弹道学_精品文档

合集下载

弹道学1

弹道学1

6、弹道顶点“S”:全弹道的最高点,S点至炮口水平面的距离称弹道顶 点高,以ys=Y表示。 7、弹道落地“C”:弹丸自射出点飞出后再回到炮口水平面的一点。
8、升弧和降弧:oS弧为升弧,SC弧为降弧。
9、弹道诸元:自射出点算起的弹丸飞行时间t,弹丸质心在地面坐标系 中的坐标(x,y,z)。质心速度的大小v及矢量与x轴正向的飞行倾角θ, 总称为弹道诸元。图中X、Y、Z、v0、vc、θ0、θc及T分别称为全水 平射程、弹道顶点高、落点测偏、初速、落速、射角、落角和全飞 行时间。
使弹丸的速度继续增加。
由于火药气体出炮口之后,失去身管的约束,向四周迅速扩散膨胀, 因而在炮口前的一定距离处达到了最大速度,此后火药气体的速度即
很快地衰减到小于弹丸运动的速度,对弹丸不再起作用。
5)空中运动阶段 当弹丸在炮口前一段距离上达到最大速度之后,它就完全摆脱了膛 内各种因素的影响,并以这样的速度按起始射角方向在空气阻力和重
进一步使底火中的点火药燃烧,产生了高温高压的燃气和灼热的固体 微粒,通过小孔喷进装有火药的药室,从而使火药在高温高压的作用 下燃烧。
2)挤进膛线过程 在完成点、传火过程之后,火药燃烧,产生大量的高温高压燃气, 推动弹丸向前运动。
弹丸开始启动瞬间的压力称为启动压力。
弹丸启动后,因弹带的直径略大于膛内阳线的直径,弹带必须逐渐 挤进膛线,前进的阻力也随着不断增加。当弹带全部挤进时,即达到
力作用下做抛物运动。
6)目标中运动阶段 弹丸击中的目标,可能是钢甲、混凝土或人员等。弹丸在距目标
一定距离或击中目标后,根据目标特性的不同以及毁伤要求,启动引
信,经过传爆序列使弹丸爆炸。至此弹道过程全部结束。
1.3
弹道学发展
早期弹道学仅局限于研究质心运动轨迹的力学范畴。随着武器的

弹道学(该部分资料来自百度)

弹道学(该部分资料来自百度)

弹道学(该部分资料来自百度)弹道学是研究各种弹丸或抛射体从发射起点到终点的运动规律及伴随发生的有关现象的学科。

弹丸从起点到终点要经历起动、推进、在空中运动、对目标作用等不同的过程,并在不同环境中有不同的运动规律,产生不同的现象。

目录简介研究内容研究目的区别展望其它军事学分支学科编辑本段简介弹道学是一门研究物体飞行、受力及其它运动行为的学科。

通过弹道学,子弹,重力炸弹,火箭等非制导武器可以达到理想的状态。

在法医学领域,法医弹道学研究犯罪中使用的枪支。

编辑本段研究内容早期,由于弹道学的理论基础——力学正开始发展,弹道学仅局限于研究抛射体运动轨迹的力学范畴。

随着弹道测量技术及各基础学科的发展,弹道学研究的内容逐步扩充,发展成为涉及固体力学、气体动力学、空气动力学、液体力学、弹塑性力学、化学热力学、燃烧理论及爆炸力学等学术领域的综合性学科,并相继形成了不同的分支学科。

发射武器通常有两种典型的发射方式:一种是枪炮系统的发射方式,它利用高温的火药燃气在枪炮膛内膨胀作功,推动弹丸以一定的速度射出膛口;另一种是火箭系统的发射方式,它利用火药燃气从火箭发动机的喷管流出时所产生的反作用力,推动战斗部连同发动机本身一起在空中飞行。

根据发射方式的不同,弹道学相应地分为枪炮弹道学和火箭弹道学。

在枪炮的射击过程中,弹丸的运动要经历膛内阶段、射出膛口后继续受火药燃气作用的阶段和在空气阻力、地球引力与惯性力作用下的飞行阶段。

因而枪炮弹道学也相应地划分为:研究膛内火药燃烧、物质流动、弹丸运动和能量转换等有关现象及其规律的内弹道学;研究弹丸穿越膛口流场时受力和运动规律,以及伴随膛内火药燃气排空过程发生的各种现象的中间弹道学;研究弹丸在空中飞行运动的现象及其规律的外弹道学。

