九年级数学上册练习题及答案

合集下载

九年级数学上册《第二十一章 实际问题与一元二次方程》增长率问题同步练习及答案-人教版

九年级数学上册《第二十一章 实际问题与一元二次方程》增长率问题同步练习及答案-人教版

九年级数学上册《第二十一章 实际问题与一元二次方程》增长率问题同步练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.2023年某电影上映的第一天票房为2亿元,第二天、第三天单日票房持续增长,三天累计票房为6.62亿元,若第二天、第三天单日票房按相同的增长率增长,设平均每天票房的增长率为x ,则根据题意,下列方程正确的是( ) A .()21 6.62x +=B .22(1) 6.22x +=C .()2212(1) 6.62x x +++=D .()22212(1) 6.62x x ++++= 2.2021年某社区投入64万元用于社区基础设施维护和建设,以后逐年增加,计划到2023年该社区当年用于社区维修和建设的资金到达100万,设2021年至2023年该社区每年投入资金的年平均增长率为x ,根据题意列方程得( ) A .()2641100x -=B .()6412100x +=C .()6412100x -=D .()2641100x += 3.某超市一月份的营业额为300万元,一月、二月、三月的总营业额1200万元,如果平均每月增长率为x ,则由题意列方程为( )A .()230011200x +=B .30030021200x +⋅⋅=C .()230030011200x ++=D .()()23001111200x x ⎡⎤++++=⎣⎦4.目前以5G 等为代表的战略性新兴产业蓬勃发展.某市2021年底有5G 用户3万户,计划到2023年底全市5G 用户数累计达到10万户.设全市5G 用户这几年的平均增长率都为x ,则可列方程为( ) A .()23110x +=B .()()23313110x x ++++= C .()()231110x x ++++= D .()23110x x +++= 5.某商品经过连续两次降价,价格由100元降为64元.已知两次降价的百分率都是x ,则x 满足的方程是( )A .()6412100x ﹣=B .()2100164x -=C .()2641100x -=D .()1001264x ﹣= 6.某商店对一种商品进行库存清理,第一次降价30%,销量不佳;第二次又降价10%,销售大增,很快就清理了库存.设两次降价的平均降价率为x ,下面所列方程正确的是( )7.某旅游景点,3月份接待游客12万,5月份接待30万,设平均每月的增长率为x ,则下面所列方程中正确的是( )A .()212130x +=B .212(1)30x -=C .()121230x +=D .212(1)30x +=8.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元,则3月份到5月份营业额的平均增长率是( )A .10%B .20%C .22%D .25%二、填空题9.2023年,临邑县某单位为响应国家“厉行节约,反对浪费”的号召,减少了对办公经费的投入,在两个月内将开支从每月2500元降到1600元,若平均每月降低开支的百分率为x ,则可根据题意列出方程为 .10.疫情期间市民为了减少外出时间,许多市民选择使用手机软件在线上买菜,某买菜软件今年一月份新注册用户为200万,三月份新注册用户为392万,求二、三两个月新注册用户每月平均增长率.若设二、三两个月新注册用户每月平均增长率为x ,则可列方程为 .11.受国际油价影响,今年我国汽油价格总体呈上升趋势.某地92号汽油价格八月底是7.8元/升,十月底是8.6元/升.设该地92号汽油价格这两个月平均每月的增长率为x ,根据题意列出方程 .12.疫情期间,市政府为解决市民买药贵的问题,下调了某药品的价格.某种药品经过连续两次降价后,由每盒64元下调至49元,设这种药品平均每次降价的百分率为x ,则可列方程 . 13.随着新冠病毒的疫情好转,市场经济得到复苏,某店铺连续两个月的销额从2万猛增到为10万,且连续两个月销售额的增长率是相同的,那么这个增长率是x ,根据题意可列方程: .14.疫情期间,某口罩厂一月份产量为100万只,由于需求量不断增大,三月份产量提高到121万只,该厂二、三月份的月平均增长率为 .15.某品牌运动服原来每件售价640元,经过两次降价,售价降低了280元.已知两次降价的百分率相同,设每次降价的百分率为x ,依题意可列出关于x 的方程为 .16.书香相伴,香满校园,某校学生9月份借阅图书500本,11月份借阅图书845本,如果每月借阅图书数量的增长率相同,设这个增长率为x ,那么根据题意可列方程为 .三、解答题17.某桃园种植户种植的一种优质黄桃的产量在两年内从17.5吨增加到34.3吨,求这种优质黄桃这两年内平均每年增产的百分率.18.为满足师生阅读需求,学校建立“阅读公园”,并且不断完善藏书数量,今月3月份阅读公园中有藏书5000册,到今月5月份其中藏书数量增长到7200册.(1)求阅读公园这两个月藏书的平均增长率.(2)按照这样的增长方式,请你估算出今月6月份阅读公园的藏书量是多少?19.为落实素质教育要求,促进学生全面发展,我市某中学2018年投资20万元新增一批电脑,计划以后每年以相同的增长率进行投资,2020年投资33.8万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2018年到2020年,该中学三年为新增电脑共投资多少万元?20.我市某超市于今年年初以每件30元的进价购进一批商品.当商品售价为40元时,一月份销售250件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到360件.设二、三这两个月的月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加6件,当商品降价多少元时,商场获利1950元?参考答案:1.D2.D3.D4.B5.B6.D7.D8.B9.()2250011600x -=10.()22001392x +=11.()27.818.6x +=12.264(1)49x -=13.()22110x +=14.10%15.()26401640280x -=-16.()25001845x +=17.该种优质黄桃这两年内平均每年增产的百分率是40% 18.(1)阅读公园这两个月藏书的平均增长率20%(2)估算出今月6月份阅读公园的藏书量是8640册19.(1)该学校为新增电脑投资的年平均增长率为30%(2)该中学三年为新增电脑共投资79.8万元20.(1)二、三这两个月的月平均增长率为20%(2)当商品降价5元时,商品获利1950元.。

九年级上册数学练习册答案

九年级上册数学练习册答案

九年级上册数学练习册答案【练习一:有理数的运算】1. 计算下列各题:- (-3) + 5 = 2- 7 - (-2) = 9- (-4) × (-5) = 20- 8 ÷ (-2) = -42. 判断下列各题的符号:- -(-3) = 3,符号为正- -(-8) = 8,符号为正- -(-(-5)) = -5,符号为负3. 解决实际问题:- 某商店亏损了200元,又亏损了150元,总共亏损了多少元?答:总共亏损了 200 + 150 = 350元。

【练习二:代数式与整式】1. 化简下列代数式:- 3x + 5x - 7 = 8x - 7- 4y^2 - 3y + 2y - 6 = 4y^2 - y - 62. 根据题目条件,列出代数式:- 若一个数的3倍加上5等于这个数的4倍减去6,列出代数式: 3x + 5 = 4x - 63. 解决实际问题:- 某工厂原计划每月生产100件产品,实际每月生产120件,超产了多少件?答:超产了 120 - 100 = 20件。

【练习三:方程与不等式】1. 解下列一元一次方程:- 3x - 7 = 2x + 4,解得 x = 112. 解下列不等式:- 5 - 2x > 3x - 1,解得 x < 2/53. 解决实际问题:- 某班有40名学生,如果每名学生平均分到5本书,还剩下20本,这个班一共有多少本书?答:这个班一共有40 × 5 + 20 = 220本书。

【练习四:几何图形初步】1. 根据题目条件,计算下列图形的周长和面积:- 一个正方形的边长为4厘米,周长为4 × 4 = 16厘米,面积为4 × 4 = 16平方厘米。

- 一个圆的半径为3厘米,周长为2 × π × 3 ≈ 18.84厘米,面积为π × 3^2 ≈ 28.26平方厘米。

2. 解决实际问题:- 一个长方形的长是宽的2倍,如果长和宽都增加2米,面积增加了24平方米,求原长方形的长和宽。

九年级数学上册同步练习(含答案)

九年级数学上册同步练习(含答案)

22.1.3函数k h x a y ++=2)(的图象与性质(二) 一.选择题1. 将抛物线y =x 2向左平移2个单位得到新的抛物线的解析式是( )A. y =x 2+2B. y =x 2-2C. y =(x +2)2D. y =(x -2)22把二次函数2x y =的图象向右平移3个单位长度,得到新的图象的函数表达式是( )A. 32+=x yB. 32-=x yC. 2)3(+=x yD. 2)3(-=x y3. 对称轴是直线x =-3的抛物线是( )A. y =-x 2-3B. y =x 2-3C. y =-12(x +3)2 D. y =12(x -3)2 4. 下列抛物线中,顶点坐标是(-3,0)的抛物线是( )A. y =-3x 2-3B. y =-3x 2+3C. y =-3(x -3)2D. y =-3(x +3)2 5. 抛物线y =-12(x -5)2不经过的象限是( ) A. 一、 二 B. 一、 四 C. 二、 三 D. 三、 四6. 关于抛物线①y =12x 2;②y =-12x 2+1;③y =12(x -2)2,下列结论正确的是( ) A. 顶点相同 B. 对称轴相同 C. 形状相同 D. 都有最高点7. 抛物线y =(x -1)2与y 轴的交点坐标为( )A. (1,0)B. (-1,0)C. (0,-1)D. (0,1) 8对称轴是直线2-=x 的抛物线是( ) A.22+-=x y B.22+=x y C.2)2(21+=x y D.2)2(3-=x y 9对于函数2)2(3-=x y ,下列说法正确的是( )A. 当0>x 时,y 随x 的增大而减小B. 当0<x 时,y 随x 的增大而增大C. 当2>x 时,y 随x 的增大而增大D. 当2->x 时,y 随x 的增大而减小10.二次函数132+=x y 和2)1(3-=x y ,以下说法:①它们的图象都是开口向上;②它们的对称轴都是y 轴,顶点坐标都是原点(0,0);③当0>x 时,它们的函数值y 都是随着x 的增大而增大;④它们的开口的大小是一样的.其中正确的说法有( )A.1个B.2个C.3个D.4个二、填空题11. 抛物线y =-3(x +1)2的开口方向 ,对称轴是 ,顶点坐标是 .12. 抛物线y =-12(x -2)2可以看作是抛物线y =-12x 2向 平移 个单位得到的. 13. 二次函数y =2(x -3)2,当x 时,y 随x 的增大而减小;当x 时,y 随x 的增大而增大.14. 若抛物线y =3(x -1)2的图象上有三点A (-2,y 1),B (1,y 2),C (5,y 3),则y 1、 y 2、 y 3的大小关系为 .15.顶点是)0,2(,且抛物线23x y -=的形状、开口方向都相同的抛物线的解析式为 .16.对称轴为2-=x ,顶点在x 轴上,并与y 轴交于点(0,3)的抛物线解析式为 .三.解答题17. 确定列函数图象的开口方向及对称轴、顶点坐标、最大值或最小值.(1)y =2(x +1)2 (2)y =-4(x -5)218.已知二次函数2)(h x a y -=,当2=x 时有最大值,且此函数的图象经过点)3,1(-,求此二次函数的解析式,并指出当x 为何值时,y 随x 的增大而增大?19. 如图,抛物线y =a (x +1)2的顶点为A ,与y 轴的负半轴交于点B ,且OB =OA .(1)求抛物线的解析式;(2)若点C (-3,b )在该抛物线上,求S △ABC 的值.20.如图,抛物线的顶点M 在x 轴上,抛物线与y 轴交于点N ,且OM=ON=4,矩形ABCD 的顶点A 、B 在抛物线上,C 、D 在x 轴上.(1)求抛物线的解析式;(2)设点A 的横坐标为t(t >4),矩形ABCD 的周长为L 求L 与t 之间函数关系式.22.1.3函数k h x a y ++=2)(的图象与性质(二)一、选择题1.C 2.D 3.C 4.D 5.A 6.C 7.C 8.C 9.C 10.B二、填空题11.向下、1-=x 、(-1,0) 12.右 2 13.3< 3>14.312y y y << 15.2)2(3--=x y 16.2)2(43+=x y 三、解答题17.(1)由y =2(x +1)2 可知,二次项系数为2>0,∴抛物线开口向上,对称轴为直线x=-1,顶点坐标为(-1,0).(2)由y =-4(x -5)2可知,二次项系数为-4<0,∴抛物线开口向下,对称轴为直线x=5,顶点坐标为(5,0).18.根据题意得()22-=x a y , 把(1,-3)代入得3-=a ,所以二次函数解析式为()223--=x y ,因为抛物线的对称轴为直线x=2,抛物线开口向下,所以当x <2时,y 随x 的增大而增大.19.(1)由投影仪得:A (-1,0),B (0,-1),将x=0,y=-1代入抛物线解析式得1-=a :,则抛物线解析式为()12122---=+-=x x x y ; (2)过C 作CD ⊥x 轴,将C (-3,b )代入抛物线解析式得:b=-4,即C (-3,-4), 则S △ABC =S 梯形OBCD -S △ACD -S △AOB =21×3×(4+1)-21×4×2-21×1×1=3. 20.(1)∵OM=ON=4,∴M 点坐标为(4,0),N 点坐标为(0,4),设抛物线解析式为()24-=x a y , 把N (0,4)代入得16a =4,解得41=a , 所以抛物线的解析式为()424144122+-=-=x x x y ; (2)∵点A 的横坐标为t ,∴DM=t -4,∴CD=2DM=2(t -4)=2t -8,把x =t 代入42412+-=x x y 得42412+-=t t y ,∴42412+-=t t AD , ∴821)824241(2)(222-=-++-=+=t t t t CD AD L (t >4).。

