2酵母蔗糖酶

合集下载

酵母蔗糖酶固定化及应用

酵母蔗糖酶固定化及应用

酵母蔗糖酶固定化及应用酵母蔗糖酶是一种重要的酶类,在生物技术、制药和食品加工行业中有着广泛的应用。

对于酵母蔗糖酶的固定化技术,近年来研究逐渐深入。

基于此,本文将探讨酵母蔗糖酶固定化的相关技术及其应用。

一、酵母蔗糖酶的固定化技术1. 常用的固定化技术酵母蔗糖酶的固定化技术主要包括物理吸附、共价键结、包埋化、交联和细胞包埋等方法。

其中,物理吸附、共价键结和包埋化方法操作简单,但稳定性较差。

而交联和细胞包埋方法稳定性较高,但操作繁琐、耗时长。

2. 固定化载体的选择对于酵母蔗糖酶固定化,选择合适的载体是十分重要的。

固定化载体应具有良好的生物相容性、化学稳定性、机械强度和比表面积,以保证固定化酶的稳定性和活性。

目前,常用的载体有聚丙烯酰胺凝胶、海藻酸钙凝胶、硅胶、磁性微粒子、生物纤维素、玻璃等。

3. 固定化条件的优化在固定化过程中,对于固定化条件的优化也是非常重要的。

其中,主要包括pH 值、温度、离子强度、连接剂种类和浓度等因素。

通过优化固定化条件,可以提高固定化酶的稳定性和活性,延长固定化酶的使用寿命。

二、酵母蔗糖酶固定化的应用1. 工业生产酵母蔗糖酶固定化技术在工业上的应用非常广泛,主要包括分离和纯化制药物、糖类及氨基酸、制备高级糖类、酯化反应和生物制剂中。

此外,酵母蔗糖酶固定化还可以用于生产检测试剂、医用葡萄糖监测仪、食品生产和货币伪造检测等。

2. 生物技术酵母蔗糖酶固定化在生物技术中的应用主要包括预测抗体、分子诊断、生物传感器和草药分析等方面。

在生物传感器中,酵母蔗糖酶固定化可以用于制备特定的实验室设备,如生物传感器的工作电极、荧光记忆基质、假人胶、化学传感器等。

三、总结酵母蔗糖酶固定化技术应用非常广泛,因此具有非常重要的意义。

本文简要介绍了酵母蔗糖酶固定化技术的相关内容和应用。

随着科技的不断进步,这种固定化技术在未来将有更广阔的发展前景。

酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告一、实验目的本实验旨在学习酵母蔗糖酶的提取方法,并掌握其酶活力的测定方法。

二、实验原理酵母蔗糖酶是一种重要的生物催化剂,广泛应用于食品工业、医药工业等领域。

其提取方法主要包括细胞破碎法和超声波法。

细胞破碎法是将酵母细胞经过离心、洗涤后,在低温下使用高压均质机或超声波仪器进行破碎,使得蛋白质与其他杂质分离。

而超声波法则是将细胞悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。

三、实验步骤1. 酵母菌体培养:将活性酵母菌体接种到含有10%蔗糖和0.5%酵母粉的液体培养基中,在30℃下静置48小时。

2. 细胞破碎:将培养好的菌体通过离心后洗涤两次,然后在低温下使用高压均质机进行破碎,使得蛋白质与其他杂质分离。

3. 超声波处理:将菌体悬液经过超声波处理,使得细胞壁裂开,释放出内部的蛋白质。

4. 酶活力测定:取一定量的提取液,加入含有蔗糖的缓冲液,在37℃下反应30分钟后用硫酸铜试剂测定还原糖的含量。

四、实验结果通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,测得其酶活力分别为10.5 U/g和12.8 U/g。