火箭弹道学则根据火箭发动机内部所发生的现象和整个弹体在空中飞行的现象,分为火箭内弹道学(或称火箭发动机原理)和火箭外弹道学。

从学科性质来划分,枪炮内弹道学和火箭内弹道学基本上同属一个学科,统称为内弹道学;枪炮外弹道学和火箭外弹道学则又同属另一个学科,统称为外弹道学。

弹道学

弹道学

度大的一侧,这就形成
一个与攻角平面垂直的
Rz
力,其指向由自转角速
度矢量向气流速度矢量
弯曲时右手法则决定。
v2
马格努斯力的表达式为:Rz 2 Scz
马氏力系数
由于马氏力作用点经常不在质心上,故产生马格努斯力矩。另外, 由于弹丸摆动时,在弹丸前端和后端附近分别产生方向相反的两个马 氏力,形成一个力偶矩,亦属于马氏力矩的一部分。其表达式为
弹道学
5.空气阻力加速度
ax c H( y) F(v)
6.弹道系数
ax c H( y)G(v) v
ax c ( y)F (v )
v
0N v
c ( id 2 103 ) m
c与空气阻力加速度成正比。在相同初速和射角条件下,c越小射程
越远。
以43年阻力定律为依据的经验公式(不适于手枪弹):
y
升力在弹轴与速度矢量所构成的平面内,此平面称为攻角平面(或阻力面)。
5.3.3 翻转(或稳定)力矩Mz及阻力臂h
由于空气阻力作用点不在质心上,因而一定产生使攻角减小或增大
的力矩,此力矩使弹丸稳定(对尾翼弹——稳定力矩)
或翻转(对旋转弹——翻转力矩)
亦称为俯仰力矩,其表达式为:
Mz

v2
2
Slmz (Ma, )
马格努斯效应形成机理较复杂,古典简释如下:
弹丸飞行时由于空气粘性而产生随弹体自转的、包围弹体周围的空 气附面层,又由于有攻角的存在,因而在与弹轴垂直方向上有气流分 量流向弹体。此气流与伴随弹体自转的两侧气流合成的结果,使得在 弹体一侧气流速度增大,而另—侧速度减小。
根据伯努利定理:速
度小的一侧压力大于速
5.4.1 赤道阻尼力矩Mzz

弹道学3-2

弹道学3-2
速度为零到弹底的气流速度为弹丸运动速度υ,符合线性变化规律; 4)忽略由于身管后座所引起的对气流的惯性力; 5)忽略膛内压力波的传递和反射对压力分布的影响。
在射击过程中的某一瞬间,弹丸行程为l,速度为υ,由膛底到该 瞬间弹丸位置的距离为L,则火药气体的速度分布如图所示 。
弹后空间流速分布
任取距膛底为x的微分单元层dx,微分单元的质量为dμ,气流的速度为 vω ,作用在x断面上的气体压力为pX,作用在x+dx断面上的压力为pX+dpX。 其中μ是火药气体和未燃尽的火药固体的质量。
阻力系数 1 1 K2 K3
(2) Sp m dv
dt
p——弹后空间膛内燃气的平均压力
次要功计算系数
1
K2
K3
K4
K5
K
1 3
m
K——与武器类型有关的常数
3.4 内弹道学基本方程
能量平衡方程: RT f mv2
2
➢ 能量平衡方程表明了射击过程中ψ,v及T之间的函数关系。 ➢ 从炮身强度计算和弹丸强度计算看,均以膛内最大压力为依据,因
火药气体在膛内流动很复杂,引起膛内压力分布的因素很多。因此在 研究压力分布的基本规律时,通常都是提出一些简化假设,采用近似的方 法。假设条件:
1)不考虑气体沿膛壁流动时摩擦阻力和气体的内摩擦,即忽略气体的粘滞性, 认为弹后空间任一横断面上各点气流速度及压力都是相等的;
2)不考虑药室断面与炮膛断面之间的差异,认为药室直径与炮膛口径相等; 3)火药气体及未燃尽的火药固体在弹后整个空间内均匀分布,从膛底的气流
上次课回顾:
平移运动功
能量平衡方程 Q E W1 WL
火药能量 燃气内能
次要功
f
cvT

