直线平行.( )(6)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线.( )(7)和两条异面直线都相交的两直线必是异面直线.( )[答案] (1)×(2)×(3)×(4)√(5)×(6)×(7)×题型一空间两直线位置关系的判定【典例1】已知a、b、c是空间三条直线,下面给出四个命题:①如果a⊥b,b⊥c,那么a∥c;②如果a、b是异面直线,b、c是异面直线,那么a、c也是异面直线;③如果a、b是相交直线,b、c是相交直线,那么a、c也是相交直线;④如果a、b共面,b、c共面,那么a、c也共面.在上述命题中,正确命题的个数是( )A.0 B.1 C.2 D.3[思路导引] 两条直线的位置关系拓展到空间中有且仅有三种:相交、平行、异面.根据具体情况,具体分析.[解析] ①a与c可能相交,也可能异面;②a与c可能相交,也可能平行;③a与c可能异面,也可能平行;④a与c可能不在一个平面内.故①②③④均不正确.[答案] A(1)判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.[针对训练1] 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.[解析] 根据题目条件知道直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A 1、B 、B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C “异面”.同理,直线AB 与直线B 1C “异面”.所以②④都应该填“异面”;直线D 1D 与直线D 1C 相交于D 1点,所以③应该填“相交”.[答案] ①平行 ②异面 ③相交 ④异面 题型二公理4及等角定理的应用【典例2】 如图,已知在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.[思路导引] (1)由中位线定理可证MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.从而应用公理4,可证MN ∥A 1C 1,且MN =12A 1C 1,于是命题可证.(2)利用等角定理可证.[证明] (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, ∴∠DNM =∠D 1A 1C 1.(1)空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行. (2)求证角相等一是用等角定理;二是用三角形全等或相似.[针对训练2] 长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.(1)求证:D1E∥BF;(2)求证:∠B1BF=∠A1ED1.[证明] (1)取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM綊A1B1,∵A1B1綊C1D1,∴EM綊C1D1,∴四边形EMC1D1为平行四边形,∴D1E∥C1M.在矩形BCC1B1中,易得MB綊C1F,∴BF∥C1M,∴D1E∥BF.(2)∵ED1∥BF,BB1∥EA1,又∠B1BF与∠A1ED1的对应边方向相同,∴∠B1BF=∠A1ED1.题型三异面直线所成的角【典例3】如图所示,在正方体ABCD-EFGH中,O为侧面ADHE的中心,求:(1)BE与CG所成的角;(2)FO与BD所成的角.[思路导引] (1)由于CG∥BF,即∠EBF(或其补角)为异面直线CG与BE所成的角.(2)由于BD∥FH,故∠HFO(或其补角)为异面直线FO与BD所成的角.[解] (1)如图,因为CG∥BF,所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点.所以∠HFO=30°,即FO与BD所成的角为30°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.提醒:求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.[针对训练3] 如图,P 是平面ABC 外一点,PA =4,BC =25,D 、E 分别为PC 和AB 的中点,且DE =3.求异面直线PA 和BC 所成角的大小.[解] 如图,取AC 中点F ,连接DF 、EF ,在△PAC 中,∵D 是PC 中点,F 是AC 中点,∴DF ∥PA ,同理可得EF ∥BC , ∴∠DFE 为异面直线PA 与BC 所成的角(或其补角). 在△DEF 中,DE =3,又DF =12PA =2,EF =12BC =5,∴DE 2=DF 2+EF 2.∴∠DFE =90°,即异面直线PA 与BC 所成的角为90°.1.过一点与已知直线垂直的直线有( )A.一条B.两条C.无数条D.无法确定[解析] 过一点与已知直线垂直的直线有无数条,包括相交垂直和异面垂直.[答案] C2.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[解析] 不相交的直线有可能是平行也有可能是异面,故A不正确;如图①中,aα,bβ,但是,a∩b=A,故B不正确;如图②,aα,bα,但是a∩b=A,故C不正确;D是异面直线的定义.[答案] D3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.[答案] D4.过直线l外两点可以作l的平行线条数为( )A.1 B.2C.3 D.0或1[解析] 以如图所示的正方体ABCD -A 1B 1C 1D 1为例.令A 1B 1所在直线为直线l ,过l 外的两点A ,B 可以作一条直线与l 平行,过l 外的两点B ,C 不能作直线与l 平行,故选D.[答案] D探究空间中四边形的形状问题根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.【示例】 如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.[思路分析] 欲证EFGH 为平行四边形,只需证EH ∥FG ,只需证BD ∥FG 且BD ∥EH . [证明] 连接BD , 因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG .又EH =FG ,所以四边形EFGH 为平行四边形.[引申探究] (1)本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? (2)本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状?(3)本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? [解] (1)由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC ,因此EH ⊥EF , 所以四边形EFGH 为矩形.(2)由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD ,所以EH =EF .又EFGH 为平行四边形,所以EFGH 为菱形. (3)由(1)(2)可知,EFGH 为正方形.[针对训练] 如图所示,设E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且AE AB =AH AD =λ,CF CB =CG CD=μ(λ,μ∈(0,1)),试判断四边形EFGH 的形状.[解] 连接BD ,在△ABD 中,AE AB =AHAD=λ, ∴EH ∥BD ,且EH =λBD . 在△CBD 中,CF CB =CGCD=μ,∴FG ∥BD ,且FG =μBD ,∴EH ∥FG ,∴顶点E 、F ,G 、H 在由EH 和FG 确定的平面内. (1)当λ=μ时.EH =FG ,故四边形EFGH 为平行四边形; (2)当λ≠μ时.EH ≠FG ,故四边形EFGH 是梯形.课后作业(六) (时间45分钟)学业水平合格练(时间20分钟)1.