五、实验分析1. 细胞破碎法和超声波法都可以用于酵母蔗糖酶的提取,但是超声波法更加快速、高效。

2. 酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意培养基成分和温度等因素。

3. 酵母蔗糖酶的测定方法可以采用硫酸铜法,但是也可以采用其他方法,如比色法和光度法等。

六、实验结论本实验通过细胞破碎和超声波法两种方法提取酵母蔗糖酶,并测定了其酶活力。

结果表明,超声波法更加高效。

同时,酵母菌体培养条件对于酵母蔗糖酶的产生有较大影响,应该注意调整培养条件。

最后,硫酸铜法可以用于测定酵母蔗糖酶的活力。

酵母蔗糖酶提取纯化及酶活测定的改进方法

酵母蔗糖酶提取纯化及酶活测定的改进方法

一、背景介绍酵母蔗糖酶是一种重要的酶类,它在葡萄糖代谢途径中起着关键作用。

酵母蔗糖酶的提取纯化及酶活测定是生物化学与分子生物学研究中常见的实验操作。

在这个过程中,酵母蔗糖酶的纯化程度和酶活测定的准确性直接影响着后续的实验结果。

二、传统提取纯化及酶活测定方法存在的问题1. 低纯度:传统的提取纯化方法往往不能够完全去除其他蛋白质或杂质,导致提取的酵母蔗糖酶纯度较低。

2. 酶活测定不精准:常见的酶活测定方法对于活性较低的酶样本测定效果较差,难以得到准确的酶活性数据。

3. 操作繁琐:传统方法需要多次离心、沉淀和洗涤等步骤,耗时且操作繁琐。

三、改进方法鉴于传统方法存在的问题,我们提出了一种改进的酵母蔗糖酶提取纯化及酶活测定方法,主要包括以下几个关键步骤:1. 酵母蔗糖酶提取(1)酵母细胞破碎:采用超声波破碎或高压破碎技术,将酵母细胞有效破碎,释放出蔗糖酶。

(2)蛋白质沉淀:利用差速离心法或特定沉淀剂沉淀出目标蛋白质,提高酶的纯度。

2. 酶活测定(1)比色法测定:采用改良的Folin-Phenol比色法,提高对酶活性的测定准确性。

(2)酶活性计算:采用新的酶活性计算公式,更准确地反映酶的活性水平。

四、结果与讨论我们采用改进方法对酵母蔗糖酶进行提取纯化及酶活测定,得到的结果表明,与传统方法相比,改进方法在以下几个方面有了显著改善:1. 提取纯化效果显著:采用改进方法提取的酵母蔗糖酶纯度明显提高,杂质含量大幅降低。

2. 酶活测定更准确:采用改进方法测定的酶活性数据更为准确可靠,对活性较低的酶样本也能够进行精准测定。

3. 操作简便高效:改进方法简化了提取纯化的操作步骤,减少了操作时间,提高了实验效率。

五、结论我们的改进方法在酵母蔗糖酶提取纯化及酶活测定中取得了良好的效果,显著提高了酶的纯度和活性测定的准确性,为相关领域的研究提供了重要的实验技术支持。

该方法的推广应用将有助于推动相关研究领域的发展,促进酵母蔗糖酶的深入研究和应用。

蔗糖酶的提取分离

蔗糖酶的提取分离

蔗糖酶的发酵生产及酶学性质研究摘要:本实验酵母中蔗糖酶进行分离纯化并对酶学性质进行了初步的研究。

结果表明:酵母蔗糖酶的最适pH为5.0, 最适温度为45℃。

关键词:蔗糖酶、酶学性质1前言蔗糖酶(Sucrase, EC3.2.1.26) 又称转化酶(Invertase)。

可作用于β-1,2糖苷键,将蔗糖水解为D-葡萄糖和D-果糖。

由于果糖甜度高,可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的软心糖,还可为果葡糖浆的工业化生产提供新的方法。

本实验对酶的动力学性质分析, 是酶学研究的重要方面。

本研究通过一系列实验对酵母蔗糖酶的动力学性质如最适温度、最适pH、酶的固定化等进行了初步研究,更好的了解了没得性质。

2材料与方法2.1 材料与设备2.1.1 实验材料酵母、活性干酵母、壳聚糖2.1.2 试剂及配制方法葡萄糖、蔗糖、豆芽汁浸汁、Na2HPO4、KH2PO4、MgSO4、NaCl、NaOH、Na2CO3、盐酸、氨水、琼脂、酒精均为国产分析纯。

95%乙醇溶液、DEAE-Sepharose Fast Flow、1 mol/L醋酸溶液、0.05 mol/L Tris-HCl缓冲液(pH值7.3)0.05 mol/L Tris-HCl缓冲液(内含0.5 mol/L NaCl溶液,pH值7.3)葡萄糖标准液配制(1mg/ml):预先将分析纯葡萄糖置80℃烘箱内约12小时。

准确称取500mg葡萄糖于烧杯中,用蒸馏水溶解后,移至500ml容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。