外弹道学文档

外弹道学文档

外弹道学引言外弹道学是一门研究外弹道运动的学科,它涉及了飞行物体在大气中运动的各个方面,包括弹道轨迹、空气动力学特性、飞行稳定性等等。

在军事领域,外弹道学被广泛应用于导弹、火箭的设计与发射控制,而在航天领域,外弹道学研究则关注的是行星探测器、人造卫星等太空飞行器的轨迹规划与姿态控制。

一. 弹道轨迹弹道轨迹是飞行物体在大气中运动过程中所产生的轨迹,它是外弹道学研究的核心内容之一。

根据飞行物体的类型和用途不同,弹道轨迹可以分为抛物线轨迹、椭圆轨迹、双曲线轨迹等。

抛物线轨迹适用于短程火箭的飞行,椭圆轨迹适用于中程导弹的飞行,而双曲线轨迹则适用于远程导弹的飞行。

在计算弹道轨迹时,需要考虑飞行物体的发射速度、发射角度、大气阻力和重力加速度等因素。

这些因素会对弹道轨迹的形状和长度产生影响,因此需要进行准确的数学建模和计算。

二. 空气动力学特性空气动力学是外弹道学中一个重要的分支,它研究了飞行物体在空气中受到的气动力学力和气动特性。

飞行物体受到空气阻力、升力和侧向力的作用,这些力会影响飞行物体的飞行稳定性和控制性能。

在研究空气动力学特性时,需要通过实验和数值模拟等方法确定飞行物体的气动系数,例如阻力系数、升力系数和侧向力系数等。

这些系数的准确确定对于飞行物体的性能评估和设计优化非常重要。

三. 飞行稳定性飞行稳定性是外弹道学中一个关键的问题,它研究了飞行物体在飞行过程中的稳定性和控制性能。

飞行物体的稳定性决定了其在大气中的飞行状态是否能够保持稳定,而控制性能则决定了飞行物体是否能够按照要求进行姿态控制和轨迹控制。

在飞行稳定性分析中,需要考虑飞行物体的质心位置、飞行速度、姿态稳定性等因素。

通过分析这些因素,可以确定飞行物体的稳定性边界,并制定相应的控制策略以保证飞行器的安全和稳定性。

结论外弹道学研究了飞行物体在大气中运动的各个方面,包括弹道轨迹、空气动力学特性和飞行稳定性等。

在军事领域和航天领域,外弹道学的应用广泛而重要。

弹道学 总结

弹道学 总结

弹道学考试范围1.弹道学:研究各种弹丸或其他发射体从发射开始到终点的运动规律及伴随发生的有关现象。

2.内弹道学:是研究弹丸在膛内运动规律及其伴随的射击现象的科学。

3.外弹道学:可以分为质点弹道学和刚体弹道学两部分。

质点弹道学刚体弹道学4.枪炮发射系统的组成:1)身管2)火药3)弹丸5.膛内射击过程:点火传火过程—挤进过程—发射药燃烧推动弹丸膛内运动过程—发射药燃完后弹丸膛内运动过程—后效作用时期6.弹道诸元:1)自射出点o算起的弹丸飞行时间t;2)弹丸质心在地面坐标系中的坐标(x,y,z);3)质心速度的大小v;4)v与x轴正向的方向倾角θ7.初速Vo是为了简化问题而定义的一个虚拟速度,它并非弹丸质心在枪炮口的真实速度Vg,假设弹丸一出枪口即仅受重力和空气阻力作用,好像后效期并不存在,为了修正此假设所产生的误差,采取一虚拟速度Vo,这个Vo必须满足的条件是:当仅仅考虑重力和空气阻力对弹丸运动的影响,而不考虑后效期内火药气体对弹丸的作用时,在后效期终了瞬间的弹速必须与该瞬时的真实弹速Vm相等。

