函数信号发生器的原理与使用
【精品】电路实验报告 函数信号发生器

【精品】电路实验报告函数信号发生器一、实验目的1.理解函数信号发生器的基本原理;2.掌握函数信号发生器的使用方法;二、实验仪器函数信号发生器、万用表、示波器、电阻箱等。
三、实验原理函数信号发生器是一种可以产生各种不同波形的电子仪器,它由信号源、调制放大器、波形出口、控制电路等几个部件组成。
在使用中可以通过调节控制电路中的各个参数来控制信号波形的频率、幅度、相位等参数。
四、实验内容1.使用函数信号发生器产生各种不同波形的信号,并记录下所产生的波形、频率、幅度等参数。
2.利用万用表对所产生的波形进行测量,并记录下相关参数。
3.使用示波器观察所产生的波形,并记录下所观察到的波形形态,判断所产生的波形是否符合要求。
4.使用电阻箱对信号幅度进行调整,调整后再次进行相应的测量、观察和记录。
五、实验步骤1.将函数信号发生器插入电源插座,并开启电源开关。
5.对信号幅度进行调整,如需调整信号幅度,可以使用电阻箱对信号幅度进行调整。
六、实验数据及处理下表列出了实验中所产生的部分波形及其相关参数。
| 波形形态 | 频率 | 幅度 ||----------------|---------|-----------|| 正弦波 | 1KHz | 1Vpp || 正弦波 | 5KHz | 500mVpp|| 方波 | 2KHz | 2Vpp || 三角波 | 1KHz | 1Vpp |七、实验结果分析根据实验数据分析,可以得出以下结论:2.在产生不同波形的信号时,需调节控制电路中的各个参数,如频率、幅度、相位等,才能产生相应的波形。
3.在调试波形时应注意信号幅度,如波形幅度过大或过小,都会影响到实验的结果。
八、实验注意事项1.实验中要注意安全,避免触电、短路等事故的发生。
3.在实验中应认真记录实验数据,为进一步分析和处理提供有力的数据支持。
函数信号发生器原理

函数信号发生器原理函数信号发生器是一种能够产生各种波形信号的仪器,它在电子、通信、自动控制等领域有着广泛的应用。
在本文中,我们将介绍函数信号发生器的原理,包括其工作原理、主要组成部分以及应用特点。
首先,函数信号发生器的工作原理是基于模拟电路的运作。
它通过内部的振荡电路产生基本波形信号,如正弦波、方波、三角波等,然后通过信号调制电路对这些基本波形进行调制,生成各种复杂的波形信号。
这些波形信号可以用来测试、校准各种电子设备,也可以作为实验中的输入信号进行研究和分析。
函数信号发生器的主要组成部分包括振荡电路、信号调制电路和控制电路。
振荡电路是函数信号发生器的核心部分,它能够产生稳定的基本波形信号。
信号调制电路则负责对基本波形进行调制,生成各种复杂的波形信号。
控制电路则用来控制函数信号发生器的工作模式、频率、幅度等参数,使其能够满足不同的应用需求。
函数信号发生器具有频率范围广、精度高、稳定性好等特点。
它可以产生从几赫兹到数百兆赫兹的信号,并且频率精度可以达到非常高的水平。
这使得函数信号发生器在各种精密测量和实验研究中得到了广泛的应用。
除此之外,函数信号发生器还具有输出电阻低、波形失真小、调制灵活等特点。
它的输出电阻通常在数百欧姆到数千欧姆之间,能够适应各种负载的要求。
波形失真也非常小,能够满足对波形质量要求较高的应用。
同时,函数信号发生器的调制方式灵活多样,可以实现各种复杂的波形输出,满足不同应用的需求。
总的来说,函数信号发生器是一种功能强大、应用广泛的仪器,它在各种领域都有着重要的作用。
通过了解函数信号发生器的原理和特点,我们可以更好地应用和理解它,为相关领域的工作和研究提供更好的支持和帮助。
函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理