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案

人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。

九年级上册数学书人教版电子书答案

九年级上册数学书人教版电子书答案

九年级上册数学书人教版电子书答案第一章:有理数1.练习题答案– 1.1 选择题:1. A2. D3. B– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列各式的值:(1)$(-\\dfrac{5}{3})^2$(2)$(\\dfrac{3}{5})^3$•答案1:(1) $\\dfrac{25}{9}$•答案2:(2) $\\dfrac{27}{125}$第二章:方程与不等式1.练习题答案– 1.1 选择题:1. A2. B3. C– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列方程的解:(1)3x+7=22(2)2(x−4)=10•答案1:(1) x=5•答案2:(2) x=9第三章:图形的初步认识1.练习题答案– 1.1 选择题:1. D2. C3. B– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:求下列问题的解:(1)一长方形的长是5cm,宽是3cm,它的周长是多少?(2)一正方形的周长为20cm,它的边长是多少?•答案1:(1) 周长为16cm•答案2:(2) 边长为5cm第四章:分式1.练习题答案– 1.1 选择题:1. B2. A3. D– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:判断下列各式是否等式,并简化结果:(1)$\\dfrac{2}{3} + \\dfrac{5}{6} = \\dfrac{7}{9}$(2)$\\dfrac{3}{4} - \\dfrac{1}{2} = \\dfrac{5}{8}$•答案1:(1) 不是等式•答案2:(2) 是等式,简化为$\\dfrac{1}{4}$第五章:多项式的加减1.练习题答案– 1.1 选择题:1. A2. C3. D– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:计算下列各式的结果:(1)(2x2−3x+4)+(x2−2x+1)(2)(3y2+5y−2)−(2y2+3y−1)•答案1:(1) 3x2−5x+5•答案2:(2) y2+2y−1第六章:平面直角坐标系1.练习题答案– 1.1 选择题:1. B2. D3. A– 1.2 解答题:(1)略(2)略(3)略2.课后作业答案–题目1:问题:(1)在平面直角坐标系中,点A(1,3)和点B(−2,−4)的距离是多少?(2)在平面直角坐标系中,点C(0,−1)和点D(4,2)的斜率是多少?•答案1:(1) 距离是$\\sqrt{53}$•答案2:(2) 斜率是$\\dfrac{1}{4}$这只是一部分九年级上册数学书人教版电子书的答案,希望对你的学习有所帮助。

苏科版九年级数学上册全册同步练习题(共56套带答案)

苏科版九年级数学上册全册同步练习题(共56套带答案)

苏科版九年级数学上册全册同步练习题(共56套带答案)第3章数据的集中趋势和离散程度 [测试范围:3.1~3.3 时间:40分钟分值:100分] 一、选择题(每小题4分,共32分) 1.一组数据1,3,4,2,2的众数是( ) A.1 B.2 C.3 D.4 2.一组数据7,8,10,12,13的平均数是( ) A.7 B.9 C.10 D.12 3.一组数据3,3,5,6,7,8的中位数是( ) A.3 B.5 C.5.5 D.6 4.一次数学检测中,有5名学生的成绩(单位:分)分别是86,89,78,93,90.则这5名学生成绩的平均数和中位数分别是( ) A.87.2分,89分 B.89分,89分 C.87.2分,78分 D.90分,93分 5.学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100 人数 7 12 10 8 3 则得分的众数和中位数分别是( ) A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分 6.如图4-G-1是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是( ) 图4-G-1 A.16小时,10.5小时 B.8小时,9小时 C.16小时,8.5小时 D.8小时,8.5小时 7.某公司欲招聘一名公关人员,对甲、乙、丙、丁四名候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩 (百分制) 面试 86 92 90 83 笔试90 83 83 92 如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取( ) A.甲 B.乙 C.丙 D.丁 8.数据x1,x2,x3,x4,x5的平均数是x,则数据x1+3,x2+3.5,x3+2.5,x4+2,x5+4的平均数为( ) A.x+2 B.x+2.5 C.x+3 D.x+3.5 二、填空题(每小题4分,共24分) 9.在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分. 10.如图4-G-2是根据某地某段时间的每天最低气温绘成的折线图,那么这段时间最低气温的平均数是________.图4-G-2 11.某班学生综合实践作物栽培操作能力评估成绩的统计结果如下表:成绩/分 3 4 5 6 7 8 9 10 人数 1 12 2 8 9 15 12 则这组成绩的众数为________. 12. 某校在进行“阳光体育活动”中,统计了7名原来偏胖的学生的情况,他们的体重分别降低的千克数为5,9,3,10,6,8,5,则这组数据的中位数是________.13.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________. 14.某校抽样调查了七年级学生每天的体育锻炼时间,整理数据后制成了如下所示的频数分布表,这个样本的中位数在第________组.组别时间(时) 频数第1组0≤t<0.5 12 第2组0.5≤t<1 24 第3组1≤t<1.5 18 第4组1.5≤t<2 10 第5组2≤t<2.5 6 三、解答题(共44分) 15.(8分)已知一组数据:3,a,4,5,b,c,6.(1)若这组数据是按由小到大的顺序排列的,则中位数是________;(2)若该组数据的平均数是12,求a+b+c的值.16.(10分)一销售某品牌冰箱的公司有营销人员14人,销售部为制定营销人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:每人销售量(台) 20 17 13 8 5 4 人数 1 1 2 5 3 2 (1)这14名营销人员该月销售冰箱的平均数、众数和中位数分别是多少? (2)你认为销售部经理给这14名营销人员定出每月销售冰箱的定额为多少台才比较合适?并说明理由.17.(12分)九(3)班A,B,C三名同学的知识测试、实践能力、成长记录三项成绩(单位:分)如下表所示.测试项目测试成绩 A B C 知识测试 90 88 90 实践能力 82 84 87 成长记录 95 95 90 (1)如果根据三项测试的平均成绩评价他们的综合成绩,那么谁的成绩最好? (2)如果把他们的知识测试、实践能力、成长记录三项成绩按5∶3∶2的比例计入综合成绩,那么谁的成绩最好?18.(14分)为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图4-G-3中两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中共调查了多少名学生? (2)求户外活动时间为0.5小时的人数,并补全条形统计图; (3)求表示户外活动时间为2小时的扇形圆心角的度数; (4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?图4-G-3详解详析 1.B 2.C 3.C [解析] 这组数据已经从小到大排列了,中间的两个数是5和6,故中位数是(5+6)÷2=5.5. 4.A 5.C [解析] 全班有40人,取得70分的人数最多,故众数是70分;把这40人的得分按大小顺序排列后知,第20个与第21个得分都是80分,故中位数是80分. 6.B [解析] 众数是一组数据中出现次数最多的数,所以该班40名同学一周参加体育锻炼时间的众数是8小时;将这组数据按从小到大的顺序排列后,第20个和第21个数都是9,故该班40名同学一周参加体育锻炼时间的中位数是9小时. 7.B [解析] 因为甲的平均成绩为86×0.6+90×0.4=51.6+36=87.6(分);乙的平均成绩为92×0.6+83×0.4=55.2+33.2=88.4(分);丙的平均成绩为90×0.6+83×0.4=54+33.2=87.2(分);丁的平均成绩为83×0.6+92×0.4=49.8+36.8=86.6(分).所以乙的平均成绩最高.故选B. 8. C 9.8.0 [解析] 根据题意,得(8.2+8.3+7.8+7.7+8.0)÷5=8.0(分). 10.4 ℃ 11.9分 12.6 13.2 14. 2 [解析] 中位数应是第35个和第36个数的平均数,第35个数和第36个数都在第2组.15.解:(1)5 (2)由题意可知17(3+a+4+5+b+c+6)=12,所以a+b+c=66. 16.解:(1)平均数为20×1+17×1+13×2+8×5+5×3+4×214=9(台), 8台出现了5次,出现的次数最多,所以众数为8台, 14个数据按从小到大的顺序排列后,第7个,第8个数都是8,所以中位数是(8+8)÷2=8(台). (2)每月销售冰箱的定额为8台才比较合适.因为8台既是众数,又是中位数,是大部分人能够完成的台数.若定为9台,则只有少量人才能完成,打击了大部分职工的积极性. 17.解:(1)xA=13(90+82+95)=89(分); xB =13(88+84+95)=89(分); xC=13(90+87+90)=89(分).可见,三名同学的成绩一样. (2)xA=90×50%+82×30%+95×20%=88.6(分); xB=88×50%+84×30%+95×20%=88.2(分); xC=90×50%+87×30%+90×20%=89.1(分).可见,C同学的成绩最好. 18.解:(1)共调查了32÷40%=80(名)学生. (2)户外活动时间为0.5小时的人数为80×20%=16(名).补全条形统计图如下. (3)表示户外活动时间为2小时的扇形圆心角的度数为1280×360°=54°. (4)本次调查中学生参加户外活动的平均时间为16×0.5+32×1+20×1.5+12×280=1.175(时).∵1.175>1,∴平均活动时间符合要求.户外活动时间的众数和中位数均为1小时.第2章对称图形――圆 [测试范围:2.1~2.3 时间:40分钟分值:100分] 一、选择题(每小题3分,共24分) 1.已知⊙O的半径为8,点P与点O的距离为6 2,则( ) A.点P在⊙O的内部 B.点P在⊙O的外部 C.点P在⊙O上 D.以上选项都不对 2.下列说法中正确的个数为( ) ①直径不是弦;②三点确定一个圆;③圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;④相等的圆心角所对的弧相等,所对的弦也相等. A.1 B.2 C.3 D.4 3.如图2-G-1,在半径为13 cm的圆形铁片上切下一块高为8 cm的弓形铁片,则弦AB的长为( ) A.10 cm B.16 cm C.24 cm D.26 cm 图2-G-1 图2-G-24.如图2-G-2,在Rt△ABC中,∠ACB=90°,∠A=26°,以点C 为圆心,BC长为半径的圆分别交AB,AC于点D,E,则BD�嗟亩仁�为( ) A.26° B.64° C.52° D.128° 图2-G-3 5.如图2-G-3,已知⊙O的半径为10,弦AB=12,M是AB上任意一点,则线段OM的长可能是( ) A.5 B.7 C.9 D.11 6.一个点到一个圆上的点的最短距离是3 cm,最长距离是6 cm,则这个圆的半径是( ) A.4.5 cm B.1.5 cm C.4.5 cm或1.5 cm D.9 cm或3 cm 7.如图2-G-4所示,一圆弧过方格的格点A,B,C,试在方格中建立平面直角坐标系,使点A的坐标为(-2,4),点C的坐标为(0,4),则该圆弧所在圆的圆心坐标是( ) A.(-1,2) B.(1,-1) C.(-1,1) D.(2,1) 图2-G-4 图2-G-5 8.如图2-G-5,在⊙O中,弦AB∥CD,直径MN⊥AB且分别交AB,CD于点E,F,下列4个结论:①AE=BE;②CF=DF;③AC�啵�BD�啵虎�MF =EF.其中正确的有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题4分,共24分) 9.圆是轴对称图形,它的对称轴是______________. 10.在平面内,⊙O的半径为3 cm,点P到圆心O的距离为7 cm,则点P与⊙O的位置关系是________. 11.如图2-G-6,⊙O的半径为5,点A,B在⊙O上,∠AOB=60°,则弦AB 的长为________.图2-G-6 图2-G-712.如图2-G-7,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为________. 13.如图2-G-8,矩形ABCD与⊙O交于点A,B,F,E,DE=1 cm,EF=3 cm,则AB=________ cm. 图2-G-8 图2-G-914.已知:如图2-G-9,A是半圆上的一个三等分点,B是AN�嗟闹械悖�P是MN上一动点,⊙O的半径为1,则AP+BP的最小值是________.三、解答题(共52分) 15.(12分)如图2-G-10,AB,CD为⊙O的直径,点E,F在直径CD上,且CE=DF. 求证:AF=BE. 图2-G-1016.(12分)如图2-G-11,AB是⊙O的直径,AC�啵�CD�啵�∠COD=60°. (1)△AOC是等边三角形吗?请说明理由; (2)求证:OC∥BD. 图2-G-1117.(14分)如图2-G-12,已知AB是⊙O的直径,AB=10,弦CD与AB相交于点N,∠ANC=30°,ON∶AN=2∶3,OM⊥CD,垂足为M.(1)求OM的长; (2)求弦CD的长.图2-G-1218.(14分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图2-G-13所示.圆O与纸盒交于E,F,G三点,已知EF=CD=16 cm. (1)利用直尺和圆规作出圆心O; (2)求出球的半径.图2-G-13详解详析 1.B [解析] ∵82=64,6 22=72,且64<72,∴8<6 2,∴点P与点O的距离大于⊙O的半径,∴点P在⊙O的外部.故选B. 2.A [解析] ③正确,这是根据圆的轴对称的性质来判断的.①错误,直径是过圆心的弦;②错误,不在同一条直线上的三点才能确定一个圆;④错误,相等的圆心角所对的弧不一定相等,所对的弦也不一定相等,缺少“在同圆或等圆中”这一条件.正确的只有③.故选A. 3.C 4.C [解析] ∵∠ACB=90°,∠A=26°,∴∠B=64°.∵CB=CD,∴∠CDB=∠B=64°,∴∠BCD=180°-64°-64°=52°,∴BD�嗟亩仁�为52°.故选C. 5.C [解析] 连接OA.过点O作ON⊥AB,垂足为N.∵ON⊥AB,AB=12,∴AN=BN=6.在Rt△OAN 中,ON=OA2-AN2=102-62=8,∴8≤OM≤10.故选C. 6. C [解析] 根据题意,画出图形如图所示.设圆的半径为r cm,分两种情况来考虑: (1)如图①,若点P在圆内,则PA+PB=2r,∴3+6=2r,解得r=4.5,即圆的半径为4.5 cm; (2)如图②,若点P在圆外,则PA-PB=2r,∴6-3=2r,解得r=1.5,即圆的半径为1.5 cm. 故此圆的半径为4.5 cm或1.5 cm.故选C. 7.C [解析] 连接AB,AC,利用网格图的特征,作出AB,AC的垂直平分线,其交点即为圆心,则可得它的坐标为(-1,1).故选C. 8. C 9.过圆心的任意一条直线[解析] 圆是轴对称图形,它的对称轴是过圆心的任意一条直线. 10.点P在⊙O外[解析] ∵⊙O的半径为3 cm,点P到圆心O的距离为7 cm,∴d>r,∴点P与⊙O的位置关系是点P在⊙O外. 11.5 [解析] ∵⊙O的半径为5,∴OA=OB=5. 又∵∠O=60°,∴∠A=∠B=60°,∴△ABO是边长为5的等边三角形,∴AB=5. 12.3 2 [解析] 如图,过点O分别作OM⊥AB于点M,ON⊥CD于点N,连接OB,OD. ∵AB=CD=8,∴BM=DN=4. 又∵OB=OD=5,∴OM=ON=52-42=3. ∵AB⊥CD,∴∠DPB=90°. ∵OM⊥AB,ON⊥CD,∴∠OMP=∠ONP=90°,∴四边形MONP是矩形.又∵OM=ON,∴矩形MONP是正方形,∴PM=OM=3,∴OP=3 2. 13.5 [解析] 由图形的轴对称性易知CF=DE. ∵DE=1 cm,∴CF=1 cm. ∵EF=3 cm,∴DC=5 cm,∴AB=5 cm. 14.2 [解析] 利用对称法,作点A或点B关于MN的对称点是解决问题的关键.如图,作点A关于MN的对称点A′,连接A′B,交MN于点P,则此时PA+PB的值最小,连接OA,OA′. ∵点A与点A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∴PA+PB=PA′+PB=A′B. 连接OB. ∵B是AN�嗟闹械悖�∴∠BON=30°,∴∠A′OB=90°,∴在Rt△A′OB中,A′B=OA′+OB2=2,∴PA+PB的最小值为2. 15.证明:∵AB,CD为⊙O的直径,∴OA=OB,OC=OD. ∵CE=DF,∴OE=OF. 在△AOF和△BOE 中,OA=OB,∠AOF=∠BOE,OF=OE,∴△AOF≌△BOE(SAS),∴AF =BE. 16.解:(1)△AOC是等边三角形.理由:∵AC�啵�CD�啵�∴∠AOC=∠COD=60°. ∵OA=OC,∴△AOC是等边三角形. (2)证明:∵∠AOC=∠COD=60°,∴∠BOD=60°. ∵OB=OD,∴△OBD 是等边三角形,∴∠OBD=60°,∴∠OBD=∠AOC,∴OC∥BD. 17.解:(1)∵AB=10,∴OA=5. ∵ON∶AN=2∶3,∴ON=2. ∵∠ANC=30°,∴∠ONM=30°,∴在Rt△OMN中,OM=12ON=1. (2)如图,连接OC. 在Rt△COM中,由勾股定理,得CM2=CO2-OM2=25-1=24,∴CM=2 6. 又∵OM⊥CD,∴CD=2CM=4 6. 18.解:(1)如图①所示,点O即为所求. (2)如图②,过点O作OM⊥EF于点M,连接OF,延长MO,则MO与BC的交点为G. 设球的半径为r cm,则OF=r cm,OM=(16-r)cm,MF=12EF=8 cm. 在Rt△OFM中,由勾股定理,得OF2=OM2+MF2,即r2=(16-r)2+82,解得r=10. 即球的半径为10 cm.。

