衢州市中考数学第一轮总复习讲义:解直角三角形(一)
中考总复习解直角三角形

解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
初三数学第一轮复习:解直角三角形浙江版

初三数学第一轮复习:解直角三角形某某版【本讲教育信息】一. 教学内容:第一轮复习:解直角三角形二. 知识回顾:1、锐角三角函数的定义,特殊角的三角函数值。
2、解直角三角形中的重要关系式: Rt △ABC 中,∠C =90°,①三边的关系:222c b a =+;②锐角之间的关系:∠A +∠B =90°;③边角之间的关系:ba A tan ,cb A cos ,c a A sin === 3、解直角三角形的应用中常用的几个概念①仰角与俯角:相对于视线与水平线的夹角而言; ②坡角:斜坡的坡面与水平面的夹角;③坡度:斜坡的铅直高度与水平宽度的比,用i 表示,与坡角的关系为α=tan i ; ④方位角:一般以北、南方向为基准。
4、本节的学习中,常常通过添加辅助线,构造直角三角形来转化求解。
【典型例题】例1. 设a ,b ,c 为△ABC 的三边,方程0)x 1(a bx 2)x 1(c 22=+++-的两根相等,∠C 的正弦值为1312,求∠B 的四个三角函数值。
解析:方程可变形为0c a bx 2x )c a (2=+++- ∵方程的两个实根相等。
∴c a ≠且.c b a 0)c a (b ,0222222+=∴=--∴=∆ ∴△ABC 为Rt △。
∴∠A =90° 又1312C sin =,∴设AB =12k ,BC =13k (0k >) ∴由勾股定理,k 5AB BC AC 22=-=.512B cot ,1B tan B cot ,125AB AC B tan .1312BC AB B cos ,135BC AC B sin =∴=⋅======∴但例2. 如图,△ABC 中,∠BAC =90°,D 为BC 边上一点,已知∠DAC =60°,DC =2,BD =1 求△ABC 的周长与面积。
解:设AE =x ,则x 3DE = 又DE //BA ,AC BA ∴⊥.x 2AE 2CE ,2BDCD AE CE .x 233DE 23AB ,32CB CD AB DE ==∴====∴==∴AC =AE +CE =3x 由勾股定理,()2222223x 3x 323,BC AC AB =+⎪⎭⎫ ⎝⎛∴=+ 解得772x =∴2173AB ,776x 3AC ===∴△ABC 的周长为3776213BC AC AB ++=++它的面积为379AC AB 21=⋅。
2023年九年级中考数学一轮复习:解直角三角形及其应用(含解析)

2023年中考数学一轮复习:解直角三角形及其应用一、单选题1.如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣2,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线kyx=(k≠0)上,则k的值为()A.4B.﹣2C D.2.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分△BAD,分别交BC,BD于点E,P,连接OE,△ADC=60°,122AB BC==,则下列结论:①△CAD=30°;②14OE AD=;③S平行四边形ABCD=AB·AC;④27BD=⑤S△BEP=S△APO;其中正确的个数是()A.2B.3C.4D.5 3.如图,为了保证道路交通安全,某段高速公路在A处设立观测点,与高速公路的距离AC为20米.现测得一辆小轿车从B处行驶到C处所用的时间为4秒。
若△BAC=α,则此车的速度为()A.5tanα米/秒B.80tanα米/秒C.5tanα米/秒D.80tanα米/秒二、填空题4.如图,在 ABC 中,AD 是BC 上的高, cos tanB DAC =∠ ,若 1213sinC =, 12BC = ,则AD 的长 .5.某人沿着坡角为α的斜坡前进80m ,则他上升的最大高度是 m . 6.如图,建筑物BC 上有一旗杆AB ,点D 到BC 的距离为20m ,在点D 处观察旗杆顶部A 的仰角为52°,观察底部B 的仰角为45°,则旗杆的高度为 m .(精确到0.1m ,参考数据:520.79sin ︒≈,52 1.28tan ︒≈ 1.41≈ 1.73≈.)三、综合题7.在Rt△ACB 中,△C=90°,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AB 、AC 分别交于点D 、E ,且△CBE=△A.