山东省肥城一中10-11学年高一数学第一次月考新人教A版【会员独享】
人教A版数学必修一高一第一次月考试题.doc

高中数学学习材料鼎尚图文*整理制作高一第一次月考试题第Ⅰ卷一、选择题(本题共12题,每题5分,共60分)1.下列四个关系式中,正确的是( )。
(A ){}a ∈φ (B) {}a a ⊆ (C ) {}{}b a a ,∈ (D) {}b a a ,∈2.全集{}8,7,6,5,4,3,2,1=U ,集合{}7,5,3,1=M ,{}8,5,2=N 则=⋂N M ( ) (A )φ (B) {}7,3,1 (C ) {}8,2 (D) {}53.设集合A={x|a ≤x<a+4},B={x|x<-1,或x>2},若A ∪(B C R )=A 则实数a 的取值范围是( ).(A ) 12-≤≤-a (B ) 12-≤<a -(C ) 1,2-<->a a 或 (D ) 12-<<a -4.已知集合M={x ∈N | 8-x ∈N },则M 中元素的个数是 ( )(A ) 10 (B) 9 (C ) 8 (D) 无数个5.设集合A={}15<≤-x x ,B={}0≤x x ,则A ∪B 等于( )A .[-5,1]B .[-5,2]C .{x|x<1}D .{x|x ≤2}6.给右图的容器甲注水,下面图像中哪一个图像可以大致刻画容器中水的高度与时间的函数关系:( )。
时间 水高 0 时间水高(A) (B)容器甲(C) (D)7.下列各组函数中,表示同一函数的是( )。
A .xx y y ==,1 B .1,112-=+⋅-=x y x x y C .33,x y x y == D . 2)(|,|x y x y ==8.已知()x f 是偶函数,且()54=f ,那么()()44-+f f 的值为( )。
(A ) 5 (B) 10(C ) 8 (D) 不确定9.集合{}22≤≤-=x x M ,{}20≤≤=y y N ,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( )。
人教A版数学必修一高一第一次月考试卷.docx

高中数学学习材料鼎尚图文*整理制作阜阳一中高一第一次月考数学试题一、选择题(本题共12小题,每小题5分,共60分,每题有四个选项,其中只有一项是 正确的)1. 以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是 ( )A .1B .2C .3D .42. 下列四组函数,表示同一函数的是 ( )A .f (x )=2x , g (x )=x B . f (x )=x , g (x )=x x 2C .f (x )=42-x , g (x )=22-+x xD .f (x )=|x +1|, g (x )=⎩⎨⎧-<---≥+1111x x x x 3. 设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01, B .{}101-,, C .{}012,, D .{}1012-,,,4. 在映射中B A f →:,},|),{(R y x y x B A ∈==,且),(),(:y x y x y x f +-→,则与A 中的元素)2,1(-对应的B 中的元素为 ( )A .)1,3(-B .)3,1(C .)3,1(--D .)1,3(5. 函数)(x f ,)(x g 由下列表格给出,则))3((g f 等于 ( ) x1 2 3 4 )(x f2 43 1 )(x g 3 1 2 4A .4B .3C .2D .16. 如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A .增函数且最大值为-5B .增函数且最小值为-5C .减函数且最小值为-5D .减函数且最大值为-57. 如图,阴影部分表示的集合是 ( )(A )B ∩[C U (A ∪C)] (B )(A ∪B)∪(B ∪C)(C )(A ∪C)∩( C U B) (D )[C U (A ∩C)]∪B8.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H 是圆锥形漏斗中液面下落的距离,则H 与下落时间t (分)的函数关系表示的图象只可能是A .B .C .D .9. 已知(x)f 为R 上的减函数,则满足1()f(1)f x>的实数x 的取值范围是 ( )A .(,1)-∞B .(1,)+∞C .(,0)(0,1)-∞⋃D .(,0)(1,)-∞⋃+∞ 10. 已知偶函数(x)f 在区间[0)+∞,上单调递增,则满足1(2x 1)f()3f -<的x 的取值范围是( ) A .12(,)33B .12[,)33C .12(,)23D .12[,)2311. 函数()f x 是定义域为R 的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 的表达式为 ( )A .1+-xB .1--xC .1+xD . 1-x 12. 已知(a 3)x 5,x 1(x)2,1f a x x -+≤⎧⎪=⎨>⎪⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,3) B .(0,3] C .(0,2) D .(0,2]二、填空题(本题共4个小题,每小题5分,共20分)13.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .14.已知753()2f x x ax bx cx =-+++,若(3)3f -=-,则(3)f =________________15.函数2()2(1)2f x x a x =+-+在(,4]-∞上是减函数,则实数a 的取值范围是___________ 16.已知f (x )是定义在[)2,0-∪(]0,2上的奇函数,当0>x 时,f (x ) 的图象如右图所示,那么f (x ) 的值域是 .三、解答题(本大题共6小题,共70分。
肥城市第一高级中学2023-2024学年高一上学期10月月考地理试卷(含答案)

肥城市第一高级中学2023-2024学年高一上学期10月月考地理试卷学校:___________姓名:___________班级:___________考号:___________一、单选题读太阳系模式图,完成下面小题1、图中的太阳属于( )A.恒星B.行星C.卫星D.彗星2、图中d是( )A.海王星B.地球C.火星D.金星3、下列天体系统中不包含c天体的是( )A.总星系B.银河系C.河外星系D.太阳系下图示意北半球大气上界太阳辐射分布,据此完成下面小题。
4、北半球大气上界太阳辐射分布( )A.由赤道向极地递减B.依据纬度间距等量变化C.低纬度地区辐射弱D.极地辐射量接近太阳常数5、影响大气上界太阳辐射分布变化的主导因素是( )A.大气厚度B.太阳活动C.距日远近D.纬度差异6、进入地球的太阳辐射可能( )A.转化成有机物中的生物化学能B.形成多姿多彩的地表地貌形态C.引起大气电离层中的电磁扰动D.影响海洋矿产资源的开发利用二战期间的一个早晨,英军指挥部接到各雷达站的报告,说雷达受到了来自东方奇怪信号的干扰,这种干扰方向与太阳移动的方向一致,而且只出现在白天。