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面D .相交或异面[解析] 可能相交也可能异面,选D.[答案] D2.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是( )[解析] 易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C中RS与PQ是异面直线.[答案] C3.异面直线a,b,有aα,bβ,且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交[解析] 若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.[答案] D4.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线 B .C 1C 与AE 共面 C .AE 与B 1C 1是异面直线D .AE 与B 1C 1所成的角为60°[解析] 由于CC 1与B 1E 都在平面C 1B 1BC 内,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC 内,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.[答案] C5.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断正确的是( ) A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )[解析] 取BC 的中点E ,连接ME ,EN ,又M 、N 分别为AB 、CD 的中点, ∴ME 綊12AC ,EN 綊12BD ,又在△EMN 中,ME +EN >MN ,∴12(AC +BD )>MN . [答案] D6.在四棱锥P -ABCD 中,各棱所在的直线互相异面的有________对.[解析] 以底边所在直线为准进行考查,因为四边形ABCD 是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.[答案] 87.如图,正方体ABCD-A1B1C1D1中,AC与BC1所成角的大小是________.[解析] 连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD—A1B1C1D1中,AC =AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.[答案] 60°8.如图,在三棱锥A-BCD中,E,F,G分别是AB,BC,AD的中点,∠GEF=120°,则BD和AC所成角的度数为________.[解析] 依题意知,EG∥BD,EF∥AC,所以∠GEF所成的角或其补角即为异面直线AC 与BD所成的角,又∠GEF=120°,所以异面直线BD与AC所成的角为60°.[答案] 60°9.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.[解] 取AC 的中点G ,连接EG ,FG , 则FG ∥CD ,EG ∥AB ,所以∠FEG 即为EF 与AB 所成的角(或其补角), 且FG =12CD ,EG =12AB ,所以FG =EG .又由AB ⊥CD 得FG ⊥EG , 所以∠FEG =45°.故EF 和AB 所成的角为45°.10.在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点.求证:∠NMP =∠BA 1D.[证明] 如图,连接CB 1、CD 1,∵CD 綊A 1B 1∴四边形A1B1CD是平行四边形∴A1D∥B1C.∵M、N分别是CC1、B1C1的中点∴MN∥B1C,∴MN∥A1D.∵BC綊A1D1,∴四边形A1BCD1是平行四边形∴A1B∥CD1.∵M、P分别是CC1、C1D1的中点,∴MP∥CD1∴MP∥A1B∴∠NMP和∠BA1D的两边分别平行且方向都相反∴∠NMP=∠BA1D.应试能力等级练(时间25分钟)11.若直线a、b分别与直线l相交且所成的角相等,则a、b的位置关系是( ) A.异面B.平行C.相交D.三种关系都有可能[解析] 以正方体ABCD-A1B1C1D1为例.A1B1、AB所在直线与BB1所在直线相交且所成的角相等,A1B1∥AB;A1B1、BC所在直线与BB1所在直线相交且所成的角相等,A1B1与BC是异面直线;AB、BC所在直线与AC所在直线相交且所成的角相等,AB与BC相交,故选D.[答案] D12.如图所示,空间四边形ABCD的对角线AC=8,BD=6,M、N分别为AB、CD的中点,并且异面直线AC与BD所成的角为90°,则MN等于( )A .5B .6C .8D .10[解析] 如图,取AD 的中点P ,连接PM 、PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5.[答案] A13.如图正方体ABCD -A 1B 1C 1D 1中,与AD 1异面且与AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.[解析] 与AD 1异面的面对角线分别为:A 1C 1、B 1C 、BD 、BA 1、C 1D ,其中只有B 1C 和AD 1所成的角为90°.[答案] 114.已知空间四边形ABCD 中,AB ≠AC ,BD =BC ,AE 是△ABC 的边BC 上的高,DF 是△BCD 的边BC 上的中线,则直线AE 与DF 的位置关系是________.[解析] 由已知,得E 、F 不重合. 设△BCD 所在平面为α则DF α,A ∉α,E ∈α,E ∉DF ∴AE 与DF 异面. [答案] 异面15.梯形ABCD 中,AB ∥CD ,E 、F 分别为BC 和AD 的中点,将平面DCEF 沿EF 翻折起来,使CD 到C ′D ′的位置,G 、H 分别为AD ′和BC ′的中点,求证:四边形EFGH 为平行四边形.[证明] ∵梯形ABCD 中,AB ∥CDE 、F 分别为BC 、AD 的中点∴EF ∥AB 且EF =12(AB +CD )又C ′D ′∥EF ,EF ∥AB ,∴C ′D ′∥AB . ∵G 、H 分别为AD ′、BC ′的中点∴GH ∥AB 且GH =12(AB +C ′D ′)=12(AB +CD )∴GH 綊EF ,∴四边形EFGH 为平行四边形.。
高中数学北师大版必修二课件:第一章 立体几何初步

向量的加法运算:向量加法遵循平行四边形 法则如(x1, y1, z1) + (x2, y2, z2) = (x1+x2, y1+y2, z1+z2)
添加 标题
向量的减法运算:向量减法遵循平行四边形 法则如(x1, y1, z1) - (x2, y2, z2) = (x1x2, y1-y2, z1-z2)
向量积的坐标表示:两个向量的向 量积的坐标表示为两个向量坐标的 乘积
添加标题
添加标题
添加标题
添加标题
混合积:三个向量的混合积是一个 向量其坐标表示为三个向量坐标的 乘积
混合积的坐标表示:三个向量的混 合积的坐标表示为三个向量坐标的 乘积
总结与展望
本章内容的总结与回顾
本章主要介绍了立体几何的基本概念和性质包括点、线、面、体等。 学习了立体几何的度量方法如长度、角度、体积等。 掌握了立体几何的证明方法如平行、垂直、相似等。 学习了立体几何的应用如空间图形的绘制、空间物体的测量等。 展望未来我们将继续深入学习立体几何掌握更多的知识和技能为未来的学习和工作打下坚实的基础。
棱锥的表面积和体积
棱锥的定义: 由一个多边 形底面和若 干个侧面组 成的几何体
棱锥的表面 积:底面积+ 侧面积
棱锥的体积: 底面积×高 ÷3
棱锥的表面 积和体积的 计算公式: S=πr²+n(l ×h)V=πr²h /3
棱锥的表面 积和体积的 应用:建筑、 工程等领域
球的表面积和体积
球的表面积:4πr^2 球的体积:4/3πr^3 球的表面积和体积公式推导 球的表面积和体积在实际生活中的应用
几何性质:立体几何具有空间位置、 形状、大小等性质平面几何具有位 置、形状等性质
2020秋新版高中数学北师大版必修2课件:第一章立体几何初步 1.4.2 .pptx

=
23,
∴DE∥MN,∴DE∥AC.