(1)求证:BE 是△O 的切线; (2)连接DE ,求证:△AEB△△EDB ;(3)若点F 为 AE 的中点,连接OF 交AD 于点G ,若AO=5,3sin 5CBE ∠= ,求OG 的长.8.如图(1)放置两个全等的含有30°角的直角三角板 ABC 与(30)DEF B E ∠=∠=︒ ,若将三角板 ABC 向右以每秒1个单位长度的速度移动(点C 与点E 重合时移动终止),移动过程中始终保持点B 、F 、C 、E 在同一条直线上,如图(2), AB 与 DF 、 DE 分别交于点P 、M , AC 与 DE 交于点Q ,其中 AC DF ==,设三角板 ABC 移动时间为x 秒.(1)在移动过程中,试用含x 的代数式表示AMQ 的面积;(2)计算x 等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?9.已知AB 是△O 的切线,切点为B 点,AO 交△O 于点C ,点D 在AB 上且DB=DC .(1)求证:DC 为△O 的切线;(2)当AD=2BD ,CD=2时,求AO 的长.10.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶 A 的仰角为 35︒ ,此时地面上C 点、屋檐上 E 点、屋顶上A 点三点恰好共线,继续向房屋方向走 8m 到达点D 时,又测得屋檐 E 点的仰角为 60︒ ,房屋的顶层横梁 12EF m = ,//EF CB , AB 交 EF 于点G (点C ,D , B 在同一水平线上).(参考数据:sin350.6︒≈ , cos350.8︒≈ , tan350.7︒≈ ,1.7≈ )(1)求屋顶到横梁的距离 AG ;(2)求房屋的高 AB (结果精确到 1m ).11.如图,直线 (0)y mx n m =+≠ 与双曲线 (0)ky k x=≠ 交于 A B 、 两点,直线AB 与坐标轴分别交于 C D 、 两点,连接 OA ,若 OA = ,1tan 3AOC ∠= ,点 (3,)B b - .(1)分别求出直线 AB 与双曲线的解析式; (2)连接 OB ,求 AOBS.12.如图,某港口O 位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.(1)若它们离开港口一个半小时后分别位于A 、B 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?说明理由.(2)若“远航”号沿北偏东60︒方向航行,经过两个小时后位于F 处,此时船上有一名乘客需要紧急回到PE 海岸线上,若他从F 处出发,乘坐的快艇的速度是每小时80海里.他能在半小时内回到海岸线吗?说明理由.13.如图,某人在山坡坡脚A 处测得电视塔尖点 C 的仰角为 60︒ ,沿山坡向上走到p 处再测得点C 的仰角为 45︒ ,已知 100OA = 米,山坡坡度 1:2i = ,且O A B 、、 在同一条直线上,其中测倾器高度忽略不计.(1)求电视塔OC 的高度;(计算结果保留根号形式)(2)求此人所在位置点 P 的铅直高度.(结果精确到0.1米,参考数据:1.41= , 1.73= )14.我国于2019年6月5日首次完成运载火箭海上发射,达到了发射技术的新高度.如图,运载火箭海面发射站点M 与岸边雷达站N 处在同一水平高度。
2023年中考数学一轮复习考点过关 解直角三角形的应用

2023年中考数学一轮复习考点过关解直角三角形的应用1. 3月份,长江重庆段开始进入枯水期,有些航道狭窄的水域通航压力开始慢慢增加.为及时掌握辖区通航环境实时情况,严防船舶搁浅、触礁等险情事故发生,沿江海事执法人员持续开展巡航检查,确保近七百公里的长江干线通航安全.如图,巡航船在一段自西向东的航道上的A处发现,航标B在A处的北偏东45°方向200米处,以航标B为圆心,150米长为半径的圆形区域内有浅滩,会使过往船舶有危险.(1)由于水位下降,巡航船还发现在A处北偏西15°方向300米的C处,露出一片礁石,求B、C两地的距离;(精确到1米)(2)为保证航道畅通,航道维护项目部会组织挖泥船对该条航道被浅滩影响的航段进行保航施工.请判断该条航道是否被这片浅滩区域影响?如果有被影响,请求出被影响的航道长度为多少米?如果≈)2 1.4147 2.6462. 如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.3. 为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.(1)开通隧道前,汽车从A地到B地大约要走多少千米?(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:23)4. 