高中数学空间向量与立体几何知识点归纳总结

合集下载

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第七节 立体几何中的向量方法

第七节 立体几何中的向量方法一、空间向量与平行关系【知识点11】直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个. (2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 注:直线的方向向量(平面的法向量)不唯一?【例1】如图3,已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.【反思】1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z). (2)选向量:在平面内选取两个不共线向量,. (3)列方程组:由列出方程组. (4)解方程组:(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n=(x,y,z)的某个坐标为某特定值时一定要注意这个坐标不为0.[练习1]正方体ABCD­A1B1C1D1中,E、F分别为棱A1D1、A1B1的中点,在如图3­2­2所示的空间直角坐标系中,求:图3­2­2(1)平面BDD1B1的一个法向量;(2)平面BDEF的一个法向量.【知识点12】空间中平行关系的向量表示【类型一】用向量证明线线平行【例1】如图3­2­3所示,在正方体ABCD­A1B1C1D1中,E,F分别为DD1和BB1的中点.求证:四边形AEC1F是平行四边形.图3­2­3111111112EB1,BF=2F A1.求证:EF∥AC1.【类型二】用向量证明线面平行【例2】在正方体ABCD­A1B1C1D1中,M,N分别是CC1,B1C1的中点.求证:MN∥平面A1BD.【练习2】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD =4,EF=3,AE=BE=2,G是BC的中点,求证:AB∥平面DEG.【类型三】利用向量证明面面平行【例3】在正方体ABCD­A1B1C1D1中,M,N分别是CC1,B1C1的中点,试证明平面A1BD∥平面CB1D1.【练习3】如图3­2­9,在正方体ABCD­A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点.设Q是CC1上的点,则当点Q在什么位置时,平面D1BQ∥平面P AO?图3­2­9二、空间向量与垂直关系【知识点13】空间中垂直关系的向量表示【类型一】用向量证明线面垂直【例1】如图所示,正三棱柱ABC­A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.【练习1】如图3­2­15,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=2,AF=1,M是线段EF的中点.求证:AM⊥平面BDF.图3­2­15【类型二】用向量法证明面面垂直【例2】如图3­2­12所示,在直三棱柱ABC­A1B1C1中,AB⊥BC,AB=BC=2,BB1=1,E 为BB1的中点,证明:平面AEC1⊥平面AA1C1C.=2BD.求证:平面DEA⊥平面ECA.三、空间向量与空间角【知识点14】空间角的向量求解方法【类型一】求两条异面直线所成的角【例1】如图,在三棱柱OAB­O1A1B1中,平面OBB1O1⊥平面OAB,∠O1OB=60°,∠AOB =90°,且OB=OO1=2,OA=3,求异面直线A1B与AO1所成角的余弦值的大小.θ=φθ=π-φ点,则AE,SD所成的角的余弦值为多少?【类型二】求直线与平面所成的角【例2】如图,四棱锥P­ABCD中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC =4,M为线段AD上一点,AM=2MD,N为PC的中点.(1)证明MN∥平面P AB;(2)求直线AN与平面PMN所成角的正弦值.【练习2】如图,在四棱锥P ­ABCD 中,平面P AD⊥平面ABCD ,P A ⊥PD ,P A =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD ⊥平面P AB .(2)求直线PB 与平面PCD 所成角的正弦值.(3)在棱P A 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.【类型三】求二面角【例3】如图,在四棱锥P ­ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,∠APD =90°,求二面角A ­PB ­C 的余弦值.旋转轴旋转120°得到的,G 是DF ︵的中点.图3­2­24(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)当AB =3,AD =2时,求二面角E ­AG ­C 的大小.【练习4】如图,在三棱锥P­ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D­GH­E的余弦值.四、空间向量与距离【知识点15】利用空间向量求距离(※)【例1】已知正方体ABCD-A1B1C1D1的棱长为2,E,F,G分别是C1C,D1A1,AB的中点,求点A到平面EFG的距离.【练习1】如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CC1的中点,DG=13DD1,过E,F,G的平面交AA1于点H,求D1A1到平面EFGH的距离.点到平面的距离:先确定平面的法向量,再求点与平面内一点的连线形成的斜线段在平面的法向量上的射影长.如图,设n=(a,b,c)是平面α的一个法向量,P0(x0,y0,z0)为α外一点,P(x,y,z)是平面α内的任意一点,则点P0到平面α的距离:d=|PP0→·n||n|=|a(x0-x)+b(y0-y)+c(z0-z)|a2+b2+c2.注:线面距离、面面距离都可以转化为点到平面的距离.。