结合材料回答下列各题。
7、下列现象与太阳辐射无关的是( )A.地表水的蒸发B.煤炭和石油的形成C.风能的形成D.地面无线电短波通讯中断8、结合所学知识猜想造成雷达的干扰,其原因可能是( )A.太阳活动的影响B.雷达本身出现的故障C.气候的干扰D.德军使用了一种秘密武器9、太阳黑子和耀斑增多对地球的影响有( )①加剧土地荒漠化②导致地表气温下降③干扰无线电短波通信④指南针不能正确指示方向A.①②B.②③C.③④D.①④中新网北京2021年9月25日报道,中国科学家团队在辽宁省朝阳地区一具1.25亿年前的尾羽龙恐龙骨骼化石中,发现保存完好的软骨细胞,这一发现有助于科研团队从细胞水平来增加对化石的深入认识。
下图是尾羽龙复原图。
据此完成下面小题。
人教A版数学必修一高一第一次月考试题.docx

高中数学学习材料马鸣风萧萧 *整理制作汪清六中高一数学第一次月考试题总分: 100 分时量 : 90 分钟一、选择题(每题 4 分,共 40 分)1、下列四组对象,能构成集合的是()A 某班所有高个子的学生B著名的艺术家C一切很大的书D倒数等于它自身的实数2、集合 {a , b,c } 的真子集共有个()A 7B 8C 9D 103、若 {1 , 2} A {1 ,2, 3, 4, 5} 则满足条件的集合 A 的个数是()A. 6B. 7C. 8D. 94、若 U={1, 2,3, 4} , M={1, 2} ,N={2, 3} ,则 C (M∪ N) = ()UA. {1 , 2,3}B. {2}C. {1 , 3, 4}D. {4}x y 15、方程组x y 1 的解集是( )A .{x=0,y=1} B. {0,1} C. {(0,1)} D. {(x,y)|x=0或y=1}6、以下六个关系式:0 0 ,0 , 0.3 Q ,0 N,a,b b, a ,x | x2 2 0, x Z 是空集中,错误的个数是()A 4 B 3 C 2 D 17、函数 y=1的定义域是()。
1 1x(A) {x| x∈ R, x≠0}(B){x| x∈ R, x≠ 1}(C) {x| x∈ R, x≠0,x≠ 1}(D){x| x∈ R, x≠ 0,x≠-1}8、下列哪组中的两个函数是同一函数( A)y( x )2与y x(B)( C)y x2与y( x )2(D)()y ( 3 x) 3 与 y xy 3 x3与y x2x9、下列图象中不能作为函数图象的是()10、.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x(x∈N)为二次函数关系(如图 ),则客车有营运利润的时间不超过()年.A .4B. 5C.6D.7二、填空题(每题 5 分、共 20 分)11、若A { 2,2,3,4} ,B {x|x t2 ,t},用列举法表示 BA12、已知函数f (x) 2x 3 x { x N |1 x 5} ,则函数的值域为________;13、集合 A={x| x 2+x-6=0}, B={x| ax+1=0}, 若 B A,则 a=__________14、函数f(x)= x 2, x 1,则 f ( f ( 2)) ; f ( x) 3, 则x= 。
肥城市第一高级中学2023-2024学年高一上学期10月月考英语试卷(含答案)

肥城市第一高级中学2023-2024学年高一上学期10月月考英语试卷学校:___________姓名:___________班级:___________考号:___________一、阅读理解Explore Central Park, one of the largest city parks in the world and one of the most famous symbols of New York. Let’s have a look at its main sights.Central Park, with an area of 843 acres, is home to man-made lakes, waterfalls, grass and wooded areas. You will also find the Central Park Zoo in this green space of New York.Central Park is also a favorite spot for many New Yorkers. It is perfect for sunbathing, going for walks or doing any outdoor sports. Something that you find surprising is seeing so many people running with their babies in prams (婴儿车).On Foot or by BicycleTo get to know some of the wildest parts of Central Park, we suggest walking. However, to get a general feel of the whole park, the best thing to do is rent a bicycle and enjoy the scenery.If you decide to rent a bike, you will find lots of bike rental stores around Central Park that are not very expensive.Open TimeFrom 7:00 am to 10:00 pm on weekends.From 6:00 am to 8:30 pm on weekdays.PriceEntry to the park is free. But if you visit some parts like Central Park Zoo, you need to buy a ticket.TransportSubway: Line 5, 6, 7, A, B, C and D.Bus: Line M1, M2, M3, M4 and M10.Nearby placesMetropolian Museum of Art (447m)American Museum of Natural History (688m)Whitney Museum of American Art (1km)The Frick Collection (1.3km)1、What can visitors do in Central Park?A. Go fishing by natural lakes.B. Rent bicycles for free.C. Do some outdoor sports.D. Take a bath in the river.2、Which place is the closest to Central Park?A. The Frick Collection.B. Metropolian Museum of Art.C. Whitney Museum of American Art.D. American Museum of Natural