如图,笔直的海岸线l上有A、B两个观测站,A在B的正东方向.有一艘渔船在点P处,从A处测得渔船在北偏西60︒的方向,从B处测得渔船在其东北方向,且测得B、P两点之间的距离为20海里.(1)求观测站A、B之间的距离(结果保留根号);(2)渔船从点P处沿射线AP的方向航行一段时间后,到点C处等待补给,此时,从B测得渔船在北偏西15︒的方向.在渔船到达C处的同时,一艘补给船从点B出发,以每小时20海里的速度前往C 处,请问补给船能否在83分钟之内到达C3 1.73≈)5. 为做好疫情防控工作,确保师生生命安全,学校每日都在学生进校前进行体温检测.某学校大门AB高6.5米,学生DF身高1.5米,当学生准备进入体温检测有效识别区域时,在点D处测得摄像头A的仰角为30︒,当学生刚好离开体温检测有效识别区域CD段时,在点C处测得摄像头A的仰角为60︒,求体温检测有效识别区域CD 段的长(结果保留根号)6. 数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE 在高55m 的小山EC 上,在A 处测得塑像底部E 的仰角为34°,再沿AC 方向前进21m 到达B 处,测得塑像顶部D 的仰角为60°,求炎帝塑像DE 的高度.(精确到1m .参考数据:sin340.56︒≈,cos340.83︒=,tan340.67︒≈3 1.73)7. 如图1,和平大桥是徐州市地标建筑,也是国内跨铁路最多的大桥,某数学小组的同学利用课余时间对该桥进行了实地测量,如图2所示的测量示意图,测得如下数据;∠A =27°,∠B =31°,斜拉主跨度AB =368米.(1)过点C 作CD ⊥AB ,垂足为D ,求CD 的长(结果精确到0.1);(2)若主塔斜拉链条上的LED 节能灯带每米造价90元,求斜拉链条AC 上灯带的总造价是多少元?(参考数据tan27°≈0.5,sin27°≈0.45,cos27°≈0.9:tan31°≈0.6)8. 为了监控大桥下坡路段车辆行驶速度,通常会在下引桥处设置电子眼进行区间测速,如图,电子眼位于点P处,离地面的铅锤高度PQ为9米,区间测速的起点为下引桥坡面点A处,此时电子眼的俯角为30°;区间测速的中点为下引桥坡脚点B处,此时电子眼的俯角为60°(A、B、P、Q四点在同一平面).(1)求路段BQ的长(结果保留根号);(2)当下引桥坡度1:23i AB的长(结果保留根号).9. 某购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡AD与地平线的夹角为18°,一楼到地下停车场地面的距离CD=2.8米,地平线到一楼的垂直距离BC=1米.(1)应在地面上距点B多远的A处开始斜坡施工?(精确到0.1米)(2)如果给该购物广场送货的货车高度为2.5米,那么按这样的设计能否保证货车顺利进入地下停车场?请说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)10. 如图,某城市的一座古塔CD 坐落在湖边,数学老师带领学生隔湖测量古塔CD 的高度,在点A 处测得塔尖点D 的仰角∠DAC 为31°,沿射线AC 方向前进35米到达湖边点B 处,测得塔尖点D 在湖中的倒影E 的俯角∠CBE 为45°,根据测得的数据,计算这座灯塔的高度CD (结果精确到0.1).参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60.(结果精确到0.1)11. 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长AB =17cm ,支撑板长CD =16cm ,底座长DE =14cm ,托板AB 联结在支撑板顶端点C 处,且CB =7cm ,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若70,60DCB CDE ∠=︒∠=︒,求点A 到直线DE 的距离(精确到0.1cm )(参考数值sin 400.64,cos400.77,tan 403 1.73︒︒︒≈≈≈)12. 图①是某车站的一组智能通道闸机,图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角∠ABC =∠DEF =20°,半径BA =ED =60cm ,点A 与点D 在同一水平线上,且它们之间的距离为10cm .求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36).13. 如图,1号楼在2号楼的南侧,两楼高度均为90,m 楼间距为AB .冬至日正午,太阳光线与水平面所成的角为32.3︒.1号楼在2号楼墙面上的影高为CA ,春分日正午,太阳光线与水平面所成的角为55.7︒,1号楼在2号楼墙面上的影高为DA .