1% 3,5-二硝基水杨酸(DNS)试剂:酒石酸钾钠100 g溶于400 mL蒸馏水,加热中依次加入NaOH 5 g,3,5-二硝基水杨酸5 g,苯酚1 g,亚硫酸钠0.25 g,搅拌至溶。

冷却后定容至500 mL,储于棕色瓶室温保存。

10%蔗糖溶液:10g蔗糖溶解于蒸馏水中,定容至100ml0.1 mol/L pH 7.8 Tris-HCl缓冲液1%戊二醛溶液:将4 mL 25%戊二醛溶液用上述Tris-HCl缓冲液稀释至100mL 0.2 mol/L pH 4.5醋酸缓冲液:称取16.4g无水乙酸钠,溶解于800ml蒸馏水,用冰乙酸调节其ph至4.5,然后定溶至1000mL。

酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告

酵母蔗糖酶的提取实验报告酵母蔗糖酶的提取实验报告1. 引言酵母蔗糖酶是一种重要的酶,在许多生物过程中起着关键作用。

通过提取酵母蔗糖酶,我们可以深入了解其结构和功能,以及其在实际应用中的潜力。

本实验旨在通过一系列步骤,从酵母细胞中提取酵母蔗糖酶,并评估其活性和效果。

2. 方法和材料2.1 材料- 新鲜酵母菌浆液- 蒸馏水- 磷酸缓冲液- 蔗糖溶液- 高速冷离心机- 低速冷离心机- 离心管- 离心管架- 塑料吸管- 双室温度计- 分光光度计- 试管2.2 实验步骤步骤1:制备酵母酶提取液a) 将10ml新鲜酵母菌浆液倒入离心管中,并以1500rpm的速度在低温下离心10分钟。

b) 将上清液转移至另一个离心管中,再次进行高速离心,以去除细胞碎片。

步骤2:沉淀酵母蔗糖酶a) 将上一步中得到的上清液倒入一个含有7ml蔗糖溶液的试管中。

b) 在室温下孵育搅拌2小时,让酵母蔗糖酶与蔗糖结合形成沉淀。

c) 用低速离心将沉淀分离。

收集上清液备用。

步骤3:测定酵母蔗糖酶活性a) 在分光光度计中设置波长为540nm。

b) 取1ml上清液和1ml磷酸缓冲液混合,作为空白对照。

c) 另取1ml上清液和1ml含20%蔗糖溶液的试管中,作为实验组。

d) 在不同时间点(例如0、1、2、3、4分钟)测定两个试管的吸光度,并记录数据。

e) 计算酵母蔗糖酶的活性。

3. 结果与讨论通过以上实验步骤,我们成功地提取了酵母蔗糖酶,并可以测定其活性。

根据测定结果,我们观察到酵母蔗糖酶在一定时间范围内对蔗糖的降解表现出线性增加的趋势。

这表明酵母蔗糖酶在一定程度上具有稳定的催化作用。

通过本实验,我们还可以根据酵母蔗糖酶的活性表征其在不同条件下的稳定性、催化效率和适应性。

我们可以改变温度和pH值,观察对酵母蔗糖酶活性的影响,从而了解其最适宜的操作条件。

通过进一步的研究,我们还可以探索酵母蔗糖酶在生物制药、食品加工和能源生产等领域的应用潜力。

总结回顾:通过酵母蔗糖酶的提取实验,我们深入了解了酵母蔗糖酶的结构、功能和应用前景。

酵母蔗糖酶的提取方法

酵母蔗糖酶的提取方法

酵母蔗糖酶的提取方法酵母蔗糖酶是重要的糖分解酶,它可以被用来制造蔗糖、糖精、酒精、淀粉、葡萄糖以及蔗糖衍生物。

因此,它在化工、食品、制药行业中有着重要的应用价值。

本文介绍了从发酵酵母或发酵液中提取酵母蔗糖酶的方法。

一、原料准备首先,准备发酵酵母或发酵液。

发酵酵母可以使用乳酸乳杆菌培养基发酵培养,得到的酵母菌可以悬浮在一定的温度和 pH 下曝气发酵,以获得最大的效果。

发酵液可以采用蔗糖和氨基酸等制备,并需要调节合适的 pH温度,可以提高酶的活性。

二、提取酵母蔗糖酶1.发酵酵母或发酵液放入滤器,用中压过滤来滤出悬浮体;2.过滤得到的酵母蔗糖酶悬浮液中加入NaCl,来降低活性;3.溶液中的毛细管类蛋白分离出来,加入45%的乙醇萃取分离;4.溶液冷冻至冰点,冻干抽滤以获得纯化的蔗糖酶;5. 从冻干抽滤物中继续利用膜精制器以及离子交换柱等方式,将蔗糖酶高纯度分离出来;6.高纯度蔗糖酶经过适当稀释处理,可获得最终产品。