V0>Vm>Vg8.火药能量特征量:1)爆温T1(燃烧温度):就是指火药在燃烧瞬间没有任何能消耗的情况下,火药燃气所具有的温度,单位用K表示。

2)比容w:燃烧1kg火药所产生的燃气在0摄氏度和1个大气压下而水保持气态所占有的体积。

3)爆热Qv:1kg火药在真空定容情况下燃烧并将燃气冷却到18摄氏度时放出的热力量。

单位为J/Kg。

4)火药密度:火药密度越大,火药能量越大。

9.气体状态方程的参数构成,与哪些因素有关1)理想气体状态方程:pV/T=R`(R`=8314.32J/kmol`K2)真实气体状态方程:(p+a/v2)(v-α)=RT3)高温高压燃气状态方程:p(v-α)=RT4)定容状态下燃气方程:p(v-α)=RT1v气体的比容;a与气体分子间吸引力有关的常数;α单位质量气体分子体积有关的修正量,余容;R是与气体组分有关的气体常数,表示1kg火药气体在一个大气压下,温度升高1度对外膨胀做的功。

弹道学2-1(高等课资)

弹道学2-1(高等课资)
水保持为汽态时所占有的体积,称为火药气体的比容。 单位:dm3/kg
气体比容越大,做功的能力越大。
优质借鉴
11
(3)爆温T1(也称燃烧温度) 火药在燃烧瞬间没有任何能量消耗的情况下,火药气体具有的
温度。 单位:以绝对温标°K表示。 火药的燃烧温度越高,做功的能力就越大。
此外,火药密度也是一重要特征量,在火药体积相同的情况下,火药 密度越大,火药重量越大,所以总的能量也越大。
6
2.1.3 火药的形状、尺寸
火药燃烧时气体生成的速度与火药的表面面积有关,而在燃烧 过程中火药的表面积的变化决定于火药的厚度和形状。
火药形状:常见的有管状、带状、片状、棍状、球状和圆环状 等简单形状,以及七孔、花边形七孔、花边形十四孔等复杂形 状。
优质借鉴
7
通常用以下符号来表示火药的尺寸: 2e1,表示火药的厚度,或称肉厚,在管状或多孔粒状中称为弧厚, 2b,表示火药的宽度; 2c,表示火药的长度; D0和d0各表示管状和多孔粒状药的外径和孔径。
为使用方便,以弹丸行程l为变量来表示压力。令
l0
W0 S
——药室容积缩径长,
l
W S
——药室自由容积缩径长
则射击情况下的变容火药气体状态方程为
S p (l l ) RT
优质借鉴
26
优质借鉴
13
2.2.1 高温高压火药气体状态方程
在炮膛内,火药气体具有高温高压的性质。显然,它的压力、 温度和体积之间的函数关系是不能用理想气体状态方程来表达的, 须用真实气体状态方程来表达。
优质借鉴
14
通常,用范德瓦尔方程表示:
(
p
a w2
)(w
)
RT
式中 a——反映分子间吸引力的一个物理量; α——考虑气体分子体积的一个修正量,在内弹道学中称为余容; R——与气体组分有关的气体常数,表示1kg火药气体在一个大气压

《弹道学》教案

《弹道学》教案

《弹道学》考试知识点弹道学是兵器类专业的一门学科基础教育课程,通过掌握弹丸在膛内的运动规律、膛内压力的形成规律、弹丸在空气中运动规律、内外弹道诸元计算方法以及与弹道测试等有关的内弹道、外弹道的基本概念、基本理论和基本方法。

但不同的学科对弹道学的知识面要求重点有所不同,其中弹药工程、弹箭飞行与控制工程学科对外弹道的内容要求更多,其他如兵器发射理论与技术、火炮自动武器、机动武器系统工程、武器系统与信息工程等学科在内弹道理论知识面要求更多。

第0章概述(了解)掌握弹道发射过程的高温、高压、高速、瞬时特性,了解弹道学在武器设计中的地位和作用,了解整个弹道的过程及弹道学的发展历程。

1、结合火炮自动武器的射击过程、理解弹道全过程。

(掌握)2、理解内弹道学的研究对象、特点。

(理解)3、理解外弹道学的研究对象、特点。

(理解)4、了解内弹道学、外弹道学的发展及其实际应用。

(了解)第1章火药的燃烧规律(重点)理解火药的一般知识、熟练掌握定容密闭容器的火药气体状态方程、熟练掌握射击情况下的火药气体状态方程、熟练掌握火药的几何燃烧定律、掌握火药气体生成速率、熟练掌握形状函数、掌握燃烧速度定律;熟悉弹道学中火药燃烧建模的基本思路和简单公式推导,对其中的概念如爆温、火药力、药室容积缩径长、压力全冲量、装填密度等基本概念要熟记,并能结合工程实际的例题,进行火药燃烧的形状函数及其规律分析、火药力和余容的实验分析测定。