已知42CD m =.(1)求楼间距AB ;(2)若2号楼共30层,层高均为3,m 则点C 位于第几层? ( 参考数据:32.30.53,sin ︒≈32.30.85cos ︒≈,32.30.6355.70.83tan sin ︒≈︒≈,,55.70.5655.7 1.47cos tan ︒≈︒≈,)14. 如图,小明站在江边某瞭望台DE 的顶端D 处,测得江面上的渔船A 的俯角为40°.若瞭望台DE 垂直于江面,它的高度为3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE 的顶端D 到江面AB 的距离;(2)求渔船A 到迎水坡BC 的底端B 的距离.(结果保留一位小数)15. 如图,小锋将一-架4米长的梯子AB 斜靠在竖直的墙AC 上,使梯子与地面所成的锐角α为60°.(1)求梯子的顶端与地面的距离AC (结果保留根号)(2)为使梯子顶端靠墙的高度更高,小锋调整了梯子的位置使其与地面所成的锐角α为70°,则需将梯子底端点B 向内移动多少米(结果精确到0.1米)?参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈.。
浙江省衢州市中考数学复习专题之解直角三角形综合题

浙江省衢州市中考数学复习专题之解直角三角形综合题姓名:________ 班级:________ 成绩:________一、浙教版2019中考数学复习专题之解直角三角形综合题解答题 (共39题;共60分)1. (1分)(2017·平顶山模拟) 如图,某教学楼AB的后面有一建筑物CD,当光线与地面夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C 有13米的距离(B、F、C在一条直线上),求教学楼AB的高度(sin22°≈ ,cos22°≈ ,tan22°≈ )2. (1分)在南部沿海某气象站A测得一热带风暴从A的南偏东30°的方向迎着气象站袭来,已知该风暴速度为每小时20千米,风暴周围50千米范围内将受到影响,若该风暴不改变速度与方向,问气象站正南方60千米处的沿海城市B是否会受这次风暴的影响?若不受影响,请说明理由;若受影响,请求出受影响的时间.3. (1分)(2017·宁城模拟) 某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)4. (1分) (2019九下·台州期中) 如图所示,小明准备测量学校旗杆AB的高度,他发现阳光下,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,测得水平地面上的影长BC=20m,斜坡坡面上的影长CD=8m,太阳光线AD与水平地面成锐角为26°,斜坡CD与水平地面所成的锐角为30°,求旗杆AB的高度(精确到1m).(参考数据:sin26°=0.44,cos26°=0.90,tan26°=0.49)5. (1分)(2017·无棣模拟) 小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.6. (1分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)7. (2分) (2017九上·宛城期中) 如图,在直角坐标系中,直线AB分别与x轴、y轴交于B、A两点,OA、OB的长是关于x的一元二次方程x2﹣12x+32=0的两个实数根,且OB>OA,以OA为一边作如图所示的正方形AOCD,CD交AB于点P.(1)求直线AB的解析式;(2)在x轴上是否存在一点Q,使以P、C、Q为顶点的三角形与△ADP相似?若存在,求点Q坐标;否则,说明理由;(3)设N是平面内一动点,在y轴上是否存在点M,使得以A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点M的坐标;否则,请说明理由.8. (2分)(2011·扬州) 如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管与支架CD所在直线相交于水箱横断面⊙O的圆心O,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度;(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:≈1.414,≈1.73)9. (1分)(2015·台州) 如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)?