-13-
第2课时 异面直线所成的角
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D典例透析 IANLI TOUXI
S随堂演练 UITANGYANLIAN
题型一 题型二 题型三
【例2】
题型二 等角定理的应用
如图所示,在正方体ABCD-A1B1C1D1中,E,F,E1,F1分别为棱 AD,AB,B1C1,C1D1的中点.
∴△EFG为等腰直角三角形,
∴∠GFE=45°,即EF与AB所成的角为45°.
-19-
第2课时 异面直线所成的角
题型一 题型二 题型三
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D典例透析 IANLI TOUXI
S随堂演练 UITANGYANLIAN
反思构造异面直线所成的角的方法:①过其中一条直线上的已知
点(往往是特殊点)作另一条直线的平行线,使异面直线所成的角转
化为相交直线所成的角(或其补角).②当异面直线依附于某几何体,
且直接对异面直线平移有困难时,可利用该几何体的特殊点,将两
条异面直线分别平移相交于该点.③当两条异面直线互相垂直时,
欲求它们所成的角,实际上是要通过证明得出结论.
-20-
第2课时 异面直线所成的角
当 θ=90°时,a 与 b 互相垂直,记作 a⊥b
-8-
第2课时 异面直线所成的角
M Z 目标导航 UBIAODAOHANG
知识梳理
HISHI SHULI
D S 典例透析 IANLI TOUXI
随堂演练
UITANGYANLIAN
2019-2020高中数学 第一章 立体几何初步 1.1.2 简单多面体学案 北师大版必修2

1.2 简单多面体学习目标 1.通过对实物模型的观察,归纳认知简单多面体——棱柱、棱锥、棱台的结构特征(重点);2.能运用棱柱、棱锥、棱台的结构特征解决简单多面体的有关计算(重、难点).知识点一多面体我们把若干个平面多边形围成的几何体叫作多面体.其中棱柱、棱锥、棱台都是简单多面体. 【预习评价】(正确的打“√”,错误的打“×”)(1)多面体至少四个面.(√)(2)多面体的面都是平的,多面体没有曲面.(√)知识点二棱柱的结构特征定义图形及表示相关概念分类两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱.如图可记作:棱柱ABCDEF-A′B′C′D′E′F′底面:两个互相平行的面.侧面:其余各面.侧棱:两个侧面的公共边.顶点:底面多边形与侧面的公共顶点.按底面多边形的边数分:三棱柱、四棱柱、……棱柱的侧面一定是平行四边形吗?提示根据棱柱的概念侧棱平行、底面平行可知,棱柱的侧面一定是平行四边形.知识点三棱锥的结构特征定义图形及表示相关概念分类有一个面是多边形,其余各面是有一个公共顶点的三角形,这些面围成的几何体叫作棱锥.如图可记作,棱锥S-ABCD底面:多边形面.侧面:有公共顶点的各个三角形面.侧棱:相邻侧面的公共边.顶点:各侧面的公共顶点.按底面多边形的边数分:三棱锥、四棱锥、……(1)五棱锥共有五个面.(×)(2)三棱锥也叫四面体.(√)(3)棱锥的侧棱长都相等.(×)知识点四棱台的结构特征定义图形及表示相关概念分类用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台.如图可记作:棱台ABCD-A′B′C′D′上底面:原棱锥的截面.下底面:原棱锥的底面.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.由三棱锥、四棱锥、五棱锥…截得的棱台分别叫做三棱台、四棱台、五棱台……棱台的上下底面互相平行,各侧棱延长线一定相交于一点吗?提示根据棱台的定义可知其侧棱延长线一定交于一点.题型一棱柱的结构特征【例1】下列说法中,正确的是( )A.棱柱中所有的侧棱都相交于一点B.棱柱中互相平行的两个面叫作棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱相等,侧面是平行四边形解析A选项不符合棱柱的特点;B选项中,如图①,构造四棱柱ABCD-A1B1C1D1,令四边形ABCD是梯形,可知平面ABB1A1∥平面DCC1D1,但这两个面不能作为棱柱的底面;C选项中,如图②,底面ABCD可以是平行四边形;D选项是棱柱的特点.故选D.答案 D规律方法棱柱的结构特征:(1)两个面互相平行;(2)其余各面都是四边形;(3)每相邻两个四边形的公共边都互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.【训练1】根据下列关于空间几何体的描述,说出几何体名称:(1)由6个平行四边形围成的几何体.(2)由8个面围成,其中两个面是平行且全等的六边形,其余6个面都是平行四边形.解(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)该几何体是六棱柱.题型二棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:①棱台的侧面一定不会是平行四边形;②由四个平面围成的封闭图形只能是三棱锥;③棱锥被平面截成的两部分不可能都是棱锥.其中正确说法的序号是________.解析①正确,棱台的侧面一定是梯形,而不是平行四边形;②正确,由四个平面围成的封闭图形只能是三棱锥;③错误,如图所示四棱锥被平面截成的两部分都是棱锥.答案①②规律方法判断棱锥、棱台形状的两个方法:(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确. (2)直接法:棱锥棱台定底面只有一个面是多边形,此面即为底面两个互相平行的面,即为底面看侧棱相交于一点延长后相交于一点A.三棱锥B.四棱锥C.三棱台D.四棱柱解析剩余部分是四棱锥A′-BB′C′C.答案 B【探究1】画出如图所示的几何体的表面展开图.解表面展开图如图所示:【探究2】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.请将字母F,G,H标记在正方体相应的顶点处(不需说明理由).解点F,G,H的位置如图所示.【探究3】如图所示,已知三棱锥P-ABC的底面是正三角形且三条侧棱两两成30°角,侧棱长为18 cm,从点A引一条丝带绕侧面一周回到A点,设D,E分别为丝带经过PC,PB 时的交点,则△ADE周长的最小值为多少?