History.3、Where can we find this text?A. In a science report.B. In a geography book.C. In a fashion magazine.D. In a travel guide.he doesn’t consider himself a hero, he has saved the lives of three people duri ng the last two decades.The 80-year-old man was in the right place at the right time, when he pulled a man out of his sinking car after he had accidentally driven into a river. Montelongo jumped to the man’s help without any hesitation (犹豫) or regard to his own health.The accident happened while the elderly man was taking his granddaughter home after a dentist’s appointment. They had stopped at a traffic light when the girl saw the car fall into the river. Montelongo got out of his car to check out the scene and instantly noticed that water had begun rushing into the vehicle of the trapped driver. He walked into the river and managed to open the automobile’s back door, which fortunately was unlocked. As the water began to rush into the car faster, the 80-year-old managed to pull the 62-year-old Jack Swarts from the car by his shirt.He later said in an interview—“I don’t consider myself a hero. I was just a man that got put in the right place at the right time” —words from a genuine modern-day good person.This, however, wasn’t Montelongo’s only act of heroism. Nearly 20 years ago, he helped two of his neighbors get to safety as their house was caught in a fire. He was 62 years old at the time and had to kick open his neighbor’s front door to pull out 80-year-old Kathirne Mattox and 79-year-old Wayne Maxwell. During the rescue, Montelongo suffered chest pains and had to be hospitalized but made a quick recovery (恢复). He was awarded the Carnegie Hero Fund Commission medal for this bravery and act of heroism.4、What does the underlined part in paragraph 1 mean?A. Heroes like special clothes.B. Everyone wants to be a hero.C. Heroes deserve to be praised.D. Ordinary people can be heroes.5、How did Montelongo save Jack Swarts?A. By managing to start the car.B. By pulling him out of the car.C. By clearing the car of water.D. By giving him first aid treatment.6、What can we infer about Montelongo from his words in the interview?A. He is modest.B. He is brave.C. He is responsible.D. He is clever.7、What can we learn from Montelongo’s story?A. A hero is a man of confidence.B. Care is an important part of courage.C. For what they ought to do, such a person is brave.D. The most terrible enemy is the lack of strong faith.Lectures on happiness are becoming increasingly popular in Harvard University. I went to one of them, which left a lasting impression on me. While we were listening with close attention, the speaker suddenly stopped and started a game, giving each person a balloon. Each one was asked to write their name on it using a pen. Then the 100 students from 25 schools were divided into two groups.Now the two groups were in different rooms with their balloons flying in it. The first group of 50 students were asked to find the balloon with their name on it within 5 minutes. Everyone was hurriedly searching for their own name, pushing and running into each other, and there was lots of