九年级上册数学同步练习册答案

九年级上册数学同步练习册答案【练习一:实数的运算】1. 计算下列各数的平方根:- √9 = ±3- √64 = 8- √0.25 = 0.52. 计算下列各数的立方根:- ∛8 = 2- ∛-27 = -3- ∛0 = 03. 判断下列各数是无理数还是有理数:- π 是无理数- 0.3 是有理数- √2 是无理数【练习二:代数式】1. 化简下列代数式:- 3x + 2y - 5x = -2x + 2y- 4a² - 3a + 5b² = 4a² + 5b² - 3a2. 求下列代数式的值,当x=2,y=-3:- 2x - 3y = 2*2 - 3*(-3) = 4 + 9 = 133. 判断下列代数式是否可以合并同类项:- 5x² + 3x²可以合并为 8x²- 2y + 3z 不能合并【练习三:一元一次方程】1. 解下列一元一次方程:- 3x - 5 = 10,解得 x = 5- 2y + 4 = 0,解得 y = -22. 根据题目条件列出方程并求解:- 如果一个数的3倍加上4等于26,设这个数为x,可列出方程3x + 4 = 26,解得 x = 63. 判断下列方程是否有解:- 5x - 7 = 0 有解- 2x + 3 = x - 1 有解,解得 x = -4【练习四:几何图形】1. 计算下列图形的面积:- 一个边长为4的正方形的面积为 4*4 = 16- 一个半径为3的圆的面积为π*3² = 9π2. 计算下列图形的周长:- 一个边长为5的正六边形的周长为 6*5 = 30- 一个直径为10的圆的周长为π*10 = 10π3. 判断下列几何图形的性质:- 等边三角形的三个内角都是60度- 矩形的对边相等且互相垂直【结束语】以上是九年级上册数学同步练习册的部分答案,希望能够帮助同学们更好地理解和掌握数学知识。