高中数学第一章空间向量与立体几何1-1空间向量及其运算1-1-2空间向量基本定理新人教B版选择性必修

高中数学第一章空间向量与立体几何1-1空间向量及其运算1-1-2空间向量基本定理新人教B版选择性必修
∠ABC=60°,AB=2,BC=CC1=1,求AB1 ·CD.
状元随笔 借助图形寻找所求向量与, , 的关系,利用三角形
法则或平行四边形法则,把所求向量用已知基向量表示出来.
方法归纳
用基底表示向量的步骤
1.定基底:根据已知条件,确定三个不共面的向量构成空间的一个
基底.
2.找目标:用确定的基底(或已知基底)表示目标向量,需要根据三
角形法则及平行四边形法则,结合相等向量的代换、向量的运算进行
变形、化简,最后求出结果.
3.下结论:利用空间向量的一个基底{a,b,c}可以表示出空间所
有向含有其他形式
的向量.
跟踪训练3 (1)已知平行六面体ABCD - A′B′C′D′中,点E是
上底面A′B′C′D′的中心,求下列各题中x,y的值:
如果空间中的三个向量a,b,c________,那么对空间任一向量p,
存在唯一的有序实数组(x,y,z)
p=xa+yb+zc
____________________________,使______________.
2.基底
如 果 三 个 向 量 a , b , c__________
,则a,b,c的线性组合
其中真命题的个数为(
)
A.0 B.1
C.2 D.3
答案:B
解析:只有②为真命题.
3.已知正方体ABCD - A′B′C′D′,点E是A′C′的中点,点F是
1
AE的三等分点,且AF= EF,则AF等于(
)
2
1
1
+ AB + AD
2
2
1
1
1

B. AA + AB + AD

2023年高考之立体几何和空间向量考点解读

2023年高考之立体几何和空间向量考点解读

3
=
2
1
1
|AB|·|BC|=
×2×
2
2
1
所 以 VP-ABC = S△ABC ·|PM|=
2 2=2 2,
3
1
26

×2 2× 3=
3
3
考查,
一是空间线面关系 的 命 题 真 假 的 判 断,
以选填题的形式考查,
属 于 基 础 题;
二是空间
线线、
线面、
面面平行和垂 直 关 系 交 汇 的 综 合
命题,
(
2)若 ∠POF =1
2
0
°,求 三 棱 锥 PABC
|A1A| -|AM| =
2
6

2
2
1
2=
2
解 析:(
1)连 接 DE ,
OF ,设 |AF|=



则 B→
t|AC|,
F =BA + AF = (
1-t)
BA +


所求体积 V =
76

=
6
1
6
×(
4+1+ 4×1)
×
3
2
考点解读:空 间 几 何 体 的 结 构 特 征 是 立
则该圆锥的
1
2
0
°,
4
体积为(
胡银伟
33
2
=
2
-
3
2
2
|PC| -|OC|
2
2
=
= 6。所以圆锥的体积 V
1
1
2
2
π×|OA| ×|PO|= π× (3)× 6=

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

设向量为a=(a1,a2,a3)则其在x轴、y轴、z轴上的投影分别为a1、a2、a3即a=(a1,a2,a3)2)空间向量的模长:向量的模长是指其长度,即a|=√(a1²+a2²+a3²)3)向量的单位向量:一个向量的单位向量是指其方向相同、模长为1的向量。

设向量a的模长为a|则其单位向量为a/|a|4)向量的方向角:向量在空间直角坐标系中与三个坐标轴的夹角分别称为其方向角。

设向量a=(a1,a2,a3)则其方向角为α=cos⁻¹(a1/|a|)、β=cos⁻¹(a2/|a|)、γ=cos⁻¹(a3/|a|)5)向量的方向余弦:向量在空间直角坐标系中与三个坐标轴的夹角的余弦值分别称为其方向余弦。