noise. At the end of 5 minutes, none of them could find their own balloon.The second half, on the other hand, was asked to randomly (随机地) collect a balloon and give it to the person whose name was written on it. Within minutes everyone had their own balloon.This is exactly happening in our lives. Everyone is hurriedly looking for happiness all around, not knowing where it is. Our happiness lies in the happiness of other people. Give them their happiness, and you will get your own happiness. And this is the purpose of human life.8、What happened to the first group?A.None made any noise at all.B.None found their balloonC.Everyone found their friends.D.Everyone helped one another.9、How many students found their own balloons in the game?A.5.B.25.C.50.D.100.10、According to the text, which of the following is TRUE?A.Everyone pushed each other in the two groups.B.Students in the game come from the same school.C.Our happiness comes from the happiness of others.D.Students learned nothing about happiness in the game.11、Which of the following can be the best title for the text?A.Finding HappinessB.Having LecturesC.Collecting BalloonsD.Playing GamesLanguages have been coming and going for thousands of years, but in recent times there has been less coming and a lot more going. When the world was still populated by hunter-gatherers, small, tightly knit(联系) groups developed their own patterns of speech independent of each other. Some language experts believe that 10, 000 years ago, when the world had just five to ten million people, they spoke perhaps 12,000 languages between them. Soon afterwards, many of those people started settling down to become farmers, and their languages too became more settled and fewer in number. In recent centuries, trade, industrialisation, the development of the nation-state and the spread of universal compulsory education, especially globalisation and better communications in the past few decades, all have caused many languages to disappear, and dominant languages such as English, Spanish and Chinese are increasingly taking over.At present, the world has about 6,800 languages. The distribution of these languages is hugely uneven. The general rule is that mild zones have relatively few languages, often spoken by many people, while hot, wet zones have lots, often spoken by small numbers. Europe has only around 200 languages; the Americas about 1,000; Africa 2,400; and Asia and the Pacific perhaps 3,200, of which Papua New Guinea alone accounts for well over 800. The median number(中位数) of speakers is a mere 6,000, which means that half the world's languages are spoken by fewer people than that.Already well over 400 of the total of 6, 800 languages are close to extinction(消亡), with only a few elderly speakers left. Pick, at random, Busuu in Cameroon (eight remaining speakers), Chiapaneco in Mexico (150), Lipan Apache in the United States (two or three) or Wadjigu in Australia (one, with a question-mark): none of these seems to have much chance of survival.12、What can we infer about languages in hunter-gatherer times?A.They developed very fast.B.They were large in