人教版初中数学九年级上册《课本习题参考答案》第九页-六六页

第14页练习答案练习第1题答案练习第2题答案第16页练习答案练习题答案第22章习题22.1第1题答案解:设宽为x,面积为y,则y=2x2习题22.1第2题答案y=2(1-x)2习题22.1第3题答案列表:描点、连线,如下图所示:习题22.1第4题答案解:抛物线y=5x2的开口向上,对称轴是y轴,顶点坐标是(0,0)抛物线y= -1/5x2的开口向下,对称轴是y轴,顶点坐标是(0,0)习题22.1第5题答案提示:图像略(1)对称轴都是y轴,顶点依次是(0,3)(0, -2)(2)对称轴依次是x=-2,x=1,顶点依次是(-2,-2)(1,2)习题22.1第6题答案(1)∵a=-3,b=12,c=-3∴-b/2a=-12/(2×(-3))=2,(4ac-b2)/4a=(4×(-3)×(-3)-122)/(4×(-3))=9∴抛物线y=-3x2+12x-3的开口向下,对称轴为直线x=2,顶点坐标是(2,9)(2)∵a=4,b=-24,c=26∴- b/2a=-(-24)/(2×4)=3, (4ac-b2)/4a=(4×4×26-(-24)2)/(4×4)=-10∴抛物线y=4x2 - 24x+26的开口向上,对称轴为直线x=3,顶点坐标是(3, -10)(3)∵a=2,b=8,c=-6∴- b/2a=-8/(2×2)=-2, (4ac-b2)/4a= (4×2×(-6)-82)/(4×2)= -14∴抛物线y=2x2 +8x-6的开口向上,对称轴是x=-2,顶点坐标为(-2,-14)(4)∵a=1/2,b =-2,c=-1∴- b/2a=-(-2)/(2×1/2)=2, (4ac-b2)/4a=(4×1/2×(-1)- (-2)2)/(4×1/2)=-3∴抛物线y=1/2x2-2x-1的开口向上,对称轴是x=2,顶点坐标是(2, -3).图略习题22.1第7题答案(1)-1;-1(2)1/4;1/4习题22.1第8题答案解:由题意,可知S=1/2×(12-2t)×4t=4t(6-t)∴S=-4t2+24t,即△PBQ的面积S与出发时间t之间的关系式是S=-4t2+24t又∵线段的长度只能为正数∴∴0<t<6,即自变量t的取值范围是0<t<6习题22.1第9题答案解:∵s=9t+1/2t2∴当t=12时,s=9×12+1/2×122=180,即经过12s汽车行驶了180m当s=380时,380=9t+1/2t2∴t1=20,t2=-38(不合题意,舍去),即行驶380m需要20s习题22.1第10题答案(1)抛物线的对称轴为(-1+1)/2=0,设该抛物线的解析式为y=ax2+k(a≠0)将点(1,3)(2,6)代入得∴函数解析式为y=x2+2(2)设函数解析式为y=a x2+bx+c(a≠0),将点(-1,-1)(0,-2)(1,1)代入得∴函数解析式为y=2x2+x-2(3)设函数解析式为y=a(x+1)(x-3) (a≠0),将点(1,-5)代入,得-5=a(1+1)(1-3)解得a=5/4∴函数解析式为y=5/4(x+1)(x-3),即y=5/4x2-5/2x-15/4(4)设函数解析式为y=a x2+ bx+c(a≠0),将点(1,2)(3,0)(-2,20)代入得∴函数解析式为y=x2-5x+6习题22.1第11题答案解:把(-1,-22)(0,-8)(2,8)分别代入y=a x2+bx+c,得a=-2,b=12, c=-8所以抛物线的解析式为y=-2x2+12x-8将解析式配方,得y=-2(x-3)2+10又a=-2<0所以抛物线的开口向下,对称轴为直线x=3,顶点坐标为(3,10)习题22.1第12题答案(1)由已知vt=v0+at=0+1.5t=1.5t,s=vt=(v0+vt)/2t=1.5t/2t=3/4t2,即s=3/4t2(2)把s=3代入s=3/4t2中,得t=2(t=-2舍去),即钢球从斜面顶端滚到底端用2s第29页练习答案练习第1题答案练习第2题答案习题22.2第1题答案(1)图像如下图所示:(2)有图像可知,当x=1或x=3时,函数值为0习题22.2第2题答案(1)如下图(1)所示:方程x2-3x+2=0的解是x1=1,x2=2(2)如下图所示:方程-x2-6x-9=0的解是x1=x2=-3习题22.2第3题答案(1)如下图所示:(2)由图像可知,铅球推出的距离是10m习题22.2第4题答案解法1:由抛物线的轴对称性可知抛物线的对称轴是直线x=(-1+3)/2=1 解法2:设抛物线的解析式为y=a(x+1)(x-3),即y=ax2-2ax-3a,∴x=-(-2a)/2a=1,即这条抛物线的对称轴是直线x=1习题22.2第5题答案提示:图像略(1)x1=3,x2=-1(2)x<-1或x>3(3)-1<x<3习题22.2第6题答案提示:(1)第三或第四象限或y轴负半轴上(2)x轴上(3)第一或第二象限或y轴正半轴上,当a<0时(1)第一或第二象限或y轴正半轴上(2)x轴上(3)第三或第四象限或y轴负半轴上第32页练习答案练习题答案习题22.3第1题答案(1)∵a=-4<0∴抛物线有最高点∵x=-3/[2×(-4)]=3/8,y=[4×(-4)×0-32]/[2×(-4)]=9/16∴抛物线最高点的坐标为(3/8,9/16)(2)∵a=3>0∴抛物线有最低点∵x=-1/(2×3)=-1/6,y=(4×3×6-12)/(4×3)=71/12∴抛物线最低点的坐标为(-1/6,71/12)习题22.3第2题答案解:设所获总利润为y元.由题意,可知y=(x-30)(100-x),即y=-x2+130x-3000 =-(x-65)2+1225∴当x=65时,y有最大值,最大值是1225,即以每件65元定价才能使所获利润最大习题22.3第3题答案解:s=60t-1.5t2=-1.5(t2-40t+400)+1.5×400=-1.5(t-20)2+600∴当t=20时,s取最大值,且最大值是600,即飞行着陆后滑行600m才能停下来习题22.3第4题答案解:设一条直角边长是x,那么另一条直角边长是8-x设面积为y,则y=1/2x•(8-x),即y=-(1/2)x2+4x对称轴为直线x=-b/2a=-4/(2×(-1/2))=4当x=4时,8-x=4,ymax=8∴当两条直角边长都为4时,面积有最大值8习题22.3第5题答案解:设AC的长为x,四边形ABCD 的面积为y.由题意,可知y=1/2AC•BD ∴y= 1/2 x(10-x), 即y=-1/2x2+5x=-1/2(x-5)2+25/2∴当x=5时,y有最大值,y最大值=25/2此时,10-x=10-5=5,故当AC=BD=5时,四边形ABCD的面积最大,最大面积为25/2习题22.3第6题答案解:∵∠A=30°,∠C=90°,且四边形CDEF是矩形∴FE//BC,ED//AC∴∠DEB=30°在Rt△AFE中,FE=1/2AE在Rt△EDB中,BD=1/2EB,设AE=x,则FE=1/2x令矩形CDEF的面积为S,则S=FE•ED= 1/2 x •/2(12-x)=/4(12x- x2)∴当x=6时,S最大值=9,此时AE=6,EB=12-x=6∴AE=EB,即点E是AB的中点时,剪出的矩形CDEF面积最大习题22.3第7题答案解:设AE=x,AB=a,正方形EFGH的面积为S,由正方形的性质可知AE=DH,即AH=a-x在Rt△AEH中:HE2=AH2+AE2=(a-x)2+x2=2x2-2ax+a2=2(x-1/2 a) 2+1/2a2∴当x=1/2a时,S有最小值,且S最小值=1/2a2,此时AE=1/2a,EB=1/2a,即点E是AB边的中点∴当点E是AB边的中点时,正方形EFGH的面积最小习题22.3第8题答案解:设房价定为每间每天增加x元,宾馆利润为y元由题意可知,y=(180+x-20)(50-x/10)=-1/10x2+34x+8000=-1/10(x-170)2+10890∴当x=170时,y取最大值,且y最大值=10890,此时180+x=350(元)∴房间每天每间定价为350元时,宾馆利润最大习题22.3第9题答案解:用定长为L的线段围成矩形时,设矩形的一边长为x则S矩形=x•(1/2L-x)=-x2+1/2 Lx=-(x-1/4L)2+1/16L2,当x=1/4 L时,S最大值=1/16L2用定长为L的线段围成圆时,设圆的半径为R,则2R=L,S圆=R2=(L/2)2=L2/4ᅲ∵1/16L2=/16L2,L2/4=4/16L2,且π<4∴1/16L2<L2/4∴S矩形<S圆∴用定长为L的线段围成圆的面积大第33页练习答案练习题答案复习题第1题答案解:由题意可知,y=(4+x)(4-x)= -x2+16,即y与x之间的关系式是y=-x2+16 复习题第2题答案解:由题意可知,y=5000(1+x)2=5000x2+10000x+5000,即y与x之间的函数关系式为:y=5000x2+10000x+5000复习题第3题答案D(1)∵a=1>0∴抛物线开口向上又∵x=-2/(2×1)=-1,y=(4×1×(-3)-22)/(4×1)=-4∴抛物线的对称轴是直线x=-1,顶点坐标是(-1,-4).图略(2)∵a=-1<0∴抛物线开口向下又∵x=-6/(2×(-1))=3,y=(4×(-1)×1-62)/(4×(-1))=10∴抛物线的对称轴是直线x=3,顶点坐标是(3,10).图略(3)∵a=1/2>0∴抛物线开口向上又∵x=-2/(2×1/2)=-2, y= (4×1/2×1-22)/(4×1/2)=-1∴抛物线的对称轴是直线x=-2,顶点坐标是(-2,-1).图略(4)∵a=-1/4<0∴抛物线开口向下又∵x=-1/(2×(-1/4))=2,y=(4×(-1/4)×(-4)-12)/(4×(-1/4))=-3 ∴抛物线的对称轴是直线x=2,顶点坐标是(2, -3).图略解:∵s=15t-6t2∴当t=-15/(2×(-6))=5/4时,s最大值=(4×(-6)×0-152)/(4×(-6))=75/8,即汽车刹车后到停下来前进了75/8m复习题第6题答案(1)分别把(-3,2),(-1,-1),(1,3)代入y=ax2+bx+c得a=7/8,b=2,c=1/8所以二次函数的解析式为y=7/8x2+2x+1/8(2)设二次函数的解析式为y=a(x+1/2)(x-3/2)把(0, -5)代入,得a=20/3所以二次函数的解析式为y=20/3x2-20/3 x-5复习题第7题答案解:设垂直于墙的矩形一边长为xm,则平行于墙的矩形的另一边长为(30-2x)m设矩形的面积为ym2,则y=x(30-2x)=-2x2+30x=-2(x-15/2)2+112.5 ∴当x=15/2时,y有最大值,最大值为112.5,此时30-2x=15∴当菜园垂直于墙的一边长为15/2m,平行于墙的另一边长为15m时,面积最大,最大面积为112.5m2复习题第8题答案解:设矩形的长为x cm,则宽为(18-x)cm,S侧=2x•(18-x)=-2x2+36x=-2(x-9)2+162当x=9时,圆柱的侧面积最大,此时18-x=18-9=9当矩形的长与宽都为9cm时旋转形成的圆柱的侧面积最大复习题第9题答案(1)证明:∵四边形ABCD是菱形∴AB=BC=CD=AD又∵BE=BF=DG=DH∴AH=AE=CG=CF∴∠AHE∠AEH,∠A+∠AEH+∠AHE=180,∠A+2∠AHE=180〬又∵∠A+∠D=180〬∴∠D=2∠AHE,同理可得∠A=2∠DHG∴2∠AHE+2∠DHG=180〬∴∠AHE+∠DHG=90〬∴∠EHG=90〬,同理可得∠HGF=∠GFE=90〬∴四边形EFGH是矩形(2)解:连接BD交EF于点K,如图7所示,设BE的长为x,BD=AB=a∴四边形ABCD为菱形,∠A=60〬∴∠EBK=60〬,∠KEB=30〬在Rt△BKE中,BE=x,则BK=1/2x,EK=/2xS矩形EFGH=EF•FG=2EK•(BD-2BK)=2×/2 x(a-2×1/2x)=x(a-x)=-(x2-ax)=-(x2-ax+a2/4-a2/4)=-(x-a/2)2+/4a2当x=a/2时,即BE=a/2时,矩形EFGH的面积最大第35页练习答案第37页练习答案第39页练习答案第40页练习答案练习第1题答案练习第2题答案第23章习题23.1第1题答案(1)如下图所示:(2)如下图所示:(3)如下图所示:(4)如下图所示:习题23.1第2题答案解:如下图所示,旋转中心为O点,旋转角为OA所转的角度习题23.1第3题答案解:如下图所示:习题23.1第4题答案解:旋转图形分别为△A₁B₁C₁,△A₂B₂C₂,如下图所示:习题23.1第5题答案(1)旋转中心为O₁点,旋转角为60〬,如下图所示:(2)旋转中心为O₂点,旋转角为90〬,如下图所示:习题23.1第6题答案提示:旋转角就是以旋转中心为顶点的周角被均匀地等分问题(360〬÷5=72〬,360〬÷3=120〬)解:(1)旋转角为72°,114°,216°,288°,360°时,旋转后的五角星与自身重合(2)等边三角形绕中心点O旋转120〬,240〬,360〬时与自身重合习题23.1第7题答案风车图案由四个全等的基本图形构成,可由其中一个基本图形绕中心旋转90〬,180〬,270〬得到习题23.1第8题答案提示:旋转中心在等腰三角形的外部解:五角星中间的点为旋转中心,旋转角为72〬,114〬,216〬,288〬习题23.1第9题答案(1)如下图所示:(2)∵BC=3,AC=4,∠C=90〬习题23.1第10题答案提示:线段BE与DC在形状完全相同的两个三角形中,可考虑旋转变换,点A是两个三角形的公共点,因此点A是旋转中心解:BE=DC,理由如下:因为△ABD与△ACE都是等边三角形所以AE=AC, AB=AD,∠DAB=∠CAE=60〬所以∠DAB+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE所以△BAE绕点A顺时针旋转60〬时,BA与DA重合,AE与AC重合,则△BAE 与△DAC完全重合所以BE=DC第59页练习答案练习第1题答案练习第2题答案练习第3题答案习题23.2第1题答案如下图所示:习题23.2第2题答案解:依题可知,是中心对称图形的有:禁止标志、风轮叶片、正方形、正六边形它们的对称中心分别是圆心,叶片的轴心,正方形对角线的交点,正六边形任意两条最长的对角线的交点习题23.2第3题答案如下图所示,四边形ABCD关于原点O对称的四边形为A\\\\\\\'B\\\\\\\'C\\\\\\\'D\\\\\\\'习题23.2第4题答案解:∵A(a,1)与A\\\\\\\'(5,b)关于原点O对称习题23.2第5题答案解:依题意可知此图形时中心对称图形,对称中心是O₁O₂的中点习题23.2第6题答案解:如下图所示,做出△ABC以BC的中点O为旋转中心旋转180〬°后的图形△DCB,则四边形ABCD即为以AC,AB为一组邻边的平行四边形习题23.2第7题答案解:如下图(1)中的△DCE是由△ACB以C为旋转中心,顺时针旋转90〬得到的.在下图(2)中,先以AC为对称轴作△ABC的轴对称图形△AFC,再把△AFC以C为旋转中心,逆时针旋转90〬,即可得到△DCE习题23.2第8题答案解:依题意知这两个梯形是全等的因为菱形是以它的对角线的交点为对称中心的中心对称图形根据中心对称的性质过对称中心的任意一条直线都将图形分成两个全等的图形所以它们全等习题23.2第9题答案不一定当两个全等的梯形的上底与下底之和等于它的一条腰长的时候,这两个全等的梯形可以拼成一个菱形,其他情况不行习题23.2第10题答案解:如下图所示:连接BE,DF,EF,BD,AC,BD与EF交于点O∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠1=∠2∵△ADE是等边三角形∴DE=AD,∠3=60〬∵△BCF为等边三角形∴BC=BF,∠4=60〬∴DE=BF∴∠1+∠3=∠2+∠4,即∠BDE=∠DBF∴DE//BF∴四边形BEDF为平行四边形∴BD与EF互相平分于点O又∵四边形BEDF为平行四边形∴BD与AC互相平分于点O,即OD=OB,OE=OF,OA=OC ∴△ADE和△BCF成中心对称第61页练习答案练习第2题答案练习第3题答案复习题第1题答案如下图所示:复习题第2题答案解:图(2)是由图(1)这个基本图案绕着图案的中心旋转90〬,180〬, 270〬后与原图形所形成的复习题第3题答案解:图中这4个图形都是中心对称图形,其对称中心为O点,如下图所示:复习题第4题答案如下图所示:解:依题意可知△EBC可以看做是△DAC以点C为旋转中心、逆时针旋转60〬°得到的复习题第6题答案解:依题意可知:右边倾斜的树以其根部为旋转中心,旋转一定的角度使树成直立的状态,再以与树干平行的一条直线为对称轴作树的对称图形,即可得到左边直立的树复习题第7题答案解:矩形FABE,菱形EBCD都为中心对称图形,过对称中心的任意一条直线,都可将图形分成面积相等的两部分如下图所示,直线MN可把这张纸分成面积相等的两部分复习题第8题答案解:当梯形是下底角为60〬且上底等于腰长的等腰梯形时,可以经过旋转和轴对称形成题中图(2)的图案第62页练习答案练习题答案第66页练习答案练习第1题答案练习第2题答案。