三、性能测试为了判定提取的酵母蔗糖酶的性能,需要进行一系列的性能测试,这些测试可以用来检测酶的活性、热稳定性、抗菌性以及稳定性等。

通过这些测试,可以确定提取的酵母蔗糖酶的性能,从而确保它能够满足采用的要求。

四、应用实践酵母蔗糖酶的提取方法在实际应用中几乎是必不可少的,它可以用来生产糖浆、糖精、酒精、淀粉、葡萄糖以及蔗糖衍生物等,常用于食品加工、精细化工、制药行业等。

此外,这种提取方法还可以应用于糖类合成、氨基酸修饰等方面,发挥着重要的作用。

综上所述,酵母蔗糖酶是一种重要的糖分解酶,用于生产糖类衍生物,它的提取方法包括发酵酵母或发酵液的原料准备、提取、性能测试以及应用实践等,是一项重要的工作。

只有抓住机会,把提取的酵母蔗糖酶用好,才能实现糖分解酶的高效利用。

蔗糖酶生化实验报告(3篇)

蔗糖酶生化实验报告(3篇)

第1篇一、实验目的1. 理解蔗糖酶的催化原理和特性。

2. 掌握蔗糖酶的提取、纯化方法。

3. 学习通过不同方法测定蔗糖酶的活力。

4. 分析影响蔗糖酶活性的因素。

二、实验原理蔗糖酶是一种能够将蔗糖分解为葡萄糖和果糖的酶。

本实验旨在通过提取、纯化蔗糖酶,并测定其活力,了解蔗糖酶的特性。

三、实验材料与试剂1. 材料:- 酵母细胞- 淀粉- 蔗糖- 还原糖试剂(如班氏试剂)2. 试剂:- 磷酸氢二钠溶液- 磷酸二氢钠溶液- 硫酸铵溶液- 硫酸铜溶液- 酒精- 氢氧化钠溶液- 丙酮- 酶提取缓冲液1. 蔗糖酶的提取:- 将酵母细胞用磷酸缓冲液洗涤,并悬浮于磷酸缓冲液中。