设向量a=(a1,a2,a3)则其方向余弦为cosα=a1/|a|、cosβ=a2/|a|、cosγ=a3/|a|一、知识要点1.空间向量的概念:在空间中,向量是具有大小和方向的量。

向量通常用有向线段表示,同向等长的有向线段表示同一或相等的向量。

向量具有平移不变性。

2.空间向量的运算:空间向量的加法、减法和数乘运算与平面向量运算相同。

运算法则包括三角形法则、平行四边形法则和平行六面体法则。

3.共线向量:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量。

共线向量定理指出,空间任意两个向量a、b(b≠0),a//b存在实数λ,使a=λb。

4.共面向量:能平移到同一平面内的向量叫做共面向量。

5.空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p有唯一的有序实数组x、y、z,使p=xa+yb+zc。

若三向量a、b、c不共面,则{a,b,c}叫做空间的一个基底,a、b、c叫做基向量。

6.空间向量的直角坐标系:在空间直角坐标系中,一个向量可以用其在三个坐标轴上的投影来表示。

2023新教材高中数学第1章空间向量与立体几何1.4空间向量的应用1.4.2用空间向量研究距离夹角问

2023新教材高中数学第1章空间向量与立体几何1.4空间向量的应用1.4.2用空间向量研究距离夹角问

(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE= 2EA,且平面EBC与平面DBC的夹角为45°,求三棱锥A-BCD的体 积.
[解] 法一:因为△OCD是边长为1的正三角形,且O为BD的中 点,所以OC=OB=OD=1,
所以△BCD是直角三角形,且∠BCD=90°,BC= 3 ,所以 S△BCD= 23.
所以CM=2,CD=1,∠DCM=60°, 易得CD⊥DM. 又PD⊥DC,且PD∩DM=D,PD,DM⊂平面PDM, 所以CD⊥平面PDM. 因为AB∥CD,
所以AB⊥平面PDM. 又PM⊂平面PDM, 所以AB⊥PM.
(2)求直线AN与平面PDM所成角的正弦值. [解] 法一:由(1)知AB⊥平面PDM, 所以∠NAB为直线AN与平面PDM所成角的余角. 连接AM,因为PM⊥MD,PM⊥DC, 所以PM⊥平面ABCD,所以PM⊥AM. 因为∠ABC=120°,AB=1,BM=2, 所以由余弦定理得AM= 7,
设平面BCE的法向量为m=(x,y,z),
因为B→C=-32, 23,0,B→E=-43,0,23a,
所以mm··BB→→EC==00,,
即-23x+ 23y=0, -43x+23az=0,
令x=1,则y= 3,z=2a,所以m=1, 3,2a. 因为平面EBC与平面DBC的夹角为45°,
设Q(a,0,0),则NQ=
4-2
3
3-a2,
B1a,1,
4-2
3
3-a2,
故B→1E=23 3-a,-23,-
4-2
3
3-a2,
|B→1E|=2 310. 又n=(0,-1,0)是平面A1AMN的一个法向量,故 sinπ2-〈n,B→1E〉=cos〈n,B→1E〉=|nn|··B|B→→11EE|= 1100. 所以直线B1E与平面A1AMN所成角的正弦值为 1100.

人教A版高中数学选择性必修第一册精品课件 复习课 第1课时 空间向量与立体几何

人教A版高中数学选择性必修第一册精品课件 复习课 第1课时 空间向量与立体几何
(
)
(12)若向量n与直线l的方向向量垂直,A∈l,P∉l,则点P到直线l的距离可以
看成是 在n上的投影向量的长度.(
)
(13)设直线l与平面α所成的角为θ,直线l的方向向量为u,平面α的法向量为
n,则cos θ=|cos<u,n>|. ( × )
专题归纳 核心突破
专题一
空间向量的线性运算
提示:空间向量共线的充要条件:对任意两个空间向量a,b(b≠0),a∥b的充
要条件是存在实数λ,使a=λb.
空间向量共面的充要条件:如果两个向量a,b不共线,那么向量p与向量a,b
共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
2.空间向量基本定理与空间向量的坐标表示的内容是什么?
模就越大.(
)
(3)不论λ取什么实数,λa与a一定共线.(
)
(4)若a·b=0,则a,b中至少有一个为0.( × )
(5)若 a·b=k,则

a= 或


b= .