【初中数学】人教版九年级上册第1课时 传播与握手等问题(练习题)

人教版九年级上册第1课时传播与握手等问题(2912)A 知识要点分类练夯实基础1.秋冬季节为流感的高发期,有1人患了流感,第一轮传染了10个人,则第一轮传染过后共有人患了流感,第二轮传染时平均每人也传染10人,则第二轮传染了人,第二轮传染过后共有人患了流感2.有一个人患了流感,经过两轮传染后共有81个人患了流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A.1+2x=81 B.1+x2=81C.1+x+x2=81D.1+x+x(1+x)=813.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4B.5C.6D.74.某学校在校师生及工作人员共600个人,其中一个学生患了某种传染病,经过两轮传染后共有64个人患了该病.(1)求每轮传染中平均一个人传染了几个人;(2)如果不及时控制,第三轮传染后学校还有多少个人未被传染(第三轮传染后仍未有治愈者)?5.(RJ)教材第4页第6题:“参加一次聚会的每两人都握了一次手,所有人共握手10次,有多少人参加聚会?”解题方案:设有x人参加聚会.第1个人分别与其他个人握手;第2个人分别与其他个人握手……依次类推,共x个人,如此共有次握手,但此时每两个人之间都是按握了两次手进行计算的.因此,x个人每两人之间握一次手共握了次手,我们就得到方程:.像这样解决问题的方法我们不妨称它为“握手解法”.6.某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同55份,则共有个商家参加了交易会7.书法兴趣小组的同学在中秋节这一天人人相互送一个月饼,共送出72个月饼,求书法兴趣小组的人数8.若两个连续奇数的积为63,则这两个数的和为()A.16B.17C.±16D.±179.2021年7月1日是建党100周年纪念日,在本月月历表上可以用一个方框圈出4个数(如图所示).若圈出的四个数中最小数与最大数的乘积为65,则这个最小数为.10.一个两位数,个位数字比十位数字大3,且个位数字的平方刚好等于这个两位数,求这个两位数.B 规律方法综合练训练思维11.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场()A.4个B.5个C.6个D.7个12.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了该传播活动,则n=.13.某班共有48名同学,如果每两名同学之间仅通一次电话,那么全班同学共通多少次电话呢?我们可以用下面的方式来解决问题.用点A1,A2,A3,...,A48分别表示第1名同学、第2名同学、第3名同学 (48)同学,把该班人数x与通电话次数y之间的关系用如图所示模型表示:(1)图④中y的值为,图⑤中y的值为;(2)通过探索发现,通电话次数y与该班人数x之间的关系式为,当x=48时,对应的y=;(3)若该班全体女生相互之间共通电话190次,则该班共有多少名女生?C 拓广探究创新练提升素养14.我们都知道连接多边形任意不相邻的两个顶点的线段是多边形的对角线,也都知道四边形的对角线有2条,五边形的对角线有5条.(1)六边形的对角线有条,七边形的对角线有条(2)多边形的对角线可以共有20条吗?如果可以,求出多边形的边数;如果不可以,请说明理由参考答案1.【答案】:11;110;1212.【答案】:D3.【答案】:C【解析】:设这种植物每个支干长出x 个小分支,依题意,得:1+x +x 2=43,解得:x 1=−7(舍去),x 2=6.故选:C .4(1)【答案】解:设每轮传染中平均一个人传染了x 个人.由题意,得 1+x +(1+x)x =64,解得x 1=7,x 2=−9(不符合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)【答案】600−(64+7×64)=88(个).答:第三轮传染后学校还有88个人未被传染.5.【答案】:(x −1);(x −1);x(x −1);x(x−1)2;x(x−1)2=106.【答案】:11【解析】:设共有x 个商家参加了交易会.依题意,得12x(x −1)=55,整理,得x 2−x −110=0,解得x 1=11,x 2=−10(不合题意,舍去).故答案为11.7.【答案】:解:设书法兴趣小组共有x 人,则每人需送出(x −1)个月饼. 依题意,得x(x −1)=72,整理,得x 2−x −72=0,解得x 1=9,x 2=−8(不合题意,舍去).答:书法兴趣小组共有9人8.【答案】:C【解析】:设较小的奇数为x,则另一个奇数为x+2.根据题意,得x(x+2)=63,解得x1=7,x2=−9,则另一个奇数为9或−7,所以这两个数的和为±16.故选C.9.【答案】:5【解析】:设这个最小数为x,则最大数为x+8.依题意,得x(x+8)=65,整理,得x2+8x−65=0,解得x1=5,x2=−13(不合题意,舍去),所以这个最小数为5.10.【答案】:设这个两位数的个位数字为x,则十位数字为x−3.由题意,得x2=10(x−3)+x.解得x1=6,x2=5.当x=6时,x−3=3;当x=5时,x−3=2.答:这个两位数是36或25【解析】:设个位数字为x,则十位数字为x−3,这个两位数是10(x−3)+x. 然后根据个位数字的平方刚好等于这个两位数,列出方程求解11.【答案】:B【解析】:飞机场可以看作是点,航线可以看作过点画的线段.=10,设共有n个飞机场,则n(n−1)2解得n1=5,n2=−4(舍去).故选B.12.【答案】:10【解析】:由题意,得n+n2+1=111,解得n1=−11(舍去),n2=1013(1)【答案】10;15;1128(2)【答案】y=x(x−1)2(3)【答案】解:设该班共有m名女生.=190,依题意,得m(m−1)2化简,得m2−m−380=0,解得m1=20,m2=−19(不合题意,舍去).答:该班共有20名女生.14(1)【答案】9;14(2)【答案】解:可以.设这个多边形的边数为n.=20,由题意,得n(n−3)2整理,得n2−3n−40=0.解得n1=8,n2=−5(不合题意,舍去).答:多边形的对角线可以共有20条,这个多边形的边数为8.。