- 使用匀浆机破碎细胞,收集匀浆液。

- 将匀浆液离心,收集上清液即为蔗糖酶粗提液。

2. 蔗糖酶的纯化:- 将蔗糖酶粗提液用硫酸铵溶液进行盐析,收集沉淀。

- 将沉淀用磷酸缓冲液溶解,并使用凝胶过滤柱进行纯化。

3. 蔗糖酶活力的测定:- 将纯化后的蔗糖酶与蔗糖溶液混合,在适宜的温度下反应。

- 加入还原糖试剂,观察颜色变化,根据颜色变化判断蔗糖酶的活力。

五、实验结果与分析1. 蔗糖酶的提取:- 通过匀浆和离心,成功提取出酵母细胞中的蔗糖酶。

2. 蔗糖酶的纯化:- 通过盐析和凝胶过滤柱,成功纯化出蔗糖酶。

3. 蔗糖酶活力的测定:- 在适宜的温度下,蔗糖酶能够将蔗糖分解为葡萄糖和果糖。

- 加入还原糖试剂后,溶液颜色发生变化,表明蔗糖酶具有活力。

4. 影响蔗糖酶活性的因素:- 温度:在一定范围内,温度升高,蔗糖酶的活力增加。

- pH值:在一定范围内,pH值升高,蔗糖酶的活力增加。

- 抑制剂:某些物质(如重金属离子)可以抑制蔗糖酶的活力。

1. 本实验成功提取和纯化了蔗糖酶,并测定了其活力。

2. 实验结果表明,温度和pH值是影响蔗糖酶活性的重要因素。

3. 在实际应用中,需要根据具体情况进行酶活性的调控,以获得最佳催化效果。

七、实验结论1. 蔗糖酶是一种能够将蔗糖分解为葡萄糖和果糖的酶。

酵母蔗糖酶实验报告

酵母蔗糖酶实验报告

一、实验目的1. 学习酵母蔗糖酶的提取方法。

2. 掌握酶活力测定的原理和方法。

3. 了解酶的专一性及其影响因素。

二、实验原理酵母蔗糖酶是一种能够催化蔗糖水解成葡萄糖和果糖的酶。

本实验通过提取酵母细胞中的蔗糖酶,并在一定条件下测定其活力,以了解其催化活性。

三、实验材料与仪器材料:1. 酵母粉2. 蔗糖3. 缓冲液4. 斐林试剂5. 旋光仪仪器:1. 电子天平2. 研钵3. 移液器4. 恒温水浴锅5. 烧杯6. 试管7. 离心机四、实验步骤1. 酵母蔗糖酶的提取- 称取适量酵母粉,加入少量蒸馏水,研磨成匀浆。

- 将匀浆转移至离心管中,离心分离,收集上清液即为酵母蔗糖酶提取液。

2. 酶活力测定- 取适量提取液,加入含有蔗糖的缓冲液,置于恒温水浴锅中保温。

- 定时取样,用斐林试剂检测反应液中的还原糖含量。

- 根据还原糖含量计算酶活力。

3. 酶的专一性实验- 将提取液分别与蔗糖、淀粉等底物反应,观察酶的催化活性。

- 对比实验结果,分析酶的专一性。

4. 影响酶活力的因素实验- 分别在酸性、中性、碱性条件下进行酶活力测定,观察pH对酶活力的影响。

- 分别在不同温度下进行酶活力测定,观察温度对酶活力的影响。

五、实验结果与分析1. 酶活力测定- 酵母蔗糖酶提取液在37℃、pH 6.8条件下,酶活力最高,约为0.5单位/毫升。

2. 酶的专一性实验- 酵母蔗糖酶对蔗糖具有特异性催化作用,而对淀粉无催化活性。

3. 影响酶活力的因素实验- 酶活力受pH和温度的影响较大。

在pH 6.8、37℃条件下,酶活力最高;在酸性或碱性条件下,酶活力明显降低;在低温条件下,酶活力较低。

六、实验结论1. 成功提取了酵母蔗糖酶,并测定了其活力。

2. 酵母蔗糖酶具有特异性催化作用,对蔗糖具有高效催化活性。

3. 酶活力受pH和温度的影响较大,适宜的pH和温度有利于提高酶活力。

七、实验讨论1. 本实验中,酶活力的测定方法较为简单,但结果准确可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


1.
酶活测定 蔗糖酶将底物水解为还原糖
试剂 (均35度预 热) 酶液(mL)
1N NaOH 液(mL)
粗酶液组
测定组1 对照组1
纯酶液组
测定组2 对照组2
1.0

1.0
0.5
1.0

1.0
0.5
5%蔗糖液 (mL)
1N NaOH 液(mL)
2.0
2.0
2.0
2.0
பைடு நூலகம்35度水浴10min,自来水冷却 0.5 - 0.5 -
2、DNS法测定还原糖量
试剂 粗酶液组 测定组1 水解液 (mL) 蒸馏水 (mL) DNS液 (mL) 1 对照组1 1 纯酶液组 测定组2 1 对照组2 1
0.5
0.5
0.5
0.5
1.0
1.0
1.0
1.0
沸水浴5min,自来水冷却,稀释至10mL,以对照组调零,记 录测定组OD540nm。
实验结果
实验原理

蔗糖酶的提取过程和酶活的测定方法; 蛋白质等生物活性大分子的提取方法。 (自学)
提取工艺和酶活测定

1.
蔗糖酶
蔗糖酶的耐热温度为50度,45度以下可保持酶活不变;在 pH3.0~8.0范围内均可保持较高的酶活; 蔗糖酶的活性中心有巯基,因此在提取时应防止其被氧化, 或者加入还原剂(如Vc)保持酶活力; 酵母细胞存在两种蔗糖酶,一种在细胞壁中,一种在细胞 质内,前者活力较高,分子量较大(约270KDa),后者活 力较低,分子量约为135KDa,两种酶的底物专一性和动力 学性质十分相似,因此,本实验未区分内酶与外酶。

1.
测定酶活的原理
蔗糖酶可作用于β -1,2糖苷键,将蔗糖水解为D-葡 萄糖和D-果糖; Cu2+ 、 Zn2+ 、 Fe2+ 是其激活剂,Mn2+ 是其抑制剂。 葡萄糖和果糖具有还原性,在偏碱性条件下,可与3,5 -二硝基水杨酸共热后生成棕红色物质,在一定浓度范 围内,还原糖的量和反应液的颜色强度成正比例关系。 蔗糖酶的活力通过其水解生成的还原糖量来反映。
实验八、酵母蔗糖酶的提取和 酶活测定
实验目的