( × )
(6)对于三个不共面向量a1,a2,a3,不存在实数组(λ1,λ2,λ3),使
λ1a1+λ2a2+λ3a3=0.( × )
(7)已知 A,B,M,N 是空间四点,若{, , }是空间的一个基底,则
(2)平面PAD内是否存在一点N,使MN⊥平面PBD?若存
在,确定N的位置;若不存在,说明理由.
分析:(1)证明向量垂直于平面 PAD 的一个法向量即可;
(2)假设存在点 N,设出其坐标,利用 ⊥ , ⊥ ,
列方程求其坐标即可.
解:以A为原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立空间直角

立体几何和空间向量综合知识点(高中数学)

立体几何和空间向量综合知识点(高中数学)

立体几何与空间向量一.空间几何体的体积与表面积:1.简单几何体的侧面积、体积及相关性质: 棱柱、棱锥、台体的表面积:柱体、椎体、台体的侧面积:h c S h c c S ch S '=''+==21,)(21,锥侧台侧柱侧(其中c c ',分 别为上下底面周长,h 为高,h '为斜高或母线长)圆柱的表面积 :222r rl S ππ+=; 圆锥的表面积:2r rl S ππ+=;圆台的表面积:22R Rl r rl S ππππ+++=(r,R 分别为上下底面圆的半径); 球的表面积:24R S π=; 扇形的面积:222121360r lr R n S απ===扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积:h S V ⨯=底;锥体的体积:h S V ⨯=底31; 台体的体积:h S S S S V ⨯+⋅+=)(31下下上上 ;球体的体积:334R V π=。

2.空间几何体直观图斜二测画法要领: 横相等,竖减半,倾斜45°,面积为原来的42,平行关系不变。

3.棱锥的平行截面的性质:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似 相似比等于顶点到截面的距离与顶点到底面的距离之比; 它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比;4.立体几何中常见模型的性质: 长方体:(1)长方体从一个顶点出发的三条棱长分别为a,b,c ,则体对角线长为222c b a ++,全面积为2ab+2abc+2ac ,体积V=abc 。

(2)已知长方体的体对角线与过同一顶点的三条棱所成的角分别为γβα,,,则有1cos cos cos 222=++γβα或2sin sin sin 222=++γβα。

(3)长方体外接球的直径是长方体的体对角线长222c b a ++。

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点在高中数学的学习中,空间向量是一个重要的知识点,它为我们解决空间几何问题提供了全新的思路和方法。

接下来,就让我们一起深入了解一下空间向量的相关知识。

一、空间向量的基本概念空间向量是指具有大小和方向的量。

它与平面向量类似,但存在于三维空间中。

一个空间向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

空间向量的坐标表示:在空间直角坐标系中,若向量的起点坐标为\((x_1,y_1,z_1)\),终点坐标为\((x_2,y_2,z_2)\),则该向量的坐标为\((x_2 x_1, y_2 y_1, z_2 z_1)\)。