中考数学九年级上册专题训练50题含答案

中考数学九年级上册专题训练50题含答案一、单选题1.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣62.用配方法解方程2430x x --=,下列配方正确的是( )A .()227x -=B .()227x +=C .()223x -=D .()221x -= 3.分式()()2234x x x ++-的值为0,则( )A .x =-3B .x =-2C .x =-3或x =-2D .x =±24.如图,四边形ABCD 内接于O ,DA DC =,若55CBE ∠=︒,则DAC ∠的度数为( )A .70︒B .67.5︒C .62.5︒D .65︒ 5.方程()()()1222x x x -+=+的根是( )A .1,﹣2B .3,﹣2C .0,﹣2D .1 6.下列一元二次方程中有两个不相等的实数根的是( )A .240x +=B .2690x x -+=C .23450x x --=D .2340x x -+= 7.下面关于两个图形相似的判断:①两个等腰三角形相似;①两个等边三角形相似;①两个等腰直角三角形相似;①两个正方形相似;①两个等腰梯形相似.其中正确的个数是( )A .1B .2C .3D .4 8.如图,线段AB 的两个端点坐标分别为A (2,2)、B (4,2),以原点O 为位似中心, 将线段AB 缩小后得到线段DE , 若1DE =,则端点E 的坐标为( )A .(1,1)B .(1,2)C .(2,1)D .(2,2) 9.一元二次方程22560x x -+=的根的情况为( )A .无实数根B .有两个不等的实数根C .有两个相等的实数根D .不能判定10.如果,正方形ABCD 的边长为2cm ,E 为CD 边上一点,①DAE=30°,M 为AE 的中点,过点M 作直线分别与AD 、BC 相交于点P 、Q ,若PQ=AE ,则PD 等于( )A .23 cm B cm C .43cm D .23cm 或43cm 11.一元二次方程﹣x 2+2x =﹣1的两个实数根为α,β,则α+β+α•β的值为( ) A .1 B .﹣3 C .3 D .﹣112.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .1或-4B .-1或-4C .-1或4D .1或413.下列关于x 的方程中,一定是一元二次方程的为( )A .20ax bx c ++=B .222(3)x x -=+C .()210k x -=D .210x -= 14.某一商人进货价便宜8%,而售价不变,那么他的利润率(按进货价而定)可由目前x 增加到(x +10%),则x 是( )A .12%B .15%C .30%D .50%15.已知关于x 的一元二次方程()244610ax a x a -+++=有实数根,则实数a 的取值范围是( )A .94a ≥B .98a ≥-且0a ≠C .94a ≤且0a ≠D .98a ≤且0a ≠ 16.我国古代数学著作《九章算术》有题如下:“今有邑方二百步,各中开门.出东门一十五步有木.问出南门几何步而见木?”大意是,今有正方形小城ABCD 的边长BC 为200步,如图,各边中点分别开一城门,走出东门E 15步处有树Q .问出南门F 多少步能见到树Q (即求从点F 到点P 的距离)?(注:步是古代的计量单位)( )A .23663步 B .24663步 C .25663 D .26663步 17.以下说法:①若直角三角形的两边长为3与4,则第三次边长是5;①两边及其第三边上的中线对应相等的两个三角形全等;①长度等于半径的弦所对的圆周角为30°①反比例函数y=﹣2x ,当>0时y 随x 的增大而增大, 正确的有( )A .①①B .①①C .①①D .①① 18.如图,正方形ABCD 中,点E 在边BC 上,BE EC =,将DCE ∆沿DE 对折至DFE ∆,延长EF 交边AB 于点G ,连接DG ,BF .给出以下结论:①DAG DFG ∆≅∆;①2BG AG =;①EBF DEG ∆∆;①23BFC BEF S S ∆∆=.其中所有正确结论的个数是( )A.1B.2C.3D.419.如图,①ABD内接于圆O,①BAD=60°,AC为圆O的直径.AC交BD于P点且PB=2,PD=4,则AD的长为()A.B.C.D.420.如图,四边形ABCD是边长为1的菱形,①ABC=60°.动点P第1次从点A处开始,沿以B为圆心,AB为半径的圆弧运动到CB延长线,记为点P1;第2次从点P1开始,沿以C为圆心,CP1为半径的圆弧运动到DC的延长线,记为点P2;第3次从P2开始,沿以D为圆心,DP2为半径的圆弧运动到AD的延长线,记为点P3;第4次从点P3开始,沿以A为圆心,AP3为半径的圆弧运动到BA的延长线,记为点P4;…..如此运动下去,当点P运动到P20时,点P所运动的路程为()A.4303πB.3103πC.2103πD.1053π二、填空题21.计算:tan245°-1=_______.22.国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的100元降至81元,那么平均每次降价的百分率是________.23.如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若18ADB ∠=︒,则这个正多边形的边数为_______.24.已知一个扇形的面积为9π,其圆心角为90°,则扇形的弧长为_____. 25.在平行四边形ABCD 中,E 为靠近点D 的AD 的三等分点,连结BE ,交AC 于点F ,AC =12,则AF 为_____.26.6cm 长的弦将圆分成1:2的两条弧,则圆的直径为___________.27.已知一元二次方程260x x c -+=的一个根为12x =,另一根2x =________,c =________.28.如图,A 是半径为1的O 外一点,2OA =,AB 是O 的切线,B 是切点,弦BC 平行于OA ,联结AC ,则阴影部分面积为________.29.关于x 的一元二次方程(a -2)x 2+5x +a 2-2a =0的一个根是0,则a =____. 30.如图,一次函数y =﹣12x +a (a >0)的图像与坐标轴交于A ,B 两点,以坐标原点O 为圆心,半径为2的①O 与直线AB 相离,则a 的取值范围是______.31.如图,梯形ABCD 中,AD BC ∥,对角线AC BD 、相交于点O ,如果BCD △的面积是ABD △面积的2倍,那么BOC 与BDC 的面积之比是 __.32.如图,AB 与①O 相切于B 点,AC 经过圆心O ,①A =30°,AB =3,则劣弧BC 的长为_____.33.如图,矩形ABCD 中,AB =1,AD A 为圆心,AD 的长为半径作弧交BC 边于点E ,则图中DE 的弧长是_______.34.如图,直线l 1①l 2①l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DE EF的值为________35.如图,已知ABC 和ADE 均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果AB 9=,BD 3=,那么CF 的长度为________.36.一个扇形的圆心角为120︒,面积为23cm π,则此扇形的半径是__________.37.在正方形ABCD 中,AB =E 为BC 中点,连接AE ,点F 为AE 上一点,2,FE FG AE =⊥交DC 于G ,将GF 绕着G 点逆时针旋转使得F 点正好落在AD 上的点H 处,过点H 作HN HG ⊥交AB 于N 点,交AE 于M 点,则MNF S ∆=________.38.对于一元二次方程ax 2+bx +c =0(a ≠0),下列说法:①a +c =0,方程ax 2+bx +c =0,有两个不相等的实数;①若方程ax 2+bx +c =0有两个不相等的实根.则方程cx 2+bx +a =0也一定有两个不相等的实根;①若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立;①若m 是方程ax 2+bx +c =0的一个根,则一定有b 2-4ac =(2am +b )2成立,其中正确的结论是_____.(把你认为正确结论的序号都填上)39.将一个较短直角边1AB =的直角三角形纸片沿斜边上的高线AD 分割成两个小的直角三角形(如图1),将得到的两个直角三角形按图2叠放(A D ''在DC 边上),当A '与点D 重合时,图3中两个阴影部分的面积相等.(1)图3中有_____个等腰三角形.(2)记两个直角三角形重叠部分的面积为S ,则S 的取值范围是_____.40.如图,定直线l 经过圆心O ,P 是半径OA 上一动点,AC l ⊥于点C ,当半径OA 绕着点O 旋转时,总有OP OC =,若OA 绕点O 旋转60︒时,P 、A 两点的运动路径长的比值是__.三、解答题41.宝鸡国金中心是宝鸡的地标建筑.如图,某数学兴趣小组用无人机测量宝鸡国金中心AB的高度,在飞行高度为300米的无人机上的点P处测得大楼顶部B处的俯角为33°,大楼底部A处的俯角为63.3°,求宝鸡国金中心AB的高.(参考数据:︒≈,tan63.3 2.00tan330.65︒≈)42.用适当的方法解下列方程.(1)(2x﹣1)2=9(2)x2-4x-5=0(配方法)43.如图,点P是①O内的一点,请用尺规作图法,在①O内作一条弦MN,使得点P 为弦MN的中点.(不写作法,保留作图痕迹)44.如图,已知在①ABC中,AD是①BAC平分线,点E在AC边上,且①AED=①ADB.求证:(1)①ABD①①ADE;(2)AD2=AB·AE.︒+︒-45.计算:2cos30tan4546.已知一元二次方程220x bx +-=.(1)当b =1时,求方程的根.(2)若b 为任意实数,请判断方程根的情况,并说明理由.47.已知在Rt ABC 中,90ABC ∠=,30A ∠=,点P 在BC 上,且90MPN ∠=.()1当点P 为线段AC 的中点,点M 、N 分别在线段AB 、BC 上时(如图1).过点P 作PE AB ⊥于点E ,请探索PN 与PM 之间的数量关系,并说明理由;()2当PC =,①点M 、N 分别在线段 AB 、BC 上,如图2时,请写出线段PN 、PM 之间的数量关系,并给予证明.①当点M 、K 分别在线段AB 、BC 的延长线上,如图3时,请判断①中线段PN 、PM 之间的数量关系是否还存在.(直接写出答案,不用证明)48.(1)模型探究:如图1,D 、E 、F 分别为ABC ∆三边BC 、AB 、AC 上的点,且B C EDF α∠=∠=∠=,BDE ∆与CFD ∆相似吗?请说明理由.(2)模型应用:ABC ∆为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF ∆沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD =. ①如图2,当点D 在线段BC 上时,求AE AF的值;①如图3,当点D落在线段CB的延长线上时,求BDE∆与CFD∆的周长之比.49.如图,现有一张宽为12 cm的练习纸,相邻两条格线间的距离均为0.6 cm.调皮的小聪在纸的左上角用印章印出一个矩形卡通图案,图案的顶点恰好在四条格线上,已知sinα=3 5 .(1)求一个矩形卡通图案的面积;(2)若小聪在第一个图案的右边以同样的方式继续盖印,最多能印几个完整的图案?50.如图,△ABC内接于①O,点D在①O外,①ADC=90°,BD交①O于点E,交AC 于点F,①EAC=①DCE,①CEB=①DCA,CD=6,AD=8.(1)求证:AB①CD;(2)求证:CD是①O的切线;(3)求tan①ACB的值.参考答案:1.D【分析】根据已知方程的解得出x +3=1,x +3=﹣3,求出两个方程的解即可.【详解】解:①方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,①方程(x +3)2+2(x +3)﹣3=0中x +3=1或﹣3,解得:x =﹣2或﹣6,即x 1=﹣2,x 2=﹣6,故选:D .【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x +3=1,x +3=﹣3,是解此题的关键.2.A【分析】方程移项后,两边同时加上4,变形即可得到结果.【详解】方程移项得 243x x -=方程两边同时加上4,得 24434x x -+=+即2(2)7x -=故选:A .【点睛】本题考查了配方法解一元二次方程,熟练掌握完全平方公式是解题的关键. 3.A【分析】分式的值为0时,需满足分子等于0,且分母不等于0,即可求解.【详解】解:①分式()()2234x x x ++-的值为0,①()()230x x ++=且240x -≠,解得3x =-,故选:A .【点睛】本题考查分式值为0的条件,需满足分子等于0,且分母不等于0.4.C【分析】根据圆内接四边形的任意一个外角等于它的内对角可求得①D=①CBE=55°,再根据等腰三角形的性质求解即可.【详解】解:①四边形ABCD 内接于O ,55CBE ∠=︒,①①D =①CBE=55°,①DA DC =,①①DAC =1805562.52︒-︒=︒, 故选:C .【点睛】本题考查圆内接四边形的性质、等腰三角形的性质,熟练掌握圆内接四边形的任意一个外角等于它的内对角这一性质是解答的关键.5.B【分析】先移项,然后提取公因式计算求解即可.【详解】解:()()()1222x x x -+=+移项得:()()()12220x x x -+-+=()()230+-=x x解得12x =-,23x =故选B .【点睛】本题考查了因式分解法解一元二次方程.解题的关键在于对提公因式法的熟练掌握.6.C【分析】根据一元二次方程根的判别式即可进行解答.【详解】解:A 、240414160b ac -=-⨯⨯=-<,原方程无实数根;不符合题意; B 、24364190b ac -=-⨯⨯=,原方程有两个相等的实数根;不符合题意;C 、24=164?3?(5)=76>0b ac ---,原方程有两个不相等的实数根;符合题意;D 、24941470b ac -=-⨯⨯=-<,原方程无实数根;不符合题意;故选:C .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键是掌握240b ac ->时,方程有两个不相等的实数根;240b ac 时,方程有两个相等的实数根;240b ac -<时,方程无实数根.7.C【分析】根据相似图形的定义,结合图形,对选项一一分析,利用排除法求解.【详解】解:①两个等腰三角形顶角不一定相等,故不一定相似;①两个等边三角形,角都是60°,故相似;①两个等腰直角三角形,都有一个直角和45°的锐角,故相似.①两个正方形,对应角相等,对应边成比例,故相似;①两个等腰梯形不一定对应角相等,对应边成比例,故不相似.①所以共有3个一定相似,故选:C .【点睛】本题考查的是相似形的定义,联系图形,即图形的形状相同,但大小不一定相等.正确理解相似形的概念是解题的关键.8.C【详解】将线段AB 缩小后得到线段DE , 若1DE ,说明DE 是原来的12,位似比是12,①D (1,1),①E 的坐标是(2,1),故本题选C .9.A【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:①Δ=(−5)2−4×2×6=-23<0,①方程无实数根.故选:A .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.10.D【详解】根据题意画出图形,过P 作PN①BC ,交BC 于点N ,①四边形ABCD 为正方形,①AD=DC=PN ,在Rt①ADE 中,①DAE=30°,AD=2cm ,①tan30°=DE AD ,即,根据勾股定理得:,①M 为AE 的中点,①AM=12, 在Rt①ADE 和Rt①PNQ 中,AD PN AE PQ =⎧⎨=⎩, ①Rt①ADE①Rt①PNQ (HL ),①DE=NQ ,①DAE=①NPQ=30°,①PN①DC ,①①PFA=①DEA=60°,①①PMF=90°,即PM①AF ,在Rt①AMP 中,①MAP=30°, ①AP=4cos303AM =︒cm , 所以PD=2﹣43=43或23. 故选D .11.A【分析】先把一元二次方程化成一般形式,再根据根与系数的关系求得α+β=2,α•β=﹣1,将其代入代数式即可求值.【详解】解:整理得,﹣x 2+2x +1=0,x 2﹣2x ﹣1=0,①此一元二次方程的两个实数根为α,β,①α+β=2、αβ=﹣1,①α+β+α•β=2﹣1=1.故选A .【点睛】本题考查了一元二次方程根与系数的关系.将一元二次方程化成一般形式并牢记一元二次方程根与系数的关系式是解题的关键.12.A【详解】解:①x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ①(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得 a 1=-4,a 2=1.即a 的值是1或-4.故选:A .【点睛】一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.D【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、方程二次项系数可能为0,故错误;B 、化简后方程不含二次项,故错误;C 、方程二次项系数可能为0,故错误;D 、符合一元二次方程的定义,正确,故选D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2. 14.B【详解】解:设进价是1,则,x +10%=()()11%118%18%x ⨯+-⨯--.解得x =15%,故选B.15.B【详解】①一元二次方程()244610ax a x a -+++=有实数根,①①=[﹣(4a +6)]2-4a ×4(a +1)≥0,且a ≠0, 解得:98a ≥-且0a ≠. 故选B.【点睛】本题主要考查根的判别式,解此题的关键在于利用根的判别式得到关于a 的不等式,然后解不等式即可得到答案.16.D【分析】证明①CPF ①①QCE ,利用相似三角形的性质得10010015PF =,然后利用比例性质可求出CK 的长.【详解】解:CE =100,CF =100,EQ =15,①QE ①CF ,①①PCF =①Q ,而①PFC =①QEC ,①①PCF ①①CQE , ①PF CF CE QE=, 即10010015PF =, ①PF =26663(步); 答:出南门F 26663步能见到树Q , 故选:D .【点睛】本题考查了相似三角形的应用:利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求得结论.17.C【详解】试题分析:分别利用勾股定理、全等三角形的判定、圆周角定理及反比例函数的性质判断:①若直角三角形的两边长为3与4,则第三次边长是5,故错误;①两边及其第三边上的中线对应相等的两个三角形全等,正确;①长度等于半径的弦所对的圆周角为30°或150°,故错误;①反比例函数y=﹣2x,当>0时y 随x 的增大而增大,正确, 故选C . 考点:1、反比例函数的性质;2、全等三角形的判定;3、勾股定理;4、圆周角定理 18.B【分析】根据正方形的性质和折叠的性质可得AD =DF ,①A =①GFD =90°,于是根据“HL”判定Rt △ADG①Rt △FDG ,可判断①的正误;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,根据勾股定理得到x =13a ,得到BG =2AG ,故①正确;根据已知条件得到△BEF 是等腰三角形,易知△GED 不是等腰三角形,于是得到△EBF 与△DEG 不相似,故①错误;连接CF ,根据三角形的面积公式得到S △BFC =2S △BEF .故①错误.【详解】解:如图,由折叠和正方形性质可知,DF =DC =DA ,①DFE =①C =90°, ①①DFG =①A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG⎧⎨⎩==, ①Rt △ADG①Rt △FDG (HL ),故①正确;设正方形ABCD 的边长为a ,AG =FG =x ,BG =a−x ,①BE =EC ,①EF =CE =BE =12a①GE=12a+x由勾股定理得:EG 2=BE 2+BG 2,即:(12a+x)2=(12a)2+(a-x)2解得:x =13 ①BG =2AG ,故①正确;①BE=EF,①①BEF是等腰三角形,易知△GED不是等腰三角形,①①EBF与△DEG不相似,故①错误;连接CF,①BE=CE,BC,①BE=12①S△BFC=2S△BEF.