number.C.They had similar patterns.D.They were closely connected.13、Which of the following best explains "dominant" underlined in Paragraph 2?plex.B.Advanced.C.Powerful.D.Modern.14、How many languages are spoken by less than 6,000 people at present?A.About 6,800B.About 3,400C.About 2,400D.About 1,20015、What is the main idea of the text?A.New languages will be created.B.People's lifestyles are reflected in languages.C.Human development results in fewer languages.D.Geography determines language evolution.二、七选五16、根据短文内容,从短文后的选项中选出能填入空白处的最佳选项,并在答题卡上将该项涂黑。
人教A版数学必修一山东省菏泽市重点中学高一上学期第一次月考试题Word版无答案.docx

高中一年级数学试题注意事项:1、 答题前请将答案卷上密封线内的项目填写清楚。
2、 请将第Ⅰ卷的答案涂在“答题卡”上,第Ⅱ卷上的答案写在答案卷上。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若全集{1,2,3,4},{2,3}U M =----=--,则( )A .{}1,2,3---B .{}2-C .{}4-D .{}1,3,4---2、设,a b R ∈,集合{}{},10,a a b =+,则b a -=( )A .1B .-1C .2D .-23如图所示,对应关系f 是从A 到B 的映射的是( )4、已知()y f x =是偶函数,且(4)5f =,那么()4(4)f f +-的值为( )A .5B .10C .8D .不确定5、已知函数()[][]21,11,1x f x x x ⎧∈-⎪=⎨∉-⎪⎩,若(())2f f x =,则x 的取值范围是( ) A .φ B .[]1,1- C .()(),11,-∞-+∞ D .{}[]21,1-6、下列函数中,既是奇函数又是增函数的为( ) A .1y x =+ B .2y x =- C .1y x = D .y x x = 7、设函数()21121x x f x x x⎧+≤⎪=⎨>⎪⎩,则((3))f f =( ) A .15 B .3 C .23 D .1398、若偶函数()f x 在[]2,4上为增函数,且有最小值0,则它在[]4,2--上( )A .是减函数,有最小值0B .是增函数,有最小值0C .是减函数,有最大值0D .是增函数,有最大值09、函数()123f x x x =-+-的定义域是( ) A .[)2,3 B .()3,+∞ C .[)()2,33,+∞ D .()()2,33,+∞A .B .C .D . 10、直角梯形OABC ,直线x t =左边截得面积()S f t =的图象大致是( )第Ⅱ卷(主观题 共100分)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
山东省泰安市肥城实验初级中学高一数学理月考试卷含解析

山东省泰安市肥城实验初级中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. (5分)若函数f(x)=ax+b有一个零点是2,那么函数g(x)=bx2﹣ax的零点是()A.0,2 B.0,C.0,﹣D.2,﹣参考答案:C考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数f(x)的零点,求出b=﹣2a,然后利用一元二次函数的性质即可得到结论.解答:函数f(x)=ax+b有一个零点是2,∴f(2)=2a+b=0,即b=﹣2a,则g(x)=bx2﹣ax=﹣2ax2﹣ax=﹣ax(2x+1),由g(x)=0得x=0或x=﹣,故函数g(x)=bx2﹣ax的零点是0,﹣,故选:C点评:本题主要考查函数零点的求解,根据函数零点的定义是解决本题的关键.2. 不等式的解集为A. B. C. D.参考答案:A3. 口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为()A. B. C. D.参考答案:C4. 已知α∈(0,),β∈(﹣,0),cos()=,cos()=,则cos ()=()A.B.﹣C.D.﹣参考答案:A【考点】两角和与差的余弦函数.【分析】利用同角三角函数的基本关系求得sin()和sin()的值,再利用两角差的正切公式的应用,求得要求式子的值.【解答】解:∵α∈(0,),β∈(﹣,0),cos()=,cos()=,∴sin()==,sin()=﹣=﹣,∴cos()=cos[()+(﹣)]=cos()?cos()﹣sin()?sin()=﹣?(﹣)=,故选:A.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.5. 若函数在区间(-1,1)上存在零点,则实数a的取值范围是()A.(1,+∞)B. (-∞,1)C. (-∞,-1)∪(1,+∞)D. (-1,1)参考答案:C【分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围.【详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f (1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1.故选:C.【点睛】本题主要考查函数的零点的判定定理的应用,属于基础题.6. 求值=()A.1 B.2 C.D.参考答案:C【考点】GO:运用诱导公式化简求值.【分析】需利用公式1﹣sin2α=(sinα﹣cosα)2、cos2α=cos2α﹣sin2α、cosαcosβ+sinαsinβ=cos(α﹣β)解决.【解答】解:原式=======.故选C.7. 下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β参考答案:D8. 设是等差数列,下列结论中正确的是().A.若,则B.若,则C.若,则D.若,则参考答案:C【考点】8F:等差数列的性质.【分析】对选项分别进行判断,即可得出结论.【解答】解:若,则,,时,结论成立,即不正确;若,则,,时,结论成立,即不正确;是等差数列,,,∴,即正确;若,则,即不正确.故选:.9. 某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为( )A.B.C.4 D.8参考答案:A略10. 设是平面直角坐标系中两两不同的四点,若,且,则称调和分割。
山东肥城市第一高级中学数列多选题试题含答案