解把三棱锥P-ABC的侧面沿侧棱PA剪开,并展开在平面上,得到平面图形PABCA′,如图所示,则当A,E,D,A′四点共线时,△ADE的周长取得最小值,即线段AA′的长度.∵∠APB=∠BPC=∠CPA′=30°,∴∠APA′=90°.又AP=A′P=18 cm,∴AA′=18 2 cm.则△ADE周长的最小值为18 2 cm.【探究4】长方体中,a,b,c为棱长,且a>b>c,求沿长方体表面从P到Q的最小距离(其中P,Q是长方体对角线的两个端点).解将长方体展开,有三种情况(如图).d1=a2+(b+c)2=a2+b2+c2+2bc,d2=c2+(a+b)2=a2+b2+c2+2ab,d3=b2+(a+c)2=a2+b2+c2+2ac,因为a>b>c,故d min=d1=a2+(b+c)2.规律方法多面体表面展开图问题的解题策略:(1)绘制展开图:绘制多面体的表面展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型.在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其表面展开图.(2)已知展开图:若是给出多面体的表面展开图,来判断是由哪一个多面体展开的,则可把上述过程逆推.同一个几何体的表面展开图可能是不一样的,也就是说,一个多面体可有多个表面展开图.课堂达标1.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形解析由于三棱柱的侧面为平行四边形,故选项D错.答案 D2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析形成的几何体前后两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,符合棱柱的定义.答案 A3.下列三个命题:①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是菱形的多面体是棱台;③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.其中,正确的有( )A.0个B.1个C.2个D.3个解析①中的平面不一定平行于底面,故①错;②中侧面是菱形,所以侧棱互相平行,延长后无交点,故②错;③用反例验证(如图),故③错.答案 A4.对棱柱而言,下列说法正确的序号是________.①有两个平面互相平行,其余各面都是平行四边形.②所有的棱长都相等.③棱柱中至少有2个面的形状完全相同.④相邻两个面的交线叫作侧棱.解析①正确,根据棱柱的定义可知;②错误,因为侧棱与底面上棱长不一定相等;③正确,根据棱柱的特征知,棱柱中上下两个底面一定是全等的,即棱柱中至少有两个面的形状完全相同;④错误,因为底面和侧面的交线不是侧棱.答案①③5.如图是三个几何体的侧面展开图,请问各是什么几何体?解 由几何体的侧面展开图的特点,结合棱柱、棱锥、棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以(1)为五棱柱;(2)为五棱锥;(3)为三棱台.课堂小结1.棱柱、棱锥、棱台的关系在运动变化的观点下,棱柱、棱锥、棱台之间的关系可以用下图表示出来(以三棱柱、三棱锥、三棱台为例).2.(1)各种棱柱之间的关系 ①棱柱的分类棱柱⎩⎪⎨⎪⎧直棱柱⎩⎪⎨⎪⎧正棱柱一般的直棱柱斜棱柱②常见的几种四棱柱之间的转化关系(2)棱柱、棱锥、棱台在结构上既有区别又有联系,具体见下表: 名称 底面 侧面侧棱高平行于底面的截面 棱柱斜棱柱 平行且全等的两个多边形平行四边形 平行且相等与底面全等直棱柱平行且全等的两个多边形矩形平行、相等且垂直于底面等于侧棱与底面全等正棱柱平行且全等的两个正多边形全等的矩形平行、相等且垂直于底面等于侧棱与底面全等棱锥正棱锥一个正多边形全等的等腰三角形有一个公共顶点且相等过底面中心与底面相似其他棱锥一个多边形三角形有一个公共顶点与底面相似棱台正棱台平行且相似的两个正多边形全等的等腰梯形相等且延长后交于一点与底面相似其他棱台平行且相似的两个多边形梯形延长后交于一点与底面相似基础过关1.一般棱台不具有的性质是( )A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析当棱台是斜棱台时其侧棱不全相等.答案 C2.下列关于棱柱的说法错误的是( )A.所有的棱柱两个底面都平行B.所有的棱柱一定有两个面互相平行,其余各面每相邻面的公共边互相平行C.有两个面互相平行,其余各面都是四边形的几何体一定是棱柱D.棱柱至少有五个面解析对于A、B、D,显然是正确的;对于C,棱柱的定义是这样的:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱,显然题中漏掉了“并且每相邻两个四边形的公共边都互相平行”这一条件,因此所围成的几何体不一定是棱柱.如图所示的几何体就不是棱柱,所以C错误.答案 C3.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1解析由棱台的结构特征知,棱台上、下底面是相似多边形,面积比为对应边之比的平方,故选B.答案 B4.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析因棱柱有10个顶点,所以棱柱为五棱柱,共有五条侧棱,所以侧棱长为605=12 cm.答案125.一个无盖的正方体盒子展开后的平面图如图所示,A,B,C是展开图上的三点,则在正方体盒子中∠ABC=________.解析如图所示,将平面图折成正方体.很明显点A,B,C是上底面正方形的三个顶点,则∠ABC=90°.答案90°6.如图所示为长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′-CFC′,其中△BEB′和△CFC′是底面,EF,B′C′,BC是侧棱.截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′-DCFD′.其中四边形ABEA′和四边形DCFD′是底面,A′D′,EF,BC,AD为侧棱.7.如图所示,有12个小正方体,每个正方体6个面上分别写着数字1,9,9,8,4,5,用这12个小正方体拼成一个长方体,那么图中看不见的那些小正方体的面有多少个,并求这些面上的数字和.解这12个小正方体,共有6×12=72个面,图中看得见的面共有3+4×4=19个,故图中看不见的面有72-19=53个,12个小正方体各个面的数字的和为(1+9+9+8+4+5)×12=432.