故①错误,综上可知正确的结论的是2个.故选:B.【点睛】本题考查了相似三角形的判定和性质、图形的折叠变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,三角形的面积计算,有一定的难度.19.B【分析】连接DO并延长交①O于E,连接BE,由DE是①O的直径,可得①EBD=90°,由圆周角定理可得①BED=①BAD=60°,继而得①BDE=30°,可求得BD、DE长,进而可得△OPD①△BED,从而可得①POD=①EBD=90°,再根据勾股定理即可求得结论.【详解】连接DO并延长交①O于E,连接BE,①DE是①O的直径,①①EBD=90°,①①BED=①BAD=60°,①①EDB=30°,①DE=2BE,①PB=2,PD=6,①BD=6,①BD2+BE2=DE2,①OD BD ==PD DE = ①OD PD BD DE =, 又①①ODP=①BDE ,①①ODP①△BDE ,①①POD=①EBD=90°,=故选B.【点睛】本题考查了圆周角定理、相似三角形的判定与性质、勾股定理等,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.20.B【分析】利用弧长公式计算即可解决问题.【详解】由题意:点P 所运动的路程 =1201602180180ππ⋅⋅++1203180π⋅+ 604180π⋅+ 1205180π⋅+…+6020180π⋅ =120180π(1+3+5+…+19)+60180π(2+4+…+2+20) =23π•1192+×10+3π•2202+×10 =2003π+ 1103π =3103π, 故选:B .【点睛】本题考查菱形的性质,弧长公式等知识,理解题意,灵活运用所学知识是解题的关键.21.0【分析】根据特殊角的锐角三角函数值即可求得结果.【详解】解:tan245°-1=12-1=0.故答案为:0【点睛】本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现.22.10%【分析】降低后的价格=降低前的价格×(1-降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是100(1-x),那么第二次后的价格是100(1-x)2,即可列出方程求解.【详解】解:设平均每次降价的百分率为x,依题意列方程:100(1-x)2=81,解方程得x1=0.1=10%,x2=1.9(舍去).故平均每次降价的百分率为10%.故答案为10%【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.23.10【分析】连接AO,BO,根据圆周角定理得到①AOB=36°,根据中心角的定义即可求解.【详解】如图,连接AO,BO,①①AOB=2①ADB=36°①这个正多边形的边数为36036=10故答案为:10.【点睛】此题主要考查正多边形的性质,解题的关键是熟知圆周角定理.24.3π【分析】设扇形的半径为r,利用扇形的面积公式求出r=6,然后根据弧长公式计算扇形的弧长.【详解】解:设扇形的半径为r , 根据题意得2909360r ,解得r =6, 所以扇形的弧长=9063180ππ⨯=. 故答案为3π. 【点睛】本题考查了扇形面积及弧长的计算,熟练掌握扇形面积公式和弧长公式是解题关键.25.245【分析】由题意易得AD =BC ,AD ①BC ,则有AE =23AD =23BC ,进而可得AEF CBF ∽△△,然后可得23AF AE FC BC ==,则问题可求解. 【详解】解:在ABCD 中,AD =BC ,AD ①BC ,①E 为AD 的三等分点,①AE =23AD =23BC ,①AD ①BC ,①AEF CBF ∽△△, ①23AF AE FC BC ==, ①AC =12,①AF =2241255⨯=; 故答案为:245. 【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26.【分析】如图,过圆心O 作OA①BC 于点E ,连接OB ,OC ,根据垂径定理可得BE=CE=3cm ,再根据题意可得①BOA=60°,即①OBE=30°,再利用勾股定理求得OE 的长,即可得到圆的直径长.【详解】如图,过圆心O 作OA①BC 于点E ,连接OB ,OC ,①BC=6cm,①BE=CE=3cm,①弦将圆分成1:2的两条弧,①①BOC=120°,即①BOA=60°,在Rt①BOE中,①OBE=30°,①OE=12 OB,①OB2﹣OE2=BE2,①3OE=9,解得,即,则圆的直径为故答案为【点睛】本题主要考查垂径定理,勾股定理等,解此题的关键在于熟练掌握其知识点. 27.48【分析】把x=2代入方程260x x c-+=,即可求得实数c的值,再根据根与系数的关系即可求出2x【详解】把x=2代入方程260x x c-+=,得22-6×2+c=0解得c=8①a=1,b=-6,12x=①x1+x2=−ba=6①2x=4故答案是:4,8【点睛】本题考查了一元二次方程的解,根与系数的关系,熟练掌握公式是解题的关键 28.6π 【分析】连接O B 、OC ,过O 作OD ①BC 于点D ,则可知S △BOC =S △ABC ,可知阴影部分面积=扇形OBC 的面积,再计算扇形OBC 的面积即可.【详解】解:连接O B 、OC ,过O 作OD ①BC 于点D ,①BC ①OA ,①点A 到BC 的距离等于点O 到BC 的距离,①S △BOC =S △ABC ,①阴影部分面积=扇形OBC 的面积,①AB 是①O 的切线,①OB ①AB ,①OA =2,OB =OC =1,①①OAB =30°,①①AOB =60°,又BC ①OA ,①①OBC =①AOB =60°,①①BOC 为等边三角形,①BC =OA ,①扇形OBC 的面积=26013606ππ⨯=, ①阴影部分面积为6π, 故答案为:6π.【点睛】本题考查扇形面积的计算,把所求面积化为扇形面积是解题的关键.29.0【分析】把x =0代入方程计算,检验即可求出a 的值.【详解】解:把x =0代入方程得:()2205020a a a -⨯+⨯+-=,解得:a =0或a =2,20,a -≠ 则2,a ≠0.a ∴=故答案为:0【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握解一元二次方程的方法是解本题的关键.30.a 【分析】先求出一次函数与坐标轴的交点A ,B 的坐标,再利用勾股定理计算出AB =,接着利用面积法计算出OH =,然后根据直线与圆的位置关系得到OH >22>,于是解不等式即可得到a 的范围. 【详解】解:当y =0时,﹣12x +a =0,解得x =2a ,则A (2a ,0),当x =0时,y =−12x +a =a ,则B (0,a ),在Rt △ABO 中,AB ,过O 点作OH ①AB 于H ,如图,①12⋅OH ⋅AB =12⋅OB ⋅OA ,①OH, ①半径为2的O 与直线AB 相离,所以OH >2>2,所以a故答案为a【点睛】本题考查了判断直线和圆的位置关系:设①O 的半径为r ,圆心O 到直线l 的距离为d ,若直线l 和①O 相交⇔d <r ;直线l 和①O 相切⇔d =r ;直线l 和①O 相离⇔d >r .也考查了一次函数与系数的关系.31.2:3【分析】过点D 作DM BC ⊥,垂足为M ,过点B 作BN AD ⊥,交DA 的延长线于点N ,根据已知易得=DM BN ,再根据=2BCD ABD S S ,从而可得2BC AD =,然后再证明8字模型相似三角形AOD COB ∽,利用相似三角形的性质可得1==2AD DO BC BO ,从而可得2=3BO BD ,最后根据BOC 与BDC 的高相等,即可解答. 【详解】解:过点D 作DM BC ⊥,垂足为M ,过点B 作BN AD ⊥,交DA 的延长线于点N ,①AD BC ∥,①BN DM =,①=2BCD ABD S S , ①11·=?22BC DM AD BN , ①2BC AD =,①AD BC ∥,①==ADB DBC DAC ACB ∠∠∠∠,,①AOD COB ∽, ①1==2AD DO BC BO , ①2=3BO BD , ①BOC 与BDC 的高相等,①2==3BOCBDC S BO S BD , 故答案为:2:3.【点睛】本题考查了平行线间的距离,相似三角形的判定与性质,梯形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32 【分析】连接OB ,根据切线的性质得到①ABO =90°,求出①BOC ,根据正切的定义求出OB ,根据弧长公式计算,得到答案.【详解】解:连接OB ,①AB 是①O 的切线,①①ABO =90°,①①AOB =90°﹣①A =60°,①①BOC =120°,在Rt①ABO 中,OB =AB•tanA①劣弧BCπ,【点睛】此题考查了圆的切线的性质定理,锐角三角函数,弧长的计算公式,正确理解弧长公式中各字母的意义,分别求出其值进行计算是解题的关键.33π 【分析】根据题意可得sin①AEB ,可以判断出①AEB=45°,进一步求解①DAE=①AEB=45°,代入弧长计算公式可得出弧DE 的长度.【详解】解:①以AD 为半径画弧交BC 边于点E ,又①AB=1,①sinAB AEB AE ∠==①①AEB=45°,①四边形ABCD 是矩形①AD①BC①①DAE=①AEB=45°,故可得弧DC 的长度为452180π⋅⋅=,. 【点睛】此题考查了弧长的计算公式,解答本题的关键是求出①DAE 的度数,要求我们熟练掌握弧长的计算公式及解直角三角形的知识.34.35【详解】试题解析:①AH=2,HB=1,①AB=AH+BH=3,①l 1①l 2①l 3,①3 5DE AB EF BC == 考点:平行线分线段成比例.35.2【分析】利用两对相似三角形,线段成比例:AB :BD=AE :EF ,CD :CF=AE :EF ,可得CF=2.【详解】如图,①①ABC 和①ADE 均为等边三角形,①①B=①BAC=60°,①E=①EAD=60°,①①B=①E ,①BAD=①EAF ,①①ABD①①AEF ,①AB:BD=AE:EF.同理:①CDF①①EAF ,①CD:CF=AE:EF ,①AB:BD=CD:CF ,即9:3=(9−3):CF ,①CF=2.故答案为2.【点睛】本题考查了相似三角形的判定与性质和等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质和等边三角形的性质.36.3cm【分析】已知扇形面积求扇形的半径,使用扇形的面积公式即可.【详解】解:①S=3π,n=120°,①根据扇形面积公式可得21203360r ππ⨯=, 解得扇形半径r=3cm ,故答案为:3cm .【点睛】本题主要考查扇形面积公式的使用.37【分析】过B 作BP AE ⊥于P ,根据勾股定理得出12BE BC ==AE=10,进一步得出,,B F G 共线,然后通过作辅助线构造直角三角形,利用三角函数求出FQ =BQ =,然后进一步分别计算利用面积差求解即可. 【详解】如图,过B 作BP AE ⊥于P ,①正方形ABCD 中,AB =E 为BC 中点,①12BE BC ==①10AE ==,①4AB BE BP AE ⋅===,①2PE =,①EF EP =,①F 与P 重合,①,,B F G 共线,过F 作OS DC ⊥,交AB 于,O DC 于S ,则OS AB ⊥,过F 作FQ BC ⊥于Q , ①sin EF FQ FBE BE BF∠==,4FQ =①FQ =①BQ =, 易得矩形OFQB ,①FO BQ ==①FS ==AO AB OB =-== ①GF AE ⊥,①90AFG ∠=︒,①GFS AFH AFH FAH ∠+∠=∠+∠,①GFS FAB ∠=∠, ①tan tan BE GS FAB GFS AB FS∠=∠==,=①GS =①DG DS GS AO GS =-=-== ①GH GF =,①2222DH DG GS FS +=+,①2222DH +=+⎝⎭⎝⎭, ①4DH =,①4AH =,①tan tan ,AH DG ANH DHG AN DH∠=∠==,,①AN = 过M 作MR AB ⊥于R ,设MR x =,则2,tan tan DG MR AR x ANH DHG DH RN =∠=∠==,x RN=, ①RN =,由AR RN AN +=得:2x =6x =-①6MR =- ①()111222MNF ANF AMN S S S AN FO AN MR AN FO MR ∆∆∆=-=⋅-⋅=-162=+=⎝.【点睛】本题主要考查了直角三角形与三角函数的综合运用,熟练掌握相关概念是解题关键.38.①①【分析】①根据根的判别式即可作出判断;①方程有两个不相等的实数根,则2b 4ac 0∆=->,当c =0时,cx 2+bx +a =0为一元一次方程;①若c 是ax 2+bx +c =0的一个根,则代入即可作出判断;①若m 是方程ax 2+bx +c =0的一个根,则方程有实根,判别式0∆>,结合m 是方程的根,代入一定成立,即可作出判断.【详解】①根据公式法解一元二次方程可知2b 4ac ∆=-,若a +c =0,且a ≠0,①a ,c 异号,①0∆>,故此时有两个不相等的实数根,故选项①正确;①若c =0,b ≠0,则2b 4ac 0->,①方程ax 2+bx +c =0有两个不相等的实数根,方程cx 2+bx +a =0仅有一个解,故选项①错误;①将x =c 代入方程ax 2+bx +c =0,可得2ac bc c 0++=,即()c ac bc 10++=,解得c =0或ac +b +1=0,因此ac +b +c =0不一定成立,故选项①错误;①①m 是方程ax 2+bx +c =0的一个根,①am 2+bm +c =0,此时()()()222222222am b 4a m b 4abm 4a am bm b 4a c b b 4ac +=++=++=-+=-,故选项①正确 故答案为①①.【点睛】本题主要考查一元二次方程根与判别式的关系.39. 3 112S ≤≤【分析】(1)由题意易得,B DAC C BAD ∠=∠∠=∠,则有BA D C ''∠=∠,//AD BD ',然后根据角的等量关系及等腰三角形的判定可进行求解;(2)由(1)可得:,B DAC C BAD ∠=∠∠=∠,则有BAD ACD ∽△△,设AD =h ,则有tan h BD B=∠,tan tan CD h DAC h B =⋅∠=⋅∠,由题意可得当A '与点D 重合时,重合面积最大,当点D 与C 重合时,重合面积最小,进而分类求解即可得出答案.【详解】解:(1)当A '与点D 重合时,设AC 与BD 、BD '分别相交于点O 、F ,如图所示:①AD BC ⊥,①90B BAD ∠+∠=︒,①90BAC ∠=︒,①90B C ∠+∠=︒,①C BAD ∠=∠,同理可得B DAC ∠=∠,①BA D BAD ''∠=∠,①BA D C ''∠=∠,①COD △是等腰三角形,①90ADC BD D '∠=∠=︒,①//AD BD ',①A BFA B ADO ∠=∠=∠=∠,①AOD △和BOF 都为等腰三角形,①图3中有3个等腰三角形;故答案为3;(2)由(1)可得:∠B =∠DAC,∠C =∠BA′D′,①''BA D ACD ∽,设AD =h ,则有tan h BD B=∠, ①tan tan CD h DAC h B =⋅∠=⋅∠,①当A '与点D 重合时,作OE CD ⊥,如图所示:①OD =OC ,①DE =CE ,AD ①OE , ①122h OE AD ==, ①阴影部分的面积相等,①BOF D FC DD FO DD FO SS S S '''+=+四边形四边形, ①BD D DOC SS '=, ①11222h A D BD CD '''⋅=⋅, ①,tan h A D AD h BD BD B '''====∠, ①221tan tan 2h h B B =∠∠,①tan B ∠①AB =1,则有在Rt ①ABD 中,221h +=,①h =BD =①))11CD CD A D h '''=-==,①)1tan tan CD CD FD CFD B '''==='∠∠,①)1111223A D B CFD S S S A D BD CD FD ''''''''=-=⋅-⋅=, ①当点D 与C 重合时,作OM ①BC 于点M ,如图所示:①B OCB ∠=∠,①1122BM CM BD '====①tan OM BM B =⋅∠=①1122A D B BOC S S S A D BD BD OM ''''''=-=⋅-⋅=,由上可知S 的取值范围为112S ≤≤故答案为112S ≤ 【点睛】本题主要考查相似三角形的性质与判定及解直角三角形,熟练掌握相似三角形的性质与判定及解直角三角形是解题的关键.40.1.【分析】设①O 的半径为R ,l 与①O 交于点B ,由直角三角形的性质得出1122OC OA OB ==,由已知得出12OP OA =,证明①AOB 是等边三角形,得出BP OA ⊥,①OPB=90°,得出点P 在以OB 为直径的圆上运动,圆心为C ,由圆周角定理得出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册练习题及答案九年级数学试题一选择题:1、下列命题中的真命题是、A、对角线互相垂直的四边形是菱形B、中心对称图形都是轴对称图形C、两条对角线相等的梯形是等腰梯形D、等腰梯形是中心对称图形第2题图2、如右图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为 A.2cmB.3cm C.23cm D.25cm3、如图,BD是⊙O的直径,∠CBD=30?,则∠A的度数.A、30?B、45?C、60?D、75?、已知二次函数y=ax2+bx+c的图像如图所示,则下列条件正确的是 A.ac<0B、b-4ac<0C、 b>0D、 a>0,b<0,c>05、抛物线y= x 向左平移8个单位,再向下平移个单位后,所得抛物线的表达式是A、 y=2-B、 y=2+C、 y=2-D、 y=2+96.如图,在平面直角坐标系中,长、宽分别为2和1的矩形ABCD的边上有一动点P,沿A→B→C→D→A运动一周,则点P的纵坐标y与P所走过的路程x之间的函数关系用图象表示大致是2第3题图第4题图7、某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为 x,则下面所列方程中正确的是A、2892=25B、2562=289C、289=25D、256=2898、如图,在平面直角坐标系中,正方形ABCD的顶点A、C分别在y 轴、x轴上,以AB为弦的⊙M与x轴相切、若点A的坐标为,则圆心M的坐标为A、B、C、D、9.若点A的坐标为O为坐标原点,将OA绕点O按顺时针方向旋转90得到OA′,则点A′的坐标是A、B、C、D、10、下列各点中,在函数y=-6x 图像上的是12A、B、C、D、11.抛物线y=x?2x?3与坐标轴交点为 A.二个交点B.一个交点 C.无交点D.三个交点12.关于x的一元二次方程x2+x+m+1=0有两个相等的实数根,则m的值是A、0B、C、422D、 0或二、填空题:13 、使x的取值范围是、 A DB E D14、将二次函数y=x2-4x+5化为y=2+k的形式,则15 、如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落 CC 在D′,C′的位置.若∠EFB=65,则∠AED′等于16、菱形OABC在平面直角坐标系中的位置如图所示, ?AOC?45,OC?B的坐标为.17、如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于、三、解答题:18、解方程:2 x+6x-11=019、如图,在平面直角坐标系中,△ ABC的三个顶点的坐标分别为A,B,C、、画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;、画出△ABC绕原点O顺时针方向旋转90后得到的△A2B2C2,并写出点C2的坐标;,第16B A C第17题图将△A2B2C2平移得到△ A3B3C3,使点A2的对应点是A3,点B2的对应点是B3,点C2的对应点是C3,在坐标系中画出△ A3B3C3,并写出点A3的坐标。