什么是函数信号发生器,函数信号发生器的作用,函数信号发生器的工作原理什么是函数信号发生器?函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。
在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。
函数信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。
各种波形曲线均可以用三角函数方程式来表示。
能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。
函数信号发生器的工作原理:函数信号发生器是一种能提供各种频率、波形和输出电平电信号的设备。
在测量各种电信系统或电信设备的振幅特性、频率特性、传输特性及其它电参数时,以及测量元器件的特性与参数时,用作测试的信号源或激励源。
它能够产生多种波形,如三角波、锯齿波、矩形波、正弦波,所以在生产实践和科技领域中有着广泛的应用。
函数信号发生器系统主要由主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器和指示电压表构成。
当输入端输入小信号正弦波时,该信号分两路传输,一路完成整流倍压功能,提供工作电源;另一路进入一个反相器的输入端,完成信号放大功能。
该放大信号经后级的门电路处理,变换成方波后经输出,输出端为可调电阻。
函数信号发生器产生的各种波形曲线均可以用三角函数方程式来表示,函数信号发生器在电路实验和设备检测中具有十分广泛的用途。
例如在通信、广播、电视系统中,都需要射频发射,这里的射频波就是载波,把音频、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。
在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。
函数信号发生器工作原理

函数信号发生器工作原理
函数信号发生器是一种电子设备,能够产生不同形式的电信号,用于测试、实验和调试电子设备。
其工作原理是通过将一个基准信号经过一系列的处理和调整,生成所需的输出信号。
基准信号通常是一个稳定的振荡信号,通过一个精密的振荡器产生。
这个振荡器可以是一个晶振或者多级放大器,其频率和幅度都是可调的。
振荡器输出的信号经过放大器进行放大,以增加信号的幅度。
放大器通常是一个可控增益放大器,通过调节控制电压来改变输出信号的幅度。
放大后的信号通过一个波形调节电路,来生成不同形式的输出信号。
这个波形调节电路可以是一个函数发生器芯片,它可以根据输入的控制电压来产生不同的波形,比如正弦波、方波、矩形波、三角波等。
经过波形调节后的信号,再经过一个滤波器进行滤波,以去除掉不需要的高频杂散分量。
滤波器通常采用电容、电感等元件组成的RC电路或者LC电路。
最后,滤波后的信号再经过一个输出放大器,以增加信号的输出功率。
输出放大器通常是一个功率放大器,可以将信号的功率增大到合适的水平,以满足各种测试、实验和调试的需求。
通过以上的处理和调整,函数信号发生器可以产生不同形式、
不同频率、不同幅度的电信号,用于各种电子设备的测试、实验和调试。
函数信号发生器原理

函数信号发生器原理
函数信号发生器是一种用于产生各种波形信号的电子设备。
它通过内部的电路和算法,根据用户设定的参数来生成特定的信号波形,例如正弦波、方波、脉冲波等。
函数信号发生器的原理基于信号合成和控制电路。
它通常由以下几个主要模块组成:
1. 振荡器:函数信号发生器内部配备一个精确且可控的振荡器,它能够产生一个连续且稳定的基准信号。
通常使用晶体振荡器或压控振荡器作为基准振荡源。
2. 数字控制电路:函数信号发生器通过一个数字控制电路来接收用户设定的参数,例如频率、幅度、相位等信息。
这些参数通过旋钮、按钮或者键盘等输入设备进行设定。
3. 波形生成模块:根据接收到的参数,在函数信号发生器内部的波形生成模块中,通过各种算法和数学计算,来生成各种类型的波形信号。
不同波形的生成算法不同,但它们都保证了所生成的波形信号的一致性、准确性和稳定性。
4. 输出电路:函数信号发生器通常包含一个放大器和一个输出接口,用于将生成的波形信号放大到一定的幅度,并通过输出接口输出给其他设备或测量仪器进行进一步的信号处理或测试。
函数信号发生器一般具有较高的输出频率范围、较低的失真度、快速的频率和幅度变化、精确可调的相位控制等特点。
它广泛
应用于各种领域,如科研实验、电子产品测试、音频信号调试等。
函数信号发生器原理

函数信号发生器原理
函数信号发生器是一种仪器设备,用来产生各种频率和形状的电信号。
它的工作原理基于电路中的振荡器和波形调节电路。
在函数信号发生器中,振荡器是核心部件之一。
它基于正弦波振荡器的原理,通过电子元件(例如电容和电感)的相互作用来产生稳定的振荡信号。
产生的振荡信号可以是正弦波、方波、锯齿波等。
振荡器的频率可以调节,通常通过旋钮或者数字控制方式来实现频率的调节。
振荡器的频率控制电路会改变电子元件的值,进而改变振荡频率。
这使得函数信号发生器可以产生不同频率的信号。
除了频率调节,函数信号发生器还可以调节信号的幅度和相位。
这是通过波形调节电路实现的。
波形调节电路可以对信号进行放大、衰减和相位移动等处理,使得函数信号发生器能够产生不同形状和幅度的信号。
在实际应用中,函数信号发生器广泛用于科学研究、仪器测试、电子教育等领域。
它可以产生多种不同频率和形状的信号,用来测试和调试电子设备,研究电路特性,或者作为信号源提供给其他仪器和设备。
函数信号发生器的实现方法和使用方法 信号发生器是如何工作的