学习提取酵母蔗糖酶和测定酶活力的方法; 学习提取生物活性大分子的方法。
实验材料



材料:活性干酵母粉、石英砂; 试剂:95%冰乙醇、DNS液、PBS(pH7.2)、 5%蔗糖溶液、1N NaOH溶液; 仪器:水浴锅、离心机、722型分光光度计。
2.
3.
1.
2.
3.
4.
5.
提取酶注意事项 了解目的物的分子量、酸碱稳定性、热稳定性, 选择合适的提取条件; 提取过程中采用缓冲液系统溶解酶,并可添加 一些保护剂(如还原剂、金属螯合剂等); 提取过程一般保持低温、避免剧烈搅拌、强酸、 强碱等变性的因素; 一般先选择分辨率低处理量大的方法(如萃取、 沉淀、吸附)浓缩酶,再采用分辨率高的方法 (如离子交换层析、亲和层析、超滤)精制; 通过酶活测定,调节提取条件。

计算酶活力
将吸光值代入还原糖标准曲线,得到水解液中还原糖的毫克数
Y=0.67X+0.027
酶活力(U/mL)=还原糖毫克数×3.5(水解液体积) 蔗糖酶活力定义:在一定实验条件下,在规定时间内释放1mg 还原糖的酶量为一活力单位。

计算蔗糖酶得率
得率=纯酶液活力/粗酶液活力
思考题

简述影响蔗糖酶得率的因素。 根据蛋白质理化性质,列出蛋白质分离纯 化的主要方法。
2.
3.
提取工艺 1. 破碎酵母细胞的方法: 蔗糖酶分子量较大,一般采用研磨法彻底破碎 细胞使其释放出来,但应注意研磨过程中保持 低温防止酶失活; 或者采用自溶法(适当的酸度和温度下利用酵 母菌自身的酶系破坏细胞壁),此方法较为温 和,但是时间较长,需加入少量防腐剂,防止 过程中外界细菌污染; 化学渗透法等较温和的非机械法。 原则:低温,处理时间短,防止酶失活。

2. 选择性热变性: 根据蔗糖酶的耐热性质,将热不稳定性杂蛋白变性除去, 而蔗糖酶保持活性仍在上清液中;该法简便易行。 原则:1、选择合适的温度和加热时间,防止目的物变性, 2、溶液的蛋白质浓度要合适,防止蔗糖酶与杂蛋白共沉淀。 3. 有机溶剂沉淀法: 根据蔗糖酶的分子量和亲水性,在溶液中加入一定量的无水乙醇溶 液,利用其脱水作用,破坏了蛋白质分子表面的水化膜,使蔗糖酶 聚集沉淀下来,而与其它杂质分开。一般采用分级沉淀法摸索目的 物沉淀的条件。 原则:1、注意在低温下操作,故无水乙醇要预冷; 2、边加乙醇边搅拌溶液,防止局部乙醇过浓,导致酶变性失活; 3、离心后应迅速将上清倒出,沉淀物用缓冲液溶解,避免酶与有 机溶剂长时间接触,防止其变性。
生物活性大分子的提取方法
自学书P36-41
实验步骤


1.
2.
3.
反复冻融法破碎酵母细胞 称取1g活性干酵母泥,0.2g石英砂,置于预冷的研钵中,研 磨至粉状,加入5mLPBS(pH7.2),混合均匀,研磨5min , -20度冷冻,再研磨5min; 离心获得粗酶液 吸取约4mL酵母细胞破碎液于离心管中,8000rpm 5min,保 留上清液;——粗酶液 分离纯化获得纯酶液 吸取剩余的约2mL粗酶液于离心管中,45度水浴10min,缓慢 搅拌,迅速冰浴冷却, 12000rpm 5min,保留上清液;— —选择性热变性除去杂蛋白 将上清液置于离心管中,加入等体积预冷的无水乙醇(乙醇 终浓度约50%),-20度静置5~10min,12000rpm 5min, 保留沉淀物;——有机溶剂沉淀法获得蔗糖酶 每管加入1mLPBS(pH7.2)于沉淀物中,轻轻搅拌促溶;— —纯酶液
相关文档
最新文档