山东肥城市第一高级中学数列多选题试题含答案一、数列多选题1.已知等比数列{}n a 首项11a >,公比为q ,前n 项和为n S ,前n 项积为n T ,函数()()()()127f x x x a x a x a =+++,若()01f '=,则( )A .{}lg n a 为单调递增的等差数列B .01q <<C .11n a S q ⎧⎫-⎨⎬-⎩⎭为单调递增的等比数列D .使得1n T >成立的n 的最大值为6【答案】BCD 【分析】令()()()()127g x x a x a x a =+++,利用()()127001f g a a a '===可得3411a a q ==,01q <<,B 正确;由()()111lg lg lg 1lg n n a a q a n q -==+-可得A 错误;由()111111111n n n a a a qS q q q q q --=--=⋅---可得C 正确;由11a >,01q <<,41a =可推出671T T >=,81T <可得D 正确. 【详解】令()()()()127g x x a x a x a =+++,则()()f x xg x =, ()()()f x g x xg x ''∴=+,()()127001f g a a a '∴===,因为{}n a 是等比数列,所以712741a a a a ==,即3411a a q ==,11a >,01q ∴<<,B 正确;()()111lg lg lg 1lg n n a a q a n q -==+-,{}lg n a ∴是公差为lg q 的递减等差数列,A 错误;()111111111n n n a a a q S q q q q q --=--=⋅---,11n a S q ⎧⎫∴-⎨⎬-⎩⎭是首项为101a q q <-,公比为q 的递增等比数列,C 正确;11a >,01q <<,41a =,3n ∴≤时,1n a >,5n ≥时,01n a <<,4n ∴≤时,1n T >,7712741T a a a a ===,8n ∴≥时,78971n n T T a a a T =<=,又75671T T a a =>,7671T T a =>,所以使得1n T >成立的n 的最大值为6,D 正确. 故选:BCD 【点睛】关键点点睛:利用等比数列的性质、通项公式、求和公式、数列的单调性求解是解题关键.2.已知n S 是等差数列{}n a 的前n 项和,201920212020S S S <<,设12n n n n b a a a ++=,则数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则下列结论中正确的是( ) A .20200a >B .20210a <C .2019202020212022a a a a ⋅>⋅D .2019n =时,n T 取得最大值【答案】ABC 【分析】根据题设条件,得到2021202020212020201920200,0S S a S S a -=<-=>,进而求得201920220a a >->,20192020a a >20212022a a ,再结合“裂项法”求得12121112n n n T d a a a a ++⎫⎛=-⎪⎝⎭,结合0d <,即可求解. 【详解】设等差数列{}n a 的公差为d ,因为201920212020S S S <<,可得2021202020210S S a -=<,2020201920200S S a -=>,20212019S S -=202120200a a +>,即202020210a a >->,202020210a d a d ->-->,即201920220a a >->, 所以20192020a a >20212022a a ,0d <,即数列{}n a 递减, 且10a >,20a >,…,20200a >,20210a <, 又由12n n n n b a a a ++=,可得1211n n n n b a a a ++==1121112n n n n d a a a a +++⎛⎫- ⎪⎝⎭, 则122323341121211111111122n n n n n T d a a a a a a a a a a a a d a a +++⎛⎫⎛=-+-+⋅⋅⋅+-=- ⎪⎝⎝⎭121n n a a ++⎫⎪⎭,由0d <,要使n T 取最大值,则121211n n a a a a ++⎛⎫- ⎪⎝⎭取得最小值, 显然1210n n a a ++>,而23a a >34201920202021202220222023a a a a a a a a >⋅⋅⋅>><<⋅⋅⋅, 所以当2020n =时,121211n n a a a a ++⎛⎫-⎪⎝⎭取得最小值. 综上可得,正确的选项为ABC. 故选:ABC. 【点睛】本题主要考查了数列的综合应用,其中解答中熟练应用通项n a 和n S 的关系式,数列的“裂项法”求和,以及数列的单调性进行求解是解答的关键,着重考查推理与运算能力.3.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4 B .-2C .0D .2【答案】AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.4.已知等差数列{}n a 的前n 项和为n S ,若831a =,10210S =,则( )A .19919S a =B .数列{}22na 是公比为8的等比数列C .若()1nnnb a =-⋅,则数列{}n b 的前2020项和为4040D .若11n n n b a a +=,则数列{}n b 的前2020项和为202024249【答案】CD 【分析】由等差数列性质可判断A ;结合已知条件可求出等差数列的公差,从而可求出通项公式以及22n a ,结合等比数列的定义可判断B ;写出n b ,由定义写出2020T 的表达式,进行分组求和即可判断C ;11144143n b n n ⎛⎫=- ⎪-+⎝⎭,裂项相消即可求和.【详解】由等差数列的性质可知,191019S a =,故A 错误;设{}n a 的公差为d ,则有811017311045210a a d S a d =+=⎧⎨=+=⎩,解得13a =,4d =,故41n a n =-,28122na n -=, 则数列{}22n a是公比为82的等比数列,故B 错误;若()()()1141n nn n b a n =-⋅=-⋅-,则{}n b 的前2020项20203711158079410104040T =-+-+-⋅⋅⋅+=⨯=,故C 正确; 若()()1111414344143n b n n n n ⎛⎫==- ⎪-+-+⎝⎭,则{}n b 的前2020项和2020111111120204377118079808324249T ⎛⎫=-+-+⋅⋅⋅+-=⎪⎝⎭,故D 正确. 故选:CD . 【点睛】 方法点睛:求数列的前n 项和常见思路有:1、对于等差和等比数列,直接结合求和公式求解;2、等差数列±等比数列时,常采取分组求和法;3、等差数列⨯等比数列时,常采取错位相减法;4、裂项相消法.5.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确; 若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确;若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确.