而图中看得见的数字的和为131,所以看不见的那些小正方体的面上的数字的和为432-131=301.能力提升8.如图所示,不是正四面体的展开图的是( )A.①③B.②④C.③④D.①②解析可选择阴影三角形作为底面进行折叠,发现①②可折成正四面体,③④不论选哪一个三角形作底面折叠都不能折成正四面体.答案 C9.下列命题中,真命题是( )A.顶点在底面上的投影到底面各顶点的距离相等的三棱锥是正三棱锥B.底面是正三角形,各侧面是等腰三角形的三棱锥是正三棱锥C.顶点在底面上的投影为底面三角形的垂心的三棱锥是正三棱锥D.底面是正三角形,并且侧棱都相等的三棱锥是正三棱锥解析对于选项A,到三角形各顶点距离相等的点为三角形外心,该三角形不一定为正三角形,故该命题是假命题;对于选项B,如图所示,△ABC为正三角形,若PA=PB=AB=BC=AC≠PC,△PAB,△PBC,△PAC都是等腰三角形,但它不是正三棱锥,故该命题是假命题;对于选项C,顶点在底面上的投影为底面三角形的垂心,底面为任意三角形皆可,故该命题是假命题;对于选项D,顶点在底面上的正投影是底面三角形的外心,又因为底面三角形为正三角形,所以外心即为中心,故该命题是真命题.答案 D10.如图所示,在所有棱长为1的直三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.解析 将三棱柱沿AA 1展开如图所示,则线段AD 1即为最短路线,即AD 1=AD 2+DD 21=10.答案 1011.在正方体上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体. 解析 在正方体ABCD -A 1B 1C 1D 1上任意选择4个顶点,它们可能是如下各种几何体或几何图形的4个顶点,这些几何体或几何图形是:①矩形,如四边形ACC 1A 1;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体,如A -A 1BD ;④每个面都是等边三角形的四面体,如A -CB 1D 1;⑤每个面都是直角三角形的四面体,如A -A 1DC ,所以填①③④⑤. 答案 ①③④⑤12.如图,在边长为2a 的正方形ABCD 中,E ,F 分别为AB ,BC 的中点,沿图中虚线将3个三角形折起,使点A 、B 、C 重合,重合后记为点P .问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?解 (1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF 为等腰三角形,△PEF 为等腰直角三角形,△DPE 和△DPF 均为直角三角形.(3)S △PEF =12a 2, S △DPF =S △DPE =12×2a ×a =a 2,S △DEF =S 正方形ABCD -S △PEF -S △DPF -S △DPE=(2a )2-12a 2-a 2-a 2=32a 2. 13.(选做题)已知正四棱锥V -ABCD 如图所示,底面面积为16,侧棱长为211,求它的高和斜高.解 如图所示,设VO 为正四棱锥V -ABCD 的高,作VM ⊥BC 于点M ,则M 为BC 的中点.连接OB 、OM ,则VO ⊥OM ,VO ⊥OB .因为底面正方形ABCD 的面积为16,所以BC =4,所以BM =CM =OM =2,所以OB =BM 2+OM 2=22+22=2 2.又因为VB =211,所以在R t△VOB 中,VO =VB 2-OB 2=(211)2-(22)2=6,在Rt△VOM (或Rt△VBM )中,VM =62+22=210(或VM =(211)2-22=210).即正四棱锥的高为6,斜高为210.。
2020_2021学年高中数学第一章立体几何初步1.7.2.2棱台与圆台的体积课件北师大版必修2

【解】 设上、下底面半径分别为 r,R,过点 A1 作 A1D⊥ AB 于点 D,则 A1D=3,∠BA1A=90°.∵∠A1AB=60°,
∴∠BA1D=60°,∴AD=taAn16D0°= 3,即 R-r= 3. 又∵BD=A1D·tan60°=3 3, ∴R+r=3 3,∴R=2 3,r= 3.又∵h=3, ∴圆台的体积 V 圆台=13πh(R2+Rr+r2) =13π×3×[(2 3)2+2 3× 3+( 3)2]=21π.
于是 6πl=20π,解得 l=130,
∴圆台高 h= l2-R-r2= 1090-4=83,
∴圆台体积
V=
1 3
π·h·(R2
+r2
+
Rr)=13
π×
8 3
×(16
+
4
+
8)
=
224π 9.
类型三 实际应用问题 【例 3】 降雨量是指水平地面上单位面积降落雨水的深 度,今用上口直径为 32 cm,底面直径为 24 cm,深为 35 cm 的 水桶接收雨水,如果积水达到桶深的14处,则降雨量是多少毫米?
第一章
立体几何初步
§7 简单几何体的再认识
7.2 柱、锥、台的体积
第2课时 棱台与圆台的体积
01 预习篇
02课堂篇
03提高篇
04 巩固篇
课时作业
知识点 棱台和圆台的体积
[填一填] 1 台体(棱台和圆台)的体积公式:V 台体=3(S
上+S
下+
S上·S、下底面面积,h 为台体的高.特别
OE=12AB=10,∴O1O= E1E2-OE-O1E12=12, V 正四棱台=13×12×(102+202+10×20)=2 800(cm3). 故正四棱台的体积为 2 800 cm3.
2020-2021学年高中数学 第一章 立体几何初步 1.1 简单几何体 1.1.1 简单旋转体课件 北师大版必修2

所围成的几何体 侧面:不垂直于旋转
叫作圆柱
轴的边旋转而成的 ____曲__面_____;
名 称
定义
相关概念
圆 锥
以直角三角形的 __一__条__直__角__边___ 所在的直线为旋 转轴,其余各边 旋转而形成的曲 面所围成的几何 体叫作圆锥
高:在旋转轴上这 条边的长度; 底面:垂直于旋转 轴的边旋转而成的 ____圆__面_____; 侧面:不垂直于旋 转轴的边旋转而成 的__曲__面_______;
步
§1 简单几何体
1.1 简单旋转体
1.问题导航 (1)连接圆柱(圆台)两底面的圆心的连线与其底面有怎样的位 置关系? (2)有同学说:“直角三角形绕其一边所在的直线旋转一周所 形成的几何体是圆锥.”这种说法对吗? (3)圆台中,上底面半径r、下底面半径R、高h与母线l之间有 怎样的关系?