(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)10. (2分)(2017·通辽) 如图,物理教师为同学们演示单摆运动,单摆左右摆动中,在OA的位置时俯角∠EOA=30°,在OB的位置时俯角∠FOB=60°,若OC⊥EF,点A比点B高7cm.求:(1)单摆的长度(≈1.7);(2)从点A摆动到点B经过的路径长(π≈3.1).11. (2分)(2017·石城模拟) 图1是安装在斜屋面上的热水器,图2是安装该热水器的侧面示意图.已知,斜屋面的倾斜角为25°,长为2.1米的真空管AB与水平线AD的夹角为40°,安装热水器的铁架水平横管BC长0.2米,求(1)真空管上端B到AD的距离(结果精确到0.01米);(2)铁架垂直管CE的长(结果精确到0.01米).12. (2分) (2017九上·萍乡期末) 如图,教室窗户的高度AF为2.5米,遮阳蓬外端一点D到窗户上椽的距离为AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠BPC为30°,PE为窗户的一部分在教室地面所形成的影子且长为米,试求AD的长度.(结果带根号)13. (2分)(2017·个旧模拟) 为给人们的生活带来方便,2017年兴化市准备在部分城区实施公共自行车免费服务.图1是公共自行车的实物图,图2是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=35cm,DF=24cm,AF=30cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)(1)求AD的长;(2)求点E到AB的距离(结果保留整数).14. (1分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.15. (2分)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数(2)显示屏的顶部B′比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O′B与水平线的夹角仍保持120°,则显示屏O′B′应绕点O′按顺时针方向旋转多少度?16. (2分)(2016·江西) 如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器)17. (2分)(2017·薛城模拟) 某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=________m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)18. (1分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)19. (2分)(2018·嘉兴模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50 cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮。
2025年中考数学一轮复习课件:第31讲解直角三角形

答案:解:由题意,得∠CHA=∠CHB=90°,CH=60,所以∠A
=60°,∠B=45°.
在Rt△ACH中,AH=
= =20
°
在Rt△BCH中,BH=
= =60.
°
所以AB=AH+BH=20 +60.
答:A,B之间的距离是(20 +60)米.
在Rt△ABC中,∠ACB=45°,所以AB=BC·tan45°=a m.
在Rt△ADB中,∠ADB=42°,所以AB=BD·tan42°≈0.9(22-a)m,
则a=0.9(22-a),解得a≈10.4,所以AB=BC=10.4 m,
即乌当惜字塔AB的高度约为10.4 m.
(2)由(1)得BC=AB=10.4 m,所以BD=CD-BC=22-10.4=11.6(m).
×
=15(米).
在Rt△CAD中,AD=15 米,∠CAD=60°.
因为tan∠CAD=
,所以CD=AD·tan∠CAD=15
所以BC=BD+CD=15+45=60(米).
答:这栋高楼的高BC为60 米.
× =45(米),
12.一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑
.
11.如图,小强从热气球上的A点测量一栋高楼顶部的仰角∠DAB=30°,测量这栋高
楼底部的俯角∠DAC=60°,热气球与高楼的水平距离AD为15 米,求这栋高楼的
高BC.
答案:解:在Rt△BAD中,AD=15 米,∠DAB=30°.