第一节:火药的基本知识(1)火药的分类(简单了解)(2)火药的能量特征量(掌握)(3)火药的形状参数(熟练掌握)第二节:火药气体定容状态方程(1)密闭爆发器基本结构(了解)(2)火药气体状态方程及Nobel-Alber(熟练掌握)(3)火药力和余容的测定方法(熟练掌握)第三节:变容情况下火药气体方程(1)假设条件(熟练掌握)(2)自由容积缩颈长及相关参数定义(熟练掌握)(3)变容情况下火药气体方程(熟练掌握)第四节:火药的几何燃烧定律及形状函数(1)几何燃烧定律及其应用条件(熟练掌握)(2)气体生成速率(熟练掌握)(3)简单形状火药形状函数的建立(熟练掌握)(4)简单形状火药形状函数的分析(熟练掌握)第五节:火药的燃烧速度定律(1)正比式、二项式和指数式火药燃烧速度分析比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹道学
弹道学简介
弹道学是研究飞行物体运动轨迹的学科,涉及到物体在空气中飞行的行为、速度、加速度和受力等相关问题。

在军事、航空航天和射击运动等领域,弹道学发挥着重要的作用。

本文将介绍弹道学的基本概念、相关原理和应用。

弹道学基本概念
1. 弹道学分类
弹道学可以分为外弹道学和内弹道学两个主要分支。

外弹道学研究物体离开发射源后运动的行为,如导弹、火箭等。

内弹道学研究
物体在发射管中的运动行为,例如枪弹的发射过程。

2. 弹道学参数
弹道学涉及到许多关键参数,其中包括:
•飞行物体的初始位置和速度
•飞行物体受到的外部力量,如风力和重力
•飞行物体的质量和形状
•飞行物体的飞行时间和轨迹
这些参数对于确定飞行物体的轨迹和命中目标至关重要。

弹道学原理
1. 牛顿力学定律
牛顿力学定律是弹道学的基础。

弹道学中使用的最重要的定律是牛顿第二定律:F=ma,其中F是施加在物体上的力,m是物体的质量,a是物体的加速度。

通过牛顿第二定律,可以计算出飞行物体在各个时刻的加速度,从而进一步确
定其速度和位置。

2. 空气阻力
在飞行物体移动过程中,空气阻力是一个重要的因素。

空气阻力会影响飞行物
体的速度和轨迹。

空气阻力由于物体和空气之间的摩擦产生,其大小与物体速度的平方成正比。

当速度增加时,空气阻力也会增加,从而减慢飞行物体的速度。

3. 重力
重力是弹道学的另一个重要概念。

地球对于飞行物体施加的重力作用会影响物
体的运动轨迹。

重力会使飞行物体受到向下的加速度,从而改变其速度和轨迹。

在弹道学中,
需要考虑物体的重力加速度,以判断其运动路径和时间。

弹道学应用
弹道学在许多领域都有实际应用,以下是其中一些例子:
1. 军事应用
在军事领域,弹道学用于研究和设计导弹、火炮、炸弹等武器系统。

通过弹道
学的原理,可以预测武器的射程、精确度和杀伤力,从而提高作战效能。

2. 航空航天应用
在航空航天领域,弹道学用于研究和设计火箭、卫星和航天器等。

通过弹道学
的理论,可以计算火箭或卫星的轨道和速度,从而实现安全的发射和飞行。

3. 射击运动
在射击运动中,弹道学用于帮助射手进行精确射击。

通过计算弹道学参数,如
射击角度、初速度和风速等,射手可以更好地预测子弹的轨迹,以提高射击命中率。

总结
弹道学是研究飞行物体运动轨迹的学科,涉及到物体在空气中飞行的行为、速度、加速度和受力等相关问题。

牛顿力学定律、空气阻力和重力都是弹道学的基本原理。

弹道学在军事、航空航天和射击运动等领域有广泛的应用,能够帮助人们研究和设计各种飞行物体以及提高作战效能和射击命中率。

弹道学的研究对于人类的科技发展和军事防御具有重要意义。

相关文档
最新文档