图形表示
名
定义
相关概念
称
以_直__角__梯__形__垂_直___ _于__底__边__的__腰___所
母线:无 论转到什
在的直线为旋转
圆
么位置,
轴,其余各边旋
台
这条边都
转而形成的曲面
叫作侧面
所围成的几何体
的母线
叫作圆台
图形表示
1.判断正误.(正确的打“√”,错误的打“×”) (1)矩形绕其一边所在直线旋转一周而形成的曲面所围成的几何 体是圆柱.( √ ) (2)直角三角形绕其一边所在直线旋转一周而形成的曲面所围成 的几何体是圆锥.( × ) (3)直角梯形绕其腰所在直线旋转一周而形成的曲面所围成的几 何体是圆台.( × ) (4)圆以一条直径所在的直线为轴,旋转180°围成的几何体是 球.( √ )
2020年高中数学第一章立体几何初步章末总结归纳课件北师大版必修2

2.已知 m,n 表示两条不同直线,α 表示平面,下列说法正 确的是( )
A.若 m∥α,n∥α,则 m∥n B.若 m⊥α,n α,则 m⊥n
C.若 m⊥α,m⊥n,则 n∥α D.若 m∥α,m⊥n,则 n⊥α
解析:若直线与平面垂直,则直线与该平面内的任意一条直 线都垂直.
答案:B
3.一个由半球和四棱锥组成的几何体,其三视图如图所示.则
∴平面 BDE⊥平面 PAC.
(3)∵PA∥平面 BDE,平面 PAC∩平面 BDE=DE, ∴PA∥DE. ∵D 为 AC 的中点, ∴DE=12PA=1,BD=DC= 2. 由(1)知,PA⊥平面 ABC,∴DE⊥平面 ABC. ∴三棱锥 E-BCD 的体积 V=16BD·DC·DE=13.
对于规则几何体的表面积和体积问题,可直接利用公式求 解.在求解时首先判断几何体的形状及结构特征,确定基本量, 然后选择公式求解.复杂几何体可通过分割,补形,变换底面等 方式转化为基本几何体求解.
【答案】 (1)B (2)B
立体几何中的平行与垂直关系的判定定理与性质定理较多, 应熟练掌握这些定理,要明确它们之间并不是彼此孤立的,做题 时要充分运用它们之间的联系,转化与化归思想是本部分内容常 用的思想,往往通过作辅助线或辅助平面达到转化的目的.
(2017·北京卷)如图,在三棱锥 P-ABC 中,PA⊥AB,PA⊥BC,AB⊥BC, PA=AB=BC=2,D 为线段 AC 的中点,E 为线段 PC 上一点.
2019-2020高中数学 第一章 立体几何初步章末复习课学案 北师大版必修2

第一章立体几何初步章末复习课网络构建核心归纳1.多面体的结构特征(1)棱柱的侧棱都互相平行且相等,上下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. 2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在的直线旋转一周得到.(2)圆锥可以由绕直角三角形一条直角边所在的直线旋转一周得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线或等腰梯形绕上、下底面中心连线旋转一周得到,也可由平行于底面的平面截圆锥得到. (4)球可以由半圆或圆绕直径所在直线旋转一周得到. 3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′=45°,已知图形中平行于x 轴、y轴的线段,在直观图中平行于x ′轴、y ′轴.已知图形中平行于x 轴的线段,在直观图中长度不变,平行于y 轴的线段,长度变为原来的一半. (2)画几何体的高在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴,也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度不变. 4.空间几何体的三视图空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是全等的,三视图包括主视图、左视图、俯视图. 5.平面的基本性质公理1 过不在一条直线上的三点,有且只有一个平面.公理2 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 6.(1)公理4 平行于同一条直线的两直线平行. (2)空间直线与直线的位置关系有且只有三种:⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内,没有公共点.7.直线与平面的位置关系(1)直线a与平面α的位置关系有平行、相交、在平面内,其中平行与相交统称直线在平面外.(2)直线和平面平行的判定①定义:直线和平面没有公共点,则称直线平行平面;②判定定理:aα,bα,a∥b⇒a∥α;③其他判定方法:α∥β,aα⇒a∥β.(3)直线和平面平行的性质定理:a∥α,aβ,α∩β=l⇒a∥l.(4)直线和平面垂直①定义如果一条直线l和一个平面α内的任意一条直线都垂直,那么就说这条直线和平面α互相垂直.②判定与性质a.判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.b.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.8.两平面的位置关系(1)两个平面的位置关系有平行、相交.(2)两个平面平行的判定①定义:两个平面没有公共点,称这两个平面平行;②判定定理:aα,bα,a∩b=M,a∥β,b∥β⇒α∥β;(3)两个平面平行的性质定理α∥β,aα⇒a∥β;α∥β,r∩α=a,r∩β=b⇒a∥b.(4)与垂直相关的平行的判定①a⊥α,b⊥α⇒a∥b;②a⊥α,a⊥β⇒α∥β.(5)两个平面垂直①二面角的平面角以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.②定义如果两个相交平面所成的二面角是直二面角,就说这两个平面互相垂直.③判定和性质a.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.b.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.9.多面体的侧面积(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=ch .(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=12nah ′=12ch ′.(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则S 正棱台侧=12n (a +a ′)h ′=12(c +c ′)h ′.10.旋转体的表面积(1)如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面积为2πrl .因此,圆柱的表面积S =2πr 2+2πrl =2πr (r +l ).(2)如果圆锥的底面半径为r ,母线长为l ,那么它的侧面积为πrl ,表面积S =πr 2+πrl =πr (r +l ).(3)如果圆台的两底面半径分别为r ′、r ,母线长为l ,则侧面积为π(r ′+r )l ,表面积为S =π(r ′2+r 2+r ′l +rl ).(4)球的表面积公式:S =4πR 2(其中R 为球的半径)即球面面积等于它的大圆面积的四倍. 11.几何体的体积公式(1)柱体的体积V 柱体=Sh (其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h . (2)锥体的体积V 锥体=13Sh (其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h .(3)台体的体积V 台体=13h (S +SS ′+S ′)(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh (r 2+rr ′+r ′2).(4)球的体积V 球=43πR 3(其中R 为球的半径).要点一 三视图与直观图由三视图确定几何体分三步:第一步:通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.第三步:由“长对正、高平齐、宽相等”的原则确定几何体的尺寸.【例1】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.6C.4 2D.4解析由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC为等腰直角三角形,AB=BC=4,取BC的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD中,BD=DC=25,BC=DM=4,所以在Rt△AMD中,AD=AM2+DM2=42+22+42=6,又在Rt△ABC中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.