零向量:长度为\(0\)的向量,其方向任意。

单位向量:长度为\(1\)的向量。

二、空间向量的运算1、加法和减法空间向量的加法和减法运算遵循三角形法则和平行四边形法则。

若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} +\overrightarrow{b} =(x_1 + x_2, y_1 + y_2, z_1 + z_2)\),\(\overrightarrow{a} \overrightarrow{b} =(x_1 x_2, y_1 y_2, z_1z_2)\)2、数乘运算若\(\lambda\)为实数,\(\overrightarrow{a} =(x,y,z)\),则\(\lambda\overrightarrow{a} =(\lambda x, \lambda y, \lambda z)\)数乘运算的规律:\(\lambda (\overrightarrow{a} +\overrightarrow{b})=\lambda\overrightarrow{a} +\lambda\overrightarrow{b}\)3、数量积空间向量的数量积\(\overrightarrow{a} \cdot \overrightarrow{b} =|\overrightarrow{a}||\overrightarrow{b}|\cos <\overrightarrow{a},\overrightarrow{b}>\)若\(\overrightarrow{a} =(x_1,y_1,z_1)\),\(\overrightarrow{b} =(x_2,y_2,z_2)\),则\(\overrightarrow{a} \cdot \overrightarrow{b} = x_1x_2 + y_1y_2 + z_1z_2\)数量积的性质:\(\overrightarrow{a} \perp \overrightarrow{b} \Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = 0\)\(\overrightarrow{a} \cdot \overrightarrow{a} =|\overrightarrow{a}|^2\)4、向量积空间向量的向量积\(\overrightarrow{a} \times \overrightarrow{b}\)是一个向量,其模长为\(|\overrightarrow{a}||\overrightarrow{b}|\sin <\overrightarrow{a},\overrightarrow{b}>\),方向垂直于\(\overrightarrow{a}\)和\(\overrightarrow{b}\)所确定的平面,遵循右手定则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间向量与立体几何知识点归纳总结一.知识要点。

1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。

注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。

(2)向量具有平移不变性2. 空间向量的运算。

定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。

OB OA AB a b =+=+;BA OA OB a b =-=-;()OP a R λλ=∈运算律:⑴加法交换律:a b b a+=+⑵加法结合律:)()(c b a c b a ++=++⑶数乘分配律:b a b aλλλ+=+)(运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。

(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,a平行于b ,记作b a//。

(2)共线向量定理:空间任意两个向量a 、b(b ≠0 ),a //b 存在实数λ,使a=λb 。

(3)三点共线:A 、B 、C 三点共线<=>AC AB λ=<=>)1(=++=y x OB y OA x OC 其中 (4)与a 共线的单位向量为aa ±4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。

说明:空间任意的两向量都是共面的。

(2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使p xa yb =+。

(3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++。

若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。

推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使OP xOA yOB zOC =++。

6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。

注:①点A (x,y,z )关于x 轴的的对称点为(x,-y,-z),关于xoy 平面的对称点为(x,y,-z).即点关于什么轴/平面对称,什么坐标不变,其余的分坐标均相反。

②在y 轴上的点设为(0,y,0),在平面yOz 中的点设为(0,y,z)(2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k 表示。

空间中任一向量k z j y i x a ++==(x,y,z )(3)空间向量的直角坐标运算律:①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++,112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈,112233a b a b a b a b ⋅=++,112233//,,()a b a b a b a b R λλλλ⇔===∈, 1122330a b a b a b a b ⊥⇔++=。

②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。

一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

③定比分点公式:若111(,,)A x y z ,222(,,)B x y z ,PB AP λ=,则点P 坐标为)1,1,1(212121λλλλλλ++++++z z y y x x 。

推导:设P (x,y,z )则),,(),(22211,1z z y y x x z z y y x x ---=---λ,显然,当P 为AB 中点时,)2,2,2(212121z z y y x x P +++④),,(),,,(,,,333222111z y x C z y x B )z y ,A(x ABC 中∆,三角形重心P 坐标为)2,2,3(321321321z z z y y y x x x P ++++++⑤ΔABC 的五心: 内心P:内切圆的圆心,角平分线的交点。

AC AB AP +=λ(单位向量)外心P:外接圆的圆心,中垂线的交点。

==垂心P :高的交点:PC PB PC PA PB PA ⋅=⋅=⋅(移项,内积为0,则垂直)重心P :中线的交点,三等分点(中位线比))(31AC AB AP += 中心:正三角形的所有心的合一。

(4)模长公式:若123(,,)a a a a =,123(,,)b b b b =,则213||a a a a a =⋅=+,21||b b b b =⋅=+(5)夹角公式:21cos ||||a ba b a b a⋅⋅==⋅+。

ΔABC 中①0>•AC AB <=>A 为锐角②0<•AC AB <=>A 为钝角,钝角Δ(6)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2||(AB AB == 或,A B d = 7. 空间向量的数量积。