0、如图,在□ABCD中,BE 平分?ABC交AD于点E,A DF平分?ADC交BC于点F、 ED 求证:△ABE≌CDF; B F C 若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论、21、如图,线段AB与⊙O相切于点C,连结 OA,OBOB 交⊙O 于点D,已知OA?OB?6,AB?.求⊙O的半径;求图中阴影部分的面积.22、已知一次函数y?x?2与反比例函数y?图象经过点P.、试确定反比例函数的表达式; A C B第21题图 kx ,一次函数y?x?2的、若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标、3、某商场销售一批名牌衬衫,平均每天可售出20件,每件可盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件每降价1元,平均每天多售2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?每件衬衫降价多少元时,商场平均每天盈利最多?4、1 如图,抛物线y=2+bx-2与x轴交于A,B两点,与y2轴交于C点,且A.求抛物线的解析式及顶点D的坐标;判断△ABC的形状,证明你的结论;点M 九年级数学学科参考答案一、选择题:1.C 、C 、C 、 D 、A 、D 、A 、A9、A10、C11、B12、D二、填空题:13、x≥1414、y=+115、5016、17、212三、解答题:18、 x1=-3+25,x2=-3-219、说明:三个图形各2分,点的坐标各1分 C1C2A320、证明:∵四边形ABCD是平行四边,∴?AC,AB?CD,?ABCADC ∵BE平分?ABC,DF平分?ADC,∴?ABECDF……………………… 分∴△ABE≌△CDF?ASA? …………… 分由△ABE≌△CDF,得AE?CF …………5分在平行四边形ABCD中,AD∥BC,AD?BC∴DE∥BF,DE?BF ∴四边形EBFD是平行四边形.........7分若BD?EF,则四边形EBFD是菱形 (2)1、连结OC,∵AB与⊙O相切于点C ∴OC⊥AB.∵OA?OB,∴AC?BC?12AB?12全文结束》》九年级期末数学考试试题及答案一.选择题1.在,,,,中最简二次根式的个数是3.观察下列图形,既是轴对称图形又是中心对称图形的有4.如图,在正方形ABCD 中有一点 E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是5.如果关于x的方程﹣x+3=0是关于x的一元二次方程,那么m的值为228.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,9.如图,⊙O的半径为2,弦AB=的长为,点C在弦AB上,AC=AB,则OC )11.如图,5个圆的圆心在同一条直线上,且互相相切,若大圆直径是12,4个小圆大小相等,则这5个圆的周长的和为12.PA、PB分别切⊙O于A、B 两点,C为⊙O上一动点,∠APB=50,二、填空题13.计算:4 ﹣ =14.点A关于原点对称的点的坐标为,那么n=15.方程x=x的根是2216.已知一元二次方程x+7mx+m﹣4=0有一个根为0,则m= _________ .17.如图,PA、PB、DE分别切⊙O于点A、B、C,DE交PA、PB于点D、E,已知PA长8cm.则△PDE的周长为P=40,则∠DOE=18.如图,一块含有30角的直角三角形ABC,在水平桌面上绕点C按顺时针方向旋转到A′B′C′的位置.若BC的长为15cm,那么顶点A从开始到结束所经过的路径长为.三、解答题19.计算:.20.解下列方程.2 x+4x﹣5=0; x=4x+6.21.△ABC三个顶点A,B,C在平面直角坐标系中位置如图所示.将△ABC绕C点顺时针旋转90,画出旋转后的△A2B2C2,并写出A2的坐标.22.已知AB与⊙O相切于点C,OA=OB,OA、OB与⊙O分别交于点D、E.如图①,若⊙O的直径为8,AB=10,求OA的长;如图②,连接CD、CE,若四边形ODCE为菱形,求的值.23.如图,已知CD 是△ABC中AB边上的高,以CD为直径的⊙O分别交CA,CB于点E,F,点G是AD的中点.求证:GE是⊙O的切线.24.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3、2元的单价对外批发销售.求平均每次下调的百分率;小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.25.一位同学拿了两块45三角尺△MNK,△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=4.如图1,两三角尺的重叠部分为△ACM,则重叠部分的面积为_________ ,周长为.将图1中的△MNK绕顶点M逆时针旋转45,得到图2,此时重叠部分的面积为 _________ ,周长为_________ .如果将△MNK绕M旋转到不同于图1和图2的图形,如图3,请你猜想此时重叠部分的面积为.在图3情况下,若AD=1,求出重叠部分图形的周长.参考答案与试题解析一.选择题1.在,,,,中最简二次根式的个数是3.观察下列图形,既是轴对称图形又是中心对称图形的有4.如图,在正方形ABCD中有一点E,把△ABE绕点B旋转到△CBF,连接EF,则△EBF的形状是全文结束》》~xx学年上学期九年级期中考试数学试题1、已知x=2是一元二次方程x2-mx+2=0的一个解,则m的值是 A.-3B. C. 0D.2、如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子 A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短3、如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为A.6B.7C. D.94、已知实数x,y满足,则以x, y 的值为两边长的等腰三角形的周长是 A.20或16B.0 C.16D.以上答案均不对5、用配方法解关于x的一元二次方程x2﹣2x﹣3=0,配方后的方程可以是A.2=4B.2=4 C.2=1 D.2=166、在反比例函数的图象上有两点, A.负数 B.非正数C.正数D.不能确定,则y1-y2的值是7、已知等腰△ABC 中,AD⊥BC于点D,且AD=BC,则△ABC底角的度数为 A.5 B.5 C.0 D.5或758、如图,在菱形ABCD中,∠A=60,E,F分别是AB,AD的中点,DE,BF 相交于点G,连接BD,CG,有下列结论:①∠BGD=120 ;②BG+DG=CG;③ △BDF≌△CGB ;④S△ABDAB2.其中正确的结论有 A.1个B.2个 C.3个 D.4个二、填空题9、方程x2-9=0的根是.10、若一元二次方程x2?2x?m?0有实数解,则m的取值范围是.11、平行四边形ABCD中,∠A+∠C=100,则∠B= 度.12、如图,在△ABC中,AB=AD=DC,∠BAD=20,则∠C= .13、如图,正方形ABOC的边长为2,反比例函数y?k的图象过点A,则k的值x 是、14、如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是.15、如图,边长12cm的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3cm,则小正方形的边长等于、三、解答题16、解方程:=3x x?2x?2x?1217、如图,在△ABC中,AB=AC,∠ABC=72.用直尺和圆规作∠ABC的平分线BD交AC于点D;在中作出∠ABC的平分线BD 后,求∠BDC的度数.18、如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.求证:BC=AD;△OAB是等腰三角形. D C O A B19、如图,路灯下一墙墩的影子是BC,小明的影子是EF,在M处有一颗大树,它的影子是MN.指定路灯的位置;在图中画出表示大树高的线段;若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.20、如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.求证:四边形BMDN是菱形;若AB=4,AD=8,求MD的长.21、某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?22、一位同学拿了两块45的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为 ,周长为、将图1中的△MNK绕顶点M逆时针旋转45,得到图2,此时重叠部分的面积为 ,周长为、如果将△MNK 绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.第 1 页共 1 页。

相关文档
最新文档