答案 B【训练1】某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解析由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -PA 1C 1的体积为30-6=24.故选C.答案 C【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V =4×2×2+12π×22×4=16+8π.故选A. 答案 A要点二 空间中的平行关系 1.判断线面平行的两种常用方法:面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面. 2.判断面面平行的常用方法: (1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β).【例2】 如图所示,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?若存在,请确定点F 的位置;若不存在,请说明理由.解 当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图连接AC 和BD 交于点O ,连接FO ,则PF =12PB .∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,∴OF ∥PD . 又O F⃘平面PMD ,PD 平面PMD , ∴OF ∥平面PMD .又MA 綊12PB ,∴PF 綊MA ,∴四边形AFPM 是平行四边形, ∴AF ∥PM .又A F⃘平面PMD ,PM 平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF 平面AFC ,OF 平面AFC . ∴平面AFC ∥平面PMD .【训练3】 如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H . 证明 (1)如图,取B 1D 1中点O , 连接GO ,OB ,易证OG 綊12B 1C 1,BE 綊12B 1C 1,∴OG 綊BE ,四边形BEGO 为平行四边形. ∴OB ∥GE .∵OB 平面BDD 1B 1,G E⃘平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD , ∵B 1D 1平面BDF ,B D⃘平面BDF ,∴B 1D 1∥平面BDF . 连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF . ∵HD 1平面BDF ,BF 平面BDF ,∴HD 1∥平面BDF . ∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H . 要点三 空间中的垂直关系 空间垂直关系的判定方法: (1)判定线线垂直的方法:①计算所成的角为90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若a ⊥α,b α,则a ⊥b ). (2)判定线面垂直的方法:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a ⊥b ,a ⊥c ,b α,c α,b ∩c =M ⇒a ⊥α); ③平行线垂直平面的传递性质(a ∥b ,b ⊥α⇒a ⊥α);④面面垂直的性质(α⊥β,α∩β=l ,a β,a ⊥l ⇒a ⊥α); ⑤面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑥面面垂直的性质(α∩β=l ,α⊥γ,β⊥γ⇒l ⊥γ). (3)面面垂直的判定方法:①根据定义(作两平面构成二面角的平面角,计算其为90°); ②面面垂直的判定定理(a ⊥β,a α⇒α⊥β).【例3】 如图,A ,B ,C ,D 为空间四点.在△ABC 中,AB =2,AC =BC =2,等边三角形ADB 以AB 为轴运动. (1)当平面ADB ⊥平面ABC 时,求CD 的长;(2)当△ADB 转动时,是否总有AB ⊥CD ?证明你的结论.解 (1)如图,取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB .当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC =AB ,所以DE ⊥平面ABC ,因为CE平面ABC ,可知DE ⊥CE ,由已知可得DE=3,EC =1,在Rt△DEC 中,CD =DE 2+EC 2=2. (2)当△ADB 以AB 为轴转动时,总有AB ⊥CD .证明如下:①当D 在平面ABC 内时,因为AC =BC ,AD =BD , 所以C ,D 都在线段AB 的垂直平分线上,即AB ⊥CD . ②当D 不在平面ABC 内时,取AB 中点E ,由(1)知AB ⊥DE .又因AC =BC ,所以AB ⊥CE .又DE ,CE 为相交直线,所以AB ⊥平面CDE ,由CD 平面CDE ,得AB ⊥CD .综上所述,总有AB ⊥CD .【训练4】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 ∵O ,M 分别为AB ,VA 的中点, ∴OM ∥VB .∵V B⃘平面MOC ,OM 平面MOC , ∴VB ∥平面MOC .(2)证明 ∵AC =BC ,O 为AB 的中点,∴OC ⊥AB .又∵平面VAB ⊥平面ABC ,且平面VAB ∩平面ABC =AB ,OC 平面ABC ,∴OC ⊥平面VAB . ∵OC 平面MOC ,∴平面MOC ⊥平面VAB . (3)解 在等腰直角△ACB 中,AC =BC =2, ∴AB =2,OC =1, ∴S △VAB =34AB 2= 3. ∵OC ⊥平面VAB ,∴V C -VAB =13OC ·S △VAB =13×1×3=33,∴V V -ABC =V C -VAB =33. 要点四 几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常遇到的问题,如制作物体中的如何下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的使用,对于圆柱、圆锥、圆台,要重视旋转轴所在轴截面、底面圆的作用.割补法、构造法是常用的技巧.【例4】 如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求三棱柱ABC -A ′B ′C ′的体积. 解 连接A ′B ,A ′C ,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练5】 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113解析 圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,故选B. 答案 B【训练6】 已知某一多面体内接于球构成一个简单组合体,如果该组合体的主视图、左视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析 由三视图知,组合体是棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积S =4π⎝ ⎛⎭⎪⎫2322=12π.答案 12π要点五 线线角、线面角和二面角问题(1)两条异面直线所成的角的范围是(0°,90°].找两条异面直线所成的角,关键是选取合适的点,引两条异面直线的平行线,这两条相交直线所成的锐角或直角即为两条异面直线所成的角.特别地,两条异面直线垂直,可由线面垂直得到.(2)直线和平面所成的角的范围是 [0°,90°].找线面角的关键是找到直线与其在平面内的射影的夹角.当线面角为0°时,直线与平面平行或直线在平面内;当线面角为90°时,直线与平面垂直.(3)如果求两个相交平面所成的二面角,除垂直外,均有两个答案,即θ或180°-θ.具体几何体中,由题意和图形确定.作二面角的平面角时,首先要确定二面角的棱,然后结合题设构造二面角的平面角.一般常用:①定义法;②垂面法.(4)求角度问题时,无论哪种情况,最终都归结到两条相交直线所成的角的问题.求角度的解题步骤:①找出这个角;②证该角符合题意;③构造出含这个角的三角形,解这个三角形,求出角.