故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.6.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-,又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--, 又22125=244n n n n n b c b c S +=≤(当且仅当==2n n b c 时等号成立) 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.7.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎫⎥=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12为首项,12为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=+, 令1nn n Fb -=⎝⎭,则11n n b ++,所以1n n b b +=-, 所以n b ⎧⎪⎨⎪⎪⎩⎭所以1n n b -+, 所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.8.已知等差数列{}n a 的前n 项和为n S ,若981S =,713a =,3S ,1716S S -,k S 成等比数列,则( )A .2n S n = B .122310*********a a a a a a ++⋅⋅⋅+= C .11k = D .21n a n =-【答案】ACD 【分析】先根据题意求出等差数列的首项和公差,再根据等差数列的通项公式和求和公式求得,n n a S ,再由3S ,1716S S -,k S 成等比数列列出式子求解得出k 的值,再利用裂项相消法求和,得到122310111111021a a a a a a ++⋅⋅⋅+=,从而判断各项的正误. 【详解】依题意,95981S a ==,解得59a =; 而713a =,故75275a a d -==-,则1541a a d =-=, 则21n a n =-,2n S n =,故D 、A 正确:因为3S ,1716S S -,k S 成等比数列,故()223171617k S S S S a =-=,则22933k =,解得11k =,故C 正确; 而122310111111021a a a a a a ++⋅⋅⋅+=,故B 错误. 故选:ACD . 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题意,求得通项公式,进而求得前n 项和; (2)根据三项成等比数列的条件,列出等式,求得k 的值;(3)利用裂项相消法,对12231011111a a a a a a ++⋅⋅⋅+求和; (4)对选项逐个判断正误,得到结果.二、平面向量多选题9.定义空间两个向量的一种运算sin ,a b a b a b ⊗=⋅,则关于空间向量上述运算的以下结论中恒成立的有( ) A .()()a b a b λλ⊗=⊗ B .a b b a ⊗=⊗C .()()()a b c a c b c +⊗=⊗+⊗D .若()11,a x y =,()22,b x y =,则122a b x y x y ⊗=- 【答案】BD 【分析】对于A,B,只需根据定义列出左边和右边的式子即可,对于C,当λab 时,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin ,sin,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然不会恒成立. 对于D,根据数量积求出cos ,a b ,再由平方关系求出sin ,a b 的值,代入定义进行化简验证即可. 【详解】解:对于A :()()sin ,a b a b a b λλ⊗=⋅,()sin ,a b a b a bλλλ⊗=⋅,故()()a b a b λλ⊗=⊗不会恒成立;对于B ,sin ,a b a b a b ⊗=⋅,=sin ,b a b a b a ⊗⋅,故a b b a ⊗=⊗恒成立; 对于C ,若λab ,且0λ>,()()1sin ,a b c b c b c λ+⊗=+⋅,()()()sin,sin ,1sin ,a c b c b c b c b c b c b c b c λλ⊗+⊗=⋅+⋅=+⋅,显然()()()a b c a c b c +⊗=⊗+⊗不会恒成立; 对于D ,1212cos ,x x y y a b a b+=⋅,212sin ,1a b a b ⎛ ⎪=- ⎪⋅⎭,即有222121212121x x yy x x y ya b a b a b a a b ⎛⎫⎛⎫++ ⎪⊗=⋅⋅-=⋅- ⎪ ⎪ ⎪⋅⎭⎭21y =⎪+⎭==1221x y x y =-.则1221a b x y x y ⊗=-恒成立. 故选:BD. 【点睛】本题考查向量的新定义,理解运算法则正确计算是解题的关键,属于较难题.10.在ABC 中,()2,3AB =,()1,AC k =,若ABC 是直角三角形,则k 的值可以是( )A .1-B .113C .32+ D .32【答案】BCD 【分析】由题意,若ABC 是直角三角形,分析三个内有都有可能是直角,分别讨论三个角是直角的情况,根据向量垂直的坐标公式,即可求解. 【详解】若A ∠为直角,则AB AC ⊥即0AC AB ⋅=230k ∴+=解得23k =-若B 为直角,则BC AB ⊥即0BC AB ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--2390k ∴-+-=解得113k =若C ∠为直角,则BC AC ⊥,即0BC AC ⋅=()()2,3,1,AB AC k == ()1,3BC k ∴=--()130k k ∴-+-=解得k =综合可得,k 的值可能为21133,,,3322+- 故选:BCD 【点睛】本题考查向量垂直的坐标公式,考查分类讨论思想,考察计算能力,属于中等题型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1a = 3b = a a b =+ b a b =- PRINT a ,b
肥城一中高一必修三数 学 试 卷
(时间:60分钟,满分:100分)
一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目
要求的,把答案写在答题卷中的相应位置上)
1.用“辗转相除法”求得360和504的最大公约数是 ( )
A.72
B.36
C.24
D.2520 2.将两个数8,17a b ==交换,使17,8a b ==,下面语句中正确的一组是 ( )
3.若让计算机执行下面的程序段,则输出的结果是 ( )
A .1,3
B .4,1
C .0,0
D .6,0 4.A .14和0.14 B .0.14和14 C .