因为tan∠DAB=
,所以BD=AD·tan∠DAB=15
九年级数学中考复习第一轮复习基础训练三角函数(一)三角函数与解直角三角形 课时作业同步练习含答案解析

微专题8 三角函数(一)三角函数与解直角三角形考点1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED = .3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为 . 考点2 特殊角的三角函数值4.(1) sin 30°= ; cos 60°= ;tan 45"= ;(2)3sin 60"—2cos 30°—tan 60°= .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C = 度. 考点3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为 .7.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B,C 在同一水平面上),为了测量B ,C 两地之间的距离,某工程队员乘坐热气球从C 地出发垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B,C 两地间的距离为 m .8.如图,一艘船由A 港沿北偏东65°方向航行302km 至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A,C 两港之间的距离为 km.DOB AECAC ABCB第1题图第2题图第3题图30°30°B CC A CAB AB 第6题图 第7题图 第8题图9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. :C BC微专题8 三角函数(一)三角函数与解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,则 sin A 等于( A ) A.35 B.45 C.34 D.432.如图,边长为1的小正方形网格中, ⊙O 的圆心在格点上,cos ∠AED =255. 3.如图,在△ABC 中,CA=CB =4, cos C =14,则sinB 的值为104.精练2 特殊角的三角函数值4.(1) sin 30°=12; cos 60°=12;tan 45"= 1 ;(2)3sin 60"—2cos 30°—tan 60°= 32 .5.在△ABC 中,∠A ,∠B 为锐角,若|sinA 一22|+(32-cosB )2=0,则∠C =105度. 精练3 解直角三角形及其实际应用6.如图,在△ABC 中,∠B =30°,AC=2,cosC =35.则AB 边的长为165.DOB AECAC ABCB第1题图第2题图第3题图30°30°BC CACABAB第6题图第7题图第8题图7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队员乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为.8.如图,一艘船由A港沿北偏东65°方向航行至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为(30+km.9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高AD.解:设AD=x米,则BDx米.CD=AD=xx-x=100.解得:x=50.答:山高为(50)米.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1.(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由. 解:(1)30°:(2)过点C作CD⊥AB于点D.则BD=CD=6.AD∴AB=AD-BD一6<8∴文化培PM不需要拆除.C B。
浙江省衢州市中考数学第一轮总复习讲义函数及其图像(无答案)

函数及其图像浙江考情分析典型考题考点一平面内点的坐标(2015·南京)在平面直角坐标系中,点A 的坐标是(2,-3),作点A 关于x 轴的对称点得到点A′,再作点A′关于y 轴的对称点,得到点A″,则点A″的坐标是变式1:(2015·天津)在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为( )A.(3,2) B.(2,-3) C.(-3,-2) D.(3,-2)变式2:如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n 是自然数)的坐标为.考点二函数自变量的取值范围(2015·内江)函数y=2-x+1中自变量x 的取值范围是( )x-1A.x≤2 B.x≤2 且x≠1 C.x<2 且x≠1 D.x≠1变式:在函数y=x+2中,自变量x 的取值范围是( )x-1A.x>1 B.x≥1 C.x>-2 D.x≥-2考点三函数的图象及应用(2015·济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),这个容器的形状是下图中的( )变式:如图,在Rt△ABC 中,∠C=90°,AC=1 cm,BC=2 cm,点P从点A 出发,以1 cm/s 的速度沿折线AC→CB→BA 运动,最终回到A 点.设点P 的运动时间为x(s),线段AP 的长度为y(cm),则能反映y 与x 之间函数关系的图象大致是( )随堂巩固1.(2015·营口)函数y=x+3中自变量x 的取值范围是( )x-5A.x≥-3 B.x≠5 C.x≥-3 或x≠5 D.x≥-3 且x≠52.(2015·衢州实验中学调研)如图,在5×4 的方格纸中,每个小正方形边长为1,点O,A,B 在方格线的交点(格点)上.在第四象限内的格点上找点C,使△ABC 的面积为3,则这样的点C 共有( )A.2 个B.3 个C.4 个D.5 个 3.如图,在平面直角坐标系中,点A,B 的坐标分别为(-6,0),(0,8).以点A 为圆心,以AB 长为半径画弧交x 轴正半轴于点C,则点C的坐标为( )4.如图,动点P 从点A 出发,沿线段AB 运动至点B 后,立即按原路返回,点P 在运动过程中速度不变,则以点B 为圆心,线段BP 长为半径的圆的面积S 与点P 的运动时间t 的函数图象大致为( )5.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点,上午10:00 小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH 的交点B 的坐标,并说明它的实际意义.(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江考情分析
解直角三角形(一)
典型考题
考点一成比例线段与比例的基本性质
若2a=3b=4c,且abc≠0,则a+b
的值是( ) c-2b
A.2 B.-2 C.3 D.-3
变式:(2015·乐山)如图,l1∥l2∥l3,两条直线与这三条平
行线分别交于点A,B,C 和D,E,F.已知AB
=
3
,则
DE
的
值为( )
BC 2 DF
A.