函数信号发生器的实现方法和使用方法信号发生器是如何工作的函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一函数信号发生器是一种可以供应精密信号源的仪器,也就是俗称的波形发生器,最基本的应用就是通过函数信号发生器产生正弦波/方波/锯齿波/脉冲波/三角波等具有一些特定周期性(或者频率)的时间函数波形来供大家作为电压输出或者功率输出等,它的频率范围跟它本身的性能有关,一般情况上都是可以从几毫赫甚至几微赫,甚至还可以显示输出超低频直到几十兆赫频率的波形信号源。
下面,大家就和我来了解一下它吧!函数信号发生器的实现方法:(1)用分立元件构成的函数发生器:通常是单函数发生器且频率不高,其工作不很稳定,不易调试。
(2)可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数信号发生器IC产生。
早期的函数信号发生器IC,如L8038、BA205、XR2207/2209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高频率的信号,调整方式也不够快捷,频率和占空比不能独立调整,二者相互影响。
(3)利用单片集成芯片的函数发生器:能产生多种波形,达到较高的频率,且易于调试。
鉴于此,美国美信公司开发了新一代函数信号发生器ICMAX038,它克服了(2)中芯片的缺点,可以达到更高的技术指标,是上述芯片望尘莫及的。
MAX038频率高、精度好,因此它被称为高频精密函数信号发生器IC。
在锁相环、压控振荡器、频率合成器、脉宽调制器等电路的设计上,MAX038都是优选的器件。
(4)利用专用直接数字合成DDS芯片的函数发生器:能产生任意波形并达到很高的频率。
但成本较高。
产生所需参数的电测试信号仪器。
按其信号波形分为四大类:①正弦信号发生器。
紧要用于测量电路和系统的频率特性、非线性失真、增益及灵敏度等。
按其不同性能和用途还可细分为低频(20赫至10兆赫)信号发生器、高频(100千赫至300兆赫)信号发生器、微波信号发生器、扫频和程控信号发生器、频率合成式信号发生器等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一函数信号发生器的原理与使用
姓名:Heven
学号:120352888882
学院:应科12电信
一、实验目的
1.了解数字合成函数信号发生器基本工作原理。
2.熟悉面板设置和性能指标。
3.掌握函数信号发生器的使用方法。
二、实验设备
函数发生器F05A型数字合成函数信号发生器
双踪示波器YB4325
三、实验任务
1.熟悉F05A型数字合成函数信号发生器的面板设置,了解按键功能,菜单功能,以及不同参数的意义。
2.掌握使用方法。
A 能正确选择所需要的信号波形。
(正弦,方波,以及脉冲信号等任意波)
B 能正确调节信号的幅度和频率。
C 对于复杂信号,了解信号参数的意义,并能熟练的调节。
比如:脉冲信号的占空比;AM信号的调制深度、载波信号的频率、调制信号的波形、占空比等等。
四、实验报告
1. 描述信号源面板按键功能。
数字输入键
1.输入数字未输入单位时:按下此键,删除当前数字的最低位数字,可用来修改当前输错的数字。
2.外计数时:按下此键,计数停止,并显示当前计数值,再揿动一次,继续计数。
3.外计数时:按下此键,计数清零,重新开始计数。
功能键
按键功能:前面板共有24个按键,按键按下后,会用响声“嘀”来提示。
大多数按键是多功能键。
每个按键的基本功能标在该按键上,实现某按键基本功能,只须按下该按键即可。
大多数按键有第二功能,第二功能用蓝色标在这些按键的上方,实现按键第二功能,只须先按下【shift】键再按下该按键即可。
少部分按键还可作单位键,单位标在这些按键的下方。
要实现按
键的单位功能,只有先按下数字键,接着再按下该按键即可。
shift键:基本功能作为其它键的第二功能复用键,按下该键后,“Shift”标志
亮,此时按其它键则实现第二功能;再按一次该键则该标志灭,此时按其它键则实现基本功能。
还用作“s/Vpp/N”单位。
分别表示时间的单位“s”、幅度的峰峰值单位“V”和其它不确定的单位。
0、1、2、3、4、5、6、7、8、9、+、-键:数据输入键。
其中7、8、9与shift键复合使用还具有第二功能。