(1)空间向量的夹角及其表示:已知两非零向量,a b ,在空间任取一点O ,作,OA a OB b ==,则AOB ∠叫做向量a 与b 的夹角,记作,a b <>;且规定0,a b π≤<>≤,显然有,,a b b a <>=<>;若,2a b π<>=,则称a 与b 互相垂直,记作:a b ⊥。

(2)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a 。

(3)向量的数量积:已知向量,a b ,则||||cos ,a b a b ⋅⋅<>叫做,a b 的数量积,记作a b ⋅,即a b ⋅=||||cos ,a b a b ⋅⋅<>。

(4)空间向量数量积的性质:①||cos ,a e a a e ⋅=<>。

②0a b a b ⊥⇔⋅=。

③2||a a a =⋅。

(5)空间向量数量积运算律:①()()()a b a b a b λλλ⋅=⋅=⋅。

②a b b a ⋅=⋅(交换律)。

③()a b c a b a c ⋅+=⋅+⋅(分配律)。

④不满足乘法结合率:)()(c b a c b a ⋅≠⋅二.空间向量与立体几何1.线线平行⇔两线的方向向量平行1-1线面平行⇔线的方向向量与面的法向量垂直 1-2面面平行⇔两面的法向量平行2线线垂直(共面与异面)⇔两线的方向向量垂直 2-1线面垂直⇔线与面的法向量平行 2-2面面垂直⇔两面的法向量垂直3线线夹角θ(共面与异面)]90,0[O O ⇔两线的方向向量2,1n n 的夹角或夹角的补角,><=2,1cos cos n n θ3-1线面夹角θ]90,0[O O :求线面夹角的步骤:先求线的方向向量AP 与面的法向量n 的夹角,若为锐角角即可,若为钝角,则取其补角;再求其余角,即是线面的夹角.><=n AP ,cos sin θ3-2面面夹角(二面角)θ]180,0[O O :若两面的法向量一进一出,则二面角等于两法向量2,1n n 的夹角;法向量同进同出,则二面角等于法向量的夹角的补角.><±=21,cos cos n n θ4.点面距离h :求点()00,P x y 到平面α的距离: 在平面α上去一点(),Q x y ,得向量PQ ;; 计算平面α的法向量n ;.h=4-1线面距离(线面平行):转化为点面距离 4-2面面距离(面面平行):转化为点面距离【典型例题】1.基本运算与基本知识()例1. 已知平行六面体ABCD -D C B A '''',化简下列向量表达式,标出化简结果的向量。

⑴AB BC +; ⑵AB AD AA '++;⑶12AB AD CC '++; ⑷1()3AB AD AA '++。

例2. 对空间任一点O 和不共线的三点,,A B C ,问满足向量式:OP xOA yOB zOC =++(其中1x y z ++=)的四点,,,P A B C 是否共面?例3 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5)。

⑴求以向量,AB AC 为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量,AB AC 垂直,且|a |=3,求向量a 的坐标。

2.基底法(如何找,转化为基底运算)3.坐标法(如何建立空间直角坐标系,找坐标)4.几何法例 4. 如图,在空间四边形OABC 中,8OA =,6AB =,4AC =,5BC =,45OAC ∠=,60OAB ∠=,求OA 与BC 的夹角的余弦值。

说明:由图形知向量的夹角易出错,如,135OA AC <>=易错写成,45OA AC <>=,切记! 例 5. 长方体1111ABCD A B C D -中,4AB BC ==,E 为11AC 与11B D 的交点,F 为1BC 与1B C 的交点,又AF BE ⊥,求长方体的高1BB 。

【模拟试题】1. 已知空间四边形ABCD ,连结,AC BD ,设,M G 分别是,BC CD 的中点,化简下列各表达式,并标出化简结果向量:(1)AB BC CD ++;(2)1()2AB BD BC ++; (3)1()2AG AB AC -+。

2. 已知平行四边形ABCD ,从平面AC 外一点O 引向量。

,,,OE kOA OF kOB OG kOC OH kOD ====。

(1)求证:四点,,,E F G H 共面; (2)平面AC //平面EG 。

3. 如图正方体1111ABCD A B C D -中,11111114B E D F A B ==,求1BE 与1DF 所成角的余弦。

相关文档
最新文档