3
2B.
2
3
C.
2
5
D.
3
5
考点二 相似多边形的性质
如果两个相似多边形面积的比为 1∶5,则它们的相
似比为(
)
A .1∶25
B .1∶5
C .1∶2.5
D .1∶ 5
变式 1: 如图 1 所示的两个四边形相似,则∠α的度数是
(
)
A .87°
B .60°
C .75°
D .120°
图 1
图 2
变式 2:如图 2,四边形 ABCD 与四边形 A 1B 1C 1D 1 相似, AB =12,CD =15,A 1B 1=9,则边 C 1D 1 的长是(
) A .10
B .12
C.
45
4
考点三 相似三角形的性质与判定
D. 36
5
(·庆阳)如图,在△ABC 中,两条中线 BE ,CD
相交于点 O ,则 S △DOE ∶S △COB =(
)
A .1∶4
B .2∶3
C .1∶3
D .1∶2
变式 1: (2015·重庆)已知△ABC ∽△DEF ,若△ABC 与 △DEF 的相似比为 2∶3,则△ABC 与△DEF 对应边上的中 线的比为
.
变式2:(·南京)如图,△ABC 中,CD 是边AB 上的高
,且CD2=AD·DB.
(1)求证:△ACD∽△CBD;(2)求∠
ACB 的大小.
考点四相似图形的应用
(·菏泽)如图,M,N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N 两点之间的直线距离,选择测量点A,B,C,点B,C 分别在AM,AN 上,
现测得AM=1 千米、AN=1.8 千米、AB=54 米、BC=45 米、AC=30 米,求M,N 两点之间的直线距离.
变式1:如图,在一场羽毛球比赛中,站在场内M 处的运动员林丹把球从N 点击到了对方内的B 点,已知网高OA =1.52 米,OB=4 米,OM=5 米,则林丹起跳后击球点N 离地面的距离NM=米.
变式2:有一支夹子如图所示,AB=2BC,BD=2BE,在夹子前面有一个长方体硬物,厚PQ 为6 cm,如果想用夹子的尖端A,D 两点夹住P,Q 两点,那么手握的地方EC 至少要张开cm.
随堂巩固
1.(·安顺)如图,▱ABCD 中,点E 是边AD 的中点,EC交对角线BD 于点F,则EF∶FC 等于( )
A.3∶2 B.3∶1
C.1∶1 D.1∶2
第1 题第2 题2.如图,等边三角形ABC 的边长为3,P 为BC 上一点,且BP=1,D 为AC 上一点,若∠APD=60°,则CD 的长为.
3.如图,在方格纸中,△ABC 和△EPD 的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为( ) A.P1 B.P2 C.P3 D.P4
第3 题第4 题
4.(2015·南通)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC,交BC 于点E,AB=6,AD=5,则AE 的长为( )
A.2.5 B.2.8 C.3 D.3.2
5.如图,在矩形ABCD 中,F 是DC 上的一点,AE 平分∠BAF 交BC 于点E,且DE⊥AF,垂足为点M,BE=3,AE=2 6,则MF 的长是( )
A. 15
B.
15
10
C.1 D.
15
15
第5 题第6 题
6.(2015·金华外国语学校模拟)如图,已知矩形ABCD 中,AB=1,在BC 上取一点E,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=.
7.(·绍兴鲁迅中学模拟)如图,四边形ABCD 中,AC ⊥BD 交BD 于点E,点F,M 分别是AB,BC 的中点,BN 平分∠ABE 交AM 于点N ,AB=AC=BD,连结MF,NF.
(1)判断△BMN 的形状,并证明你的结论;
(2)判断△MFN 与△BDC 之间的关系,并说明理由.
8.(·安徽)如图①,在四边形ABCD 中,点E,F 分别是AB ,CD 的中点.过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G,连结GA,GB,GC,GD,EF.若∠AGD
=∠BGC.
(1)求证:AD=BC;(2)求
证:△AGD∽△EGF;
AD
(3)如图②,若AD,BC 所在的直线互相垂直,求
的值.
EF。