键:基本功能是数字闪烁位左右移动键。
第二功能是选择“脉冲”波形和“任意”波形。
在计数功能下还作为“计数停止”和“计数清零”功能。
频率/周期键:频率的选择键。
当前如果显示的是频率,再按下一次该键,则表示输入和显示改为周期。
第二功能是选择“正弦”波形。
幅度/脉宽键:幅度的选择键。
如果当前显示的是幅度且当前波形为“脉冲”波,再按一次该键表示输入和显示改为脉冲波的脉宽。
第二功能是选择“方波”波形。
键控键:FSK功能模式选择键。
当前如果是FSK功能模式,再按一次该键,则进入PSK功能模式;当前不是FSK功能模式,按一次该键,则进入FSK功能模式。
第二功能是选择“三角波”波形。
菜单键:菜单键,进入FSK、PSK、调频、调幅、扫描、猝发和系统功能模式时,可通过(菜单)键选择各功能的不同选项,并改变相应选项的参数。
在点频功能时且当前处于幅度时可用(菜单)键进行峰峰值、有效值和dBm数值的转换。
第二功能是选择“升锯齿”波形。
调频键:调频功能选择键,第二功能是储存选择键。
它还用作“ms/mVpp”单位,分别表示时间的单位“ms”、幅度的峰峰值单位“mV”。
在“测频”功能下作“衰减”选择键。
调幅键:调幅功能模式选择键,第二功能是调用选择键。
它还用作“MHz/Vrms”单位,分别表示频率的单位“MHz”、幅度的有效值单位“Vrms”。
在“测频”功能下作“低通”选择键。
扫描键:扫描功能模式选择键,第二功能是测频计数功能选择键。
它还用作“kHz/mVrms”单位,分别表示频率的单位“kHz”、幅度的有效值单位“mVrms”。
在“测频计数器”功能下和(Shift)键一起作“计数”和“测频”功能选择键,当前如果是测频,则选择计数;当前如果是计数则选择测频。
猝发键:猝发功能模式选择键,第二功能是直流偏移选择键。
它还用作“Hz/dBm/Φ”单位,分别表示频率的单位“Hz”、幅度的单位“dBm”。
在“测频”功能下作“闸门”选择键。
输出键:信号输出控制键。
如果不希望信号输出,可按(输出)键禁止信号输出,此时输出信号指示灯灭;如果要求输出信号,则再按一次(输出)键即可,此时输出信号指示灯亮。
默认状态为输出信号,输出信号指示灯亮。
在“猝发”功能模式和“扫描”功能模式的单次触发时作“单次触发”键,此时输出信号指示灯亮。
不同功能模式时按(菜单)键出现不同菜单;具体如下:
MODE:扫描模式,分为线性扫描、对数扫描和步进扫描
START F:扫描起点频率
STOP F:扫描终点频率
TIME:扫描时间(线性、对数)扫描步进时间(步进)
TRIG:扫描触发方式
STEP F:步进扫描时的步进频率(只在步进扫描时显示)
SPACE T:步进扫描时,两次扫描之间的间隔时间(只在步进扫描时显示)
FM DEVIA:调制频偏
FM FREQ:调制信号的频率
FM WAVE :调制信号的波形,共有5种波形可选 FM SOURCE :调制信号是机内信号还是外输入信号
AM LEVEL :调制深度 AM FREQ :调制信号的频率
AM WAVE :调制信号的波形,共有5种波形可选 AM SOURCE :调制信号是机内信号还是外输入信号 COUNT :周期个数 SPACE T
:猝发间隔时间
PHASE :正弦波为猝发起点相位 TRIG :猝发的触发方式
F1:FSK 第一个频率 F2:FSK 第二个频率 SPACE T :FSK 间隔时间 TRIG :FSK 触发方式 P1:信号第一相位 P2:信号第二相位 SPACE T :PSK 间隔时间 TRIG :PSK 触发方式 系统功能模式:
BAUD —> PARITY—>STORE OPEN
POWER ON:开机状态
OUT Z:输出阻抗
ADDRESS:接口地址
INTERFACE:接口选择
BAUD:RS232接口通讯速率
PARITY:RS232接口通讯数据位数和校验
STORE OPEN: 存储功能开或关
2. 选择一种信号,改变其参数,记录详细过程。
选择1正弦波信号,Vp-p=2V,F=1Khz,
1、调整频率:按(频率/周期)0使屏幕显示“xxkHz”,输入数字5,再按单位键。
2、调整幅度:按(幅度/脉宽)后输入数字4,再按单位键。
最后输出的信号Vp-p=4V, F=5Khz
3. 对应信号源的输出,描绘在示波器看到的信号波形。
正弦波Vp-p=5V F=50Khz。