141和0.14 D . 31和14
1
5.10名工人某天生产同一零件,生产的件数分别是:15,17,14,10,15,17,17,16,14,12,若设
其平均数为a ,中位数为b ,众数为c ,则三数,,a b c 的大小关系为 ( ) A . c b a >> B .a c b >> C .b a c >> D .a b c >>
6.下列五种对某生活现象发生的表示:①“一定发生的”, ②“很可能发生的”, ③“可能发生的”,④“不可能发生的”,⑤“不太可能发生的”,则其发生的概率
由小到大的排列为 ( ) A .①②③④⑤
B .④⑤③②①
C .①③②⑤④
D .②③④⑤①
7.如果从装有2个红球和2个黒球的口袋内任取2个球,那么下列各组中的两个事件是“互
斥而不对立”是() A .“至少有一个黒球”与“都是黒球” B .“至少有一个黒球”与“都是红球”
C .“至少有一个黒球”与“至少有1个红球”
D .“恰有1个黒球”与“恰有2个黒球”
8.若数据1x 、2x 、……n x 的平均值为x ,方差为2S ,则数据:135x +,235x +,……
35
n x +的平均值和方差分别为
( )
A .x 和2
S B .3x +5和92
S C .3x +5和2
S D .3x +5 和92
S +30S +25
9.下列说法中正确的是 ( )
A.若甲乙两个班期末考试数学平均成绩相同,则表明这两个班数学学习情况一样
B.若期末考试数学成绩的方差甲班比乙班的小,则表明甲班的数学学习情况比乙班好
C.若期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班大,则数学学习甲班比乙班好
D.若期末考试数学平均成绩甲、乙两班相同,方差甲班比乙班小,则数学学习甲班比乙班好
10.某初级中学有学生270人,其中初一年级108人,初二、三年级各有81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,
使用简单随机抽样和分层抽样时,将学生按初一、二、三年级依次统一编号为1,2,...,270;使用系统抽样时,将学生统一随机编号为1,2,...,270,并将整个编号依次分为10段.如果抽得号码(10个)有下列四种情况: ①7,34,61,88,115,142,169,196, 223, 250; ②5,9,100,107,111,121,180,195, 200,265; ③11,38,65,92,119,146,173,200, 227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( )
A .②、③都不能为系统抽样
B .②、④都不能为分层抽样
C .①、④都可能为系统抽样
D .①、③都可能为分层抽样
二、填充题(本大题共5小题,每小题4分,共20分,把答案填在答题卷中的相应位置上)
11.若线性回归方程为y
ˆ=4.4x +838,则当10x =时,y 的估计值为___ 。
12. 若一个样本数据12310,,,,x x x x ⋅⋅⋅⋅⋅⋅的方差为
22221
1
21010(4)(4)(4)s x x x ⎡⎤=-+-++-⎣⎦,则这个样本数据的平均数是 。
13.已知一个容量为20的样本数据,分组后,组距与频数如下: (]10,20,2; (]20,30, 3 ;
(]30,40, 4 ; (]40,50, 5 ; (]50,60, 4 ; (]60,70, 2 . 则样本在区间()+∞,50上的频率
为__。
14.若甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲、乙两人和棋的概率为;乙获胜的概率为。
.
16.完成下列进位制之间的转化:101101(2)=______ _(10)
三、解答题(本大题共4小题,共44分,解答应写出文字说明、证明过程或演算步骤,把解答写在
答题卷中的相应位置上)
17、(本小题满分10分)在一路口的红绿灯装置中,红灯的时间为20秒,黄灯的时间为
10秒,绿灯的时间为40秒。
当你到达路口时,试分别求出下列三种情况的概率。
(1)红灯;(2)绿灯;(3)不是绿灯。
18. (本小题满分10分)为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳
绳测试,将所得的数据整理后画出频率分布直方图(如下图),已知图中从左到右的前三个小组的频率分别是0.1,0.3,0.4.第一小组的频数是5.
(1) 求第四小组的频率和参加这次测试的学生人数;
(2) 在这次测试中,问学生跳绳次数的中位数落在第几小组内?
(3) 在这次跳绳测试中,规定跳绳次数在100以上的为优秀,试估计该校此年级跳
绳成绩的优秀率是多少?
19.(本小题满分10分)完成下列两题:(1)在长16cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于25cm2与81cm2之间的概率。
(2)如图所示,在一个边长为5cm的正方形内部有一个边长为3cm的正方形,向大正方形内随机投点,求所投的点落入大正方形内小正方形外的概率。
数学试卷参考答案及评分标准
一、选择题:
二、填空题(本大题共9小题,每小题4分,共36分)
11、882 12、 4 13、0.3 14、0.5,0.2 15、
h
m
16、45
三、解答题(本大题共4小题,共44分)
17、(本小题满分10分) (1)
72……3分 (2)74……3分 (3)7
3
……4分 18(本小题满分10分)
(1)0.2 50 ……4分 (2)3 ……3分 (3)0.6……分 19、(本小题满分10分)
解:(1)可知,以线段AM 为边长的正方形面积要介于25cm 2与81cm 2之间,
即要求AM 介于5cm 与9cm 之间,记“以线段AM 为边长的正方形面积介于
25cm 2
与81cm 2
之间”为事件A ,则由几何概型的求概率的公式得P (A )=(95)16-=14 …5分
(2)记“所投的点落入大正方形内小正方形外”为事件A ,则“所投的点落入小正方形内”为事件A
的对立事件-
A ,所以P (A )=1-P(-
A )=1-2
2
3
5=1625 ……………………10分。