【例5】 如图所示,矩形ABCD 中,AB =6,BC =23,沿对角线BD 将△ABD 折起,使点A 移至点P ,P 在平面BCD 内的投影为O ,且O 在DC 上. (1)求证:PD ⊥PC ;(2)求二面角P -DB -C 的余弦值.(1)证明 P 在平面BCD 内的投影为O , 则PO ⊥平面BCD ,∵BC 平面BCD ,∴PO ⊥BC .∵BC ⊥CD ,CD ∩PO =O ,∴BC ⊥平面PCD . ∵DP 平面PCD ,∴BC ⊥DP .又∵DP ⊥PB ,PB ∩BC =B ,∴DP ⊥平面PBC . 而PC 平面PBC ,∴PD ⊥PC .(2)解 △PBD 在平面BCD 内的投影为△OBD , 且S △PBD =12×6×23=63,S △OBD =S △CBD -S △BOC =63-12×23×OC .在Rt△DPC 中,PC 2=DC 2-DP 2=24.设OC =x ,则OD =6-x , ∴PC 2-OC 2=DP 2-DO 2,即24-x 2=12-(6-x )2,解得x =4. ∴S △BOD =63-43=2 3.过点P 作PQ ⊥DB ,连接OQ ,则DB ⊥平面OPQ , ∴∠OQP 即为二面角P -DB -C 的平面角, ∴cos∠OQP =S △BOD S △PBD =2363=13. ∴二面角P -DB -C 的余弦值为13.【训练7】 在长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A.30° B.45° C.60°D.90°解析 由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°. 答案 D基础过关1.设a ,b ,c 是空间的三条直线,给出以下三个命题:①若a ⊥b ,b ⊥c ,则a ⊥c ;②若a 和b 共面,b 和c 共面,则a 和c 也共面; ③若a ∥b ,b ∥c ,则a ∥c .其中正确命题的个数是( ) A.0 B.1 C.2D.3解析 借助正方体中的线线关系易知①②全错;由公理4知③正确. 答案 B2.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 解析 由三视图知,该几何体是一个三棱锥与半个圆柱的组合体.V =V 三棱锥+ 12V 圆柱=13×12×2×1×1+12×π×12×2=13+π.选A. 答案 A3.如图,已知正六棱柱的最大对角面的面积为4 m 2,互相平行的两个侧面的距离为2 m ,则这个六棱柱的体积为( ) A.3 m 3B.6 m 3C.12 m 3D.以上都不对解析 设底面边长为a ,高为h ,则a =233,又2×233×h =4,∴h =3,∴V =12×233×32×233×6×3=6(m 3),故选B.答案 B4.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是________.解析 将其还原成正方体ABCD -PQRS ,连接SC ,AS ,则PB ∥SC ,∴∠ACS (或其补角)是PB 与AC 所成的角,∵△ACS 为正三角形,∴∠ACS =60°,∴PB 与AC 所成的角是60°. 答案 60°5.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析 设正方体棱长为a ,则6a 2=18⇒a 2=3,a = 3. 外接球直径为2R =3a =3,R =32,V =43πR 3=43π×278=92π.答案 9π26.如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么? 解 直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴M N⃘平面A 1BC 1. 如图,取A 1C 1的中点O 1, 连接NO 1、BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB ,∴四边形NO 1BM 为平行四边形,∴MN ∥BO 1. 又∵BO 1平面A 1BC 1, ∴MN ∥平面A 1BC 1.7.如图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点. (1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角. (1)证明 如图,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF ,所以四边形BDEF 为平行四边形, 所以BD ∥EF .又因为BD 平面AA 1B 1B ,E F⃘平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解 如图,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt△EHF 中,FH =3,EH =AA 1=3, tan∠EFH =EH FH=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.能力提升8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144πD.256π解析 ∵S △OAB 是定值,且V O -ABC =V C -OAB ,∴当OC ⊥平面OAB 时,V C -OAB 最大,即V O -ABC 最大. 设球O 的半径为R ,则(V O -ABC )max =13×12R 2×R =16R 3=36,∴R =6,∴球O 的表面积S =4πR 2=4π×62=144π. 答案 C9.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23D.22解析 利用三棱锥的体积变换求解.由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.答案 A10.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,∴V 1V 2=S 1h 1S 2h 2=S 1h 12S 1×2h 1=14. 答案 1411.如图所示,在矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P ,∴DE ⊥平面PAE ,∵AE 平面PAE , ∴DE ⊥AE . 易证△ABE ∽△ECD . 设BE =x ,则AB CE =BE CD ,即3a -x =x3.∴x 2-ax +9=0,E 点有两个,即方程有两不同的实根,由Δ>0,解得a >6. 答案 (6,+∞)12.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点. (1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 如图,取BC 中点G ,连接AG ,EG . 因为E 是B 1C 的中点, 所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG . 又D E⃘平面ABC ,AG 平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥EG ,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.13.(选做题)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 ∵PA ⊥AB ,PA ⊥BC ,AB 平面ABC ,BC 平面ABC ,且AB ∩BC =B ,∴PA ⊥平面ABC ,又∵BD 平面ABC ,∴PA ⊥BD . (2)证明 ∵AB =BC ,D 是AC 的中点, ∴BD ⊥AC .由(1)知PA ⊥平面ABC ,∵PA 平面PAC ,∴平面PAC ⊥平面ABC . ∵平面PAC ∩平面ABC =AC ,BD 平面ABC ,BD ⊥AC ,∴BD ⊥平面PAC . ∵BD 平面BDE , ∴平面BDE ⊥平面PAC , (3)解 ∵PA ∥平面BDE , 又平面BDE ∩平面PAC =DE ,PA 平面PAC ,∴PA ∥DE .由(1)知PA ⊥平面ABC ,∴DE ⊥平面ABC . ∵D 是AC 的中点,∴E 为PC 的中点, ∴DE =12PA =1.∵D 是AC 的中点,∴S △BCD =12S △ABC =12×12×2×2=1,1 3×S△BCD×DE